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Abstract

In epistemic logic, some axioms dealing with the no-
tion of knowledge are rather convoluted and it is diffi-
cult to give them an intuitive interpretation, even if some
of them, like .2 and .4, are considered by some epis-
temic logicians to be key axioms. We show that they
can be characterized in terms of understandable interac-
tion axioms relating knowledge and belief. In order to
show it, we first present a theory dealing with the char-
acterization of axioms in terms of interaction axioms in
modal logic. We then apply the main results and meth-
ods of this theory to obtain our results related to epis-
temic logic.

1 Introduction
The development of modern epistemic logic can be viewed
as an attempt to elucidate the nature of the interaction be-
tween knowledge and belief by means of formal and logi-
cal methods. On the basis of a semantics very close to the
Kripke semantics of modal logic, Hintikka and subsequent
philosophers and logicians tried to formulate explicit prin-
ciples governing and relating expressions of the form “a
knows that ϕ” (subsequently formalized as Kϕ) and “a be-
lieves that ϕ” (subsequently formalized asBϕ), where a is a
human agent and ϕ is a proposition. In other words, they
sought to determine ‘the’ logic of knowledge and belief.
This quest was grounded in the observation that our intu-
itions of these epistemic notions comply to some systematic
reasoning properties, and was driven by the attempt to better
understand and elucidate them (Lenzen 1978, p. 15). For ex-
ample, the interaction axioms Kϕ→ Bϕ and Bϕ→ KBϕ
are often considered to be intuitive principles: if agent a
knows ϕ then (s)he also believes ϕ, or if agent a believes
ϕ, then (s)he knows that (s)he believes ϕ.

In computer science, the logic of knowledge is usually
considered to be S5, which is the logic S4 composed of the
axioms Kϕ → ϕ and Kϕ → KKϕ to which is added the
axiom 5: ¬Kϕ → K¬Kϕ. This last axiom is validated in
situations where the agent cannot have mistaken beliefs. For
this very reason, it has been attacked by various philoso-
phers because it cannot hold in general. Dropping this ax-
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iom 5, we obtain a rich variety of weaker logics of knowl-
edge which have been proposed and examined by logicians
(Lenzen 1979), such as S4.2, S4.3, S4.3.2 and S4.4. Even
if these logics are characterized by axioms which are rather
intricate, some of them have been proclaimed by some epis-
temic logicians as key axioms characterizing the notion of
knowledge. For example, Lenzen claimed that “[t]here is
strong evidence in favor of the assumption that S4.2 is the
logic of knowledge” (Lenzen 1979, p. 33), where the axiom
.2 is ¬K¬Kϕ → K¬K¬ϕ. Likewise, Kutschera argues
for S4.4 as the logic of knowledge, where the axiom .4 is
(ϕ ∧ 〈K〉Kϕ) → Kϕ (Kutschera 1976). As one can easily
observe, it is difficult to provide these axioms with a nat-
ural and easily understandable reading. In fact, Lenzen de-
rived his axiom .2 from a set of interaction axioms relating
knowledge and belief.

To better grasp the intuitions underlying these intricate
axioms, we show that axioms .2 and .4 can be characterized
equivalently in terms of interaction axioms relating knowl-
edge and belief. In order to do so, we first need to explain
what we mean by “interaction axiom” and what we mean by
“characterizing an axiom in terms of interaction axioms”.
This will lead us to develop a meta-theory of modal logic
dealing with these notions. Then, we will apply the gen-
eral results of this theory to the specific case of epistemic
logic. Note that the problems that we address in this article
have never been addressed in the logical literature, neither
for multi-modal logics nor for combinations of modal logics
(Marx and Venema 1997; Gabbay et al. 1998).

2 Towards a Theory of Interaction Axioms
In this section, we start by recalling the basics of modal
logic. Then, we present our primitive meta-theory of modal
logic dealing with interaction axioms.

2.1 Modal Logic
Syntax. In the rest of the article, Φ is a set of propositional
letters and A ⊆ {1, 2}. We define the modal language LA
by the following BNF grammar:

LA : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ

where p ranges over Φ and i ranges over A. The formula >
is an abbreviation for p ∨ ¬p (for some fixed p ∈ Φ), the
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formula ⊥ is an abbreviation for ¬> and 〈i〉ϕ an abbrevia-
tion for ¬ [i]¬ϕ. An occurrence of a proposition letter p is a
positive occurrence if it is in the scope of an even number of
negation signs ¬. It is positive in p if all occurrences of p in
ϕ are positive. If Γ := {ϕ1, . . . , ϕn} ⊆ LA, then

∧
Γ is an

abbreviation for ϕ1 ∧ . . . ∧ ϕn.
A (modal) logic L for the modal language LA is a set of

formulas of LA called theorems which contains all proposi-
tional tautologies and which is closed under modus ponens,
that is, if ϕ ∈ L and ϕ → ψ ∈ L, then ψ ∈ L, and closed
under uniform substitution, that is, if ϕ belongs to L then so
do all of its substitution instances (see (Blackburn, de Rijke,
and Venema 2001, Def. 1.18) for the definition of a substi-
tution instance).

A modal logic is usually defined by a set of inference rules
and of formulas called axioms. A formula is a theorem of
the modal logic if it can be derived by successively applying
(some of) the inference rules to (some of) the axioms. We are
interested here in normal modal logics. These modal logics
contain the axiom schema ([i] (ϕ → ψ) ∧ [i]ϕ) → [i]ψ,
and the inference rule of necessitation: from ϕ ∈ L, infer
[i]ϕ ∈ L, for all i ∈ A. Let A ⊆ LA. A modal logic for LA
generated by the setA is the smallest normal modal logic for
LA containing A. In that case, the formulas of A are called
axioms.

If L and L′ are two sets of formulas of LA (possibly log-
ics), we denote by L + L′ the modal logic for LA generated
by L ∪ L′ (it is also called the fusion of L and L′ (Marx and
Venema 1997; Gabbay et al. 1998)). If x is a formula of LA,
then L + x abusively denotes L + {x}. Note that L + L′ may
be different from L ∪ L′ in general, because L ∪ L′ may not
be closed under modus ponens or uniform substitution.

Let x ∈ LA and let X,X ′ ⊆ LA. We say that x is deriv-
able from X in L when x ∈ L +X and in that case we write
X `L x. We also write X `L X ′ when X `L x′ for all
x′ ∈ X ′, and X >L X

′ when it holds that X `L X
′ but it

does not hold that X ′ `L X .

Kripke Semantics. The Kripke semantics will be used
only in the proof of Theorem 2.2. A (bi-modal) Kripke
model M is a tuple M = (W,R1, R2, V ) where W is a
non-empty set of possible worlds, R1, R2 ∈ 2W×W are
binary relations over W called accessibility relations, and
V : Φ → 2W is called a valuation and assigns to each
propositional letter p ∈ Φ a subset ofW . We often denote by
Ri(w) the set Ri(w) := {v ∈W | wRiv} and we abusively
write w ∈M when w ∈W .

Let ϕ ∈ LA, letM be a Kripke model and let w ∈ M.
The satisfaction relationM, w |= ϕ is defined inductively
as follows:

M, w |= p iff w ∈ V (p)
M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ andM, w |= ϕ′

M, w |= ¬ϕ iff notM, w |= ϕ
M, w |= [i]ϕ iff for all v ∈ Ri(w),M, v |= ϕ

If Γ ⊆ LA, then we writeM, w |= Γ whenM, w |= ϕ for
all ϕ ∈ Γ.

2.2 Interaction Axioms and Characterization of
Axioms

In the sequel, L1 and L2 are two modal logics for L1 and L2

respectively, and L1,2 is a modal logic for L1,2.
Definition 2.1 (Interaction Axioms). A set of interaction
axioms w.r.t. a pair of logics (L1,L2) is a finite set of for-
mulas Γ ⊆ L1,2 for which there is no χ ∈ L1 ∪ L2 such
that

χ↔
∧

Γ ∈ L1 + L2.

In the sequel, x is a formula of L1 and Γ is a set of inter-
action axioms w.r.t. (L1,L2).
Definition 2.2 (Characterization of an Axiom). We say
that x is characterized by the set of interaction axioms Γ
w.r.t. (L1,L2) when

L1 + x = (L1 + L2 + Γ) ∩ L1. (1)

Moreover, x is conservatively characterized by Γ w.r.t.
(L1,L2) when the set of interaction axioms Γ satisfies the
following condition as well:

L2 = (L1 + L2 + Γ) ∩ L2. (2)

Definition 2.2 tells us that an axiom x is characterized by
a set of interaction axioms Γ if, when we add the interaction
axioms to the base logics, we derive exactly the theorems
for the language L1 obtained by only adding axiom x to L1,
and nothing else. For the case of strong characterization, by
adding these interaction axioms Γ, we do not even obtain
new theorems for the language L2 as ‘side effects’, the the-
orems for this language just remain the same as initially.
Proposition 2.1. • If x is conservatively characterized by a

set of interaction axioms w.r.t. (L1,L2), then x /∈ L1.
• Conversely, if x /∈ L1 and Γ is a set of formulas of L1,2

such that Equation (1) holds, then Γ is a set of interaction
axioms w.r.t. (L1,L2).

Proof. It follows easily from Definitions 2.1 and 2.2.

Finally, we define a notion of minimality among the sets
of interaction axioms characterizing an axiom x.
Definition 2.3 (Minimal Characterization). The axiom
x is minimally characterized by the set of interaction ax-
ioms Γ w.r.t. (L1,L2) when x is characterized by Γ w.r.t.
(L1,L2) and there is no set of interaction axioms Γ′ such that
Γ >L1+L2

Γ′ and x is still characterized by Γ′ w.r.t. (L1,L2).

2.3 Definability of Modalities and
Characterization of Axioms

The definability of modalities in terms of other modalities is
studied from a theoretical point of view in (Halpern, Samet,
and Segev 2009b). This study is subsequently applied to
epistemic logic in (Halpern, Samet, and Segev 2009a). Three
notions of definability emerge from this work: explicit de-
finability, implicit definability and reducibility. It has been
proven that, for modal logic, explicit definability coincides
with the conjunction of implicit definability and reducibil-
ity (unlike first-order logic, where the notion of explicit de-
finability coincides with implicit definability only). In this
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article, we are interested only in the notion of explicit defin-
ability, which is also used in (Lenzen 1979).
Definition 2.4 (Explicit Definability of a Modality). Let
{i, j} = {1, 2}. The modality 〈i〉 is explicitly defined in
the logic Li,j in terms of the modality 〈j〉 by a formula
defi(p) ∈ Lj if, and only if,

〈i〉p↔ defi(p) ∈ Li,j . (Def 〈i〉)

The following key theorem will play an important role in
the last section.
Theorem 2.2. Assume that 〈2〉 is explicitly defined in L1 +
L2 + Γ in terms of 〈1〉 by a formula def2(p) ∈ L1 positive
in p. Then, the following are equivalent:
• x is characterized by Γ w.r.t. (L1,L2);
• L1 + L2 + Γ = L1 + x + {〈2〉p↔ def2(p)}.

Moreover, assume that 〈1〉 is also explicitly defined in
L1 + L2 + Γ in terms of 〈2〉 by a formula def1(p) ∈ L2

positive in p. Then, the following are equivalent:
• x is conservatively characterized by Γ w.r.t. (L1,L2);
• L1 + L2 + Γ = L1 + x + {〈2〉p↔ def2(p)} and

L1 + L2 + Γ = L2 + {〈1〉p↔ def1(p)}.
Finally, in both cases, the axiom x is (conservatively)

characterized by Γ w.r.t. (L1,L2) if, and only if, it is min-
imally (conservatively) characterized by Γ w.r.t. (L1,L2).

Proof. The proof of the second part of the theorem is similar
to the proof of the first part. So, we only prove the first part.
Assume that x is characterized by Γ w.r.t. (L1,L2). Then,
L1 + x = (L1 + L2 + Γ) ∩ L1, and therefore L1 + x ⊆
L1 + L2 + Γ. Moreover, 〈2〉p↔ def2(p) ∈ L1 + L2 + Γ by
assumption. Thus, L1+x+{〈2〉p↔ def2(p)} ⊆ L1+L2+Γ.
Now, we prove the converse inclusion. Assume towards a
contradiction that there is ϕ ∈ L1 + L2 + Γ such that ϕ /∈
L1+x+{〈2〉p↔ def2(p)}. Then, there is ϕ′ ∈ L1 such that
ϕ↔ ϕ′ ∈ L1 +L2 +Γ, because 〈2〉 is explicitly definable in
terms of 〈1〉 in L1 + L2 + Γ. Then, ϕ′ ∈ (L1 + L2 + Γ)∩L1,
i.e., ϕ′ ∈ L1+x. Then, by performing the inverse translation
that we followed to obtain ϕ′ from ϕ, we conclude that ϕ ∈
L1+x+{〈2〉p↔ def2(p)}. This is impossible, and therefore
L1 + L2 + Γ = L1 + x + {〈2〉p↔ def2(p)}.

Now, assume that L1 + L2 + Γ = L1 + x + {〈2〉p ↔
def2(p)}. We are going to prove that L1 + x = (L1 + L2 +
Γ) ∩ L1. The right to left inclusion is immediate, because
x ∈ L1 + L2 + Γ by assumption. Now, we prove that (L1 +
L2 + Γ) ∩ L1 ⊆ L1 + x, i.e., for all Kripke models M,
for all w ∈ M, if M, w |= L1 + x, then M, w |= (L1 +
L2 + Γ) ∩ L1. In order to do so, we are going to build a
Kripke model (M′, w′) such that (M, w) and (M′, w′) are
bisimilar w.r.t. the modality 〈1〉 and such that M′, w′ |=
L1 + x + {〈2〉p ↔ def2(p)} (∗), that is, M′, w′ |= L1 +
L2 + Γ (recall the assumption). This will prove the second
inclusion. If (M, w) = (W,R1, R2, V, w), then we define
the (pointed) Kripke model (M′, w′) := (W,R1, R

′
2, V, w),

whereR′2 is defined as follows. First, we define the (pointed)
Kripke model (M′′, w) := (W,R1, R2, V

′′, w) by setting
V ′′ such that for all q 6= p, V ′′(q) = V (q) and such that
V ′′(p) = {v}. Then, for all u, v ∈ W , we set uR′2v inM′

if, and only if,M′′, u |= def2(p). Then, using the fact that
def2(p) is positive in p, one can easily show that (∗) holds.
This proves the second inclusion.

Finally, we prove the last part of the theorem. Assume
towards a contradiction that x is characterized by the set of
interaction axioms Γ w.r.t. (L1,L2) and that there is a set of
interaction axioms Γ′ such that Γ >L1+L2

Γ′ and such that x
is also characterized by Γ′ w.r.t. (L1,L2). Because Γ >L1+L2

Γ′, we should have that L1+L2+Γ ⊂ L1+L2+Γ′. However,
since x is characterized by Γ and Γ′, we should also have
that L1 + L2 + Γ = L1 + L2 + Γ′ = L1 + x + {〈2〉p ↔
def2(p)} by the result of the first part of the theorem. This
is impossible.

3 Epistemic Logic and Interaction Axioms
We introduce the basics of epistemic logic (see (Fagin et al.
1995; Meyer and van der Hoek 1995) for more details).

3.1 Logics of Knowledge and Belief
We define the epistemic-doxastic language LKB inductively
as follows:

LKB : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ | Kϕ

where p ranges over Φ. The language LK is the language
LKB without the belief operator B, and the language LB is
the language LKB without the knowledge operator K. The
formulaBϕ reads as ‘the agentBelievesϕ’ andKϕ reads as
‘the agent Knows ϕ’. Their dual operators 〈B〉ϕ and 〈K〉ϕ
are abbreviations of ¬B¬ϕ and ¬K¬ϕ respectively. Below,
we give a list of axioms that will be used in the rest of the
article.

D : Kϕ→ 〈K〉ϕ 4 : Kϕ→ KKϕ
5 : ¬Kϕ→ K¬Kϕ T : Kϕ→ ϕ
.2 : 〈K〉Kϕ→ K〈K〉ϕ .4 : (ϕ ∧ 〈K〉Kϕ)→ Kϕ.

The logic KD45B is the modal logic for LB generated by
the set of axioms {D, 4, 5}. For any x ∈ {.2, .4}, the logic
S4.xK is the modal logic for LK generated by the set of ax-
ioms {T, 4, x}. We have the following relationship between
these logics:

S4K ⊂ S4.2K ⊂ S4.4K ⊂ S5K .

3.2 Interaction Axioms for Epistemic Logic
The following interaction axioms were suggested in (Hin-
tikka 1962):

Kϕ→ Bϕ (I1)
Bϕ→ KBϕ (I2)

Axiom I1 is a cornerstone of epistemic logic. Just as ax-
iom T, it follows from the classical analysis of knowledge
of Plato presented in the Theaetethus. Axiom I2 highlights
the fact that the agent has “privileged access” to his doxastic
state.

Bϕ→ BKϕ (I3)

Axiom I3 above was suggested in (Lenzen 1978). It charac-
terizes a notion of belief corresponding to some sort of con-
viction or certainty. This kind of belief is therefore different
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from the notion of weak belief which can be represented by
a probability superior to 0.5, like my belief that “it will rain
tomorrow”.

The last interaction axiom we will consider is in fact a
definition of knowledge in terms of belief:

Kϕ↔ (ϕ ∧Bϕ) (I4)
This list of interaction axioms is incomplete, see (Aucher
2014) for more information about interaction axioms and
axioms of epistemic logic.

4 Applying our Theory to Epistemic Logic
In (Halpern, Samet, and Segev 2009a), only the interaction
axioms I1 and I2 suggested in (Hintikka 1962) are consid-
ered. In this section, we also add the interaction axiom I3.
Lenzen is the first to note that the belief modality can be
defined in terms of knowledge if we adopt {I1, I2, I3} as
interaction axioms.
Theorem 4.1. (Lenzen 1979)

The belief modalityB is explicitly defined in the logic L =
S4K + KD45B + {I1, I2, I3} by the following definition:

Bϕ↔ 〈K〉Kϕ ∈ L (Def B)
Consequently, the belief modality B is also defined by
(Def B) in any logic containing L.

This result can be contrasted with Theorem 4.8 of
(Halpern, Samet, and Segev 2009a), from which it follows
that the belief modality cannot be explicitly defined in the
logic (S4.x)K + (KD45)B + {I1, I2}, for any x ∈ {.2, .4}.
On the other hand, as Theorem 4.2 below shows, knowledge
can be defined in terms of belief only if the logic of knowl-
edge is S4.4, but not if the logic of knowledge is S4 or
S4.2.
Theorem 4.2. (Aucher 2014)
• The knowledge modality K is explicitly defined in the

logic L.4 := S4.4K + KD45B + {I1, I2, I3} by the fol-
lowing definition:

Kϕ↔ ϕ ∧Bϕ ∈ L.4 (Def K)
• The knowledge modalityK cannot be explicitly defined in

the logic S4.2K + KD45B + {I1, I2, I3}.
Again, this result can be contrasted with Theorem 4.1 of

(Halpern, Samet, and Segev 2009a), from which it follows
that the knowledge modality cannot be explicitly defined in
the logic (S4.4)K + (KD45)B + {I1, I2}. We see that in
both cases the increase in expressivity due to the addition of
the interaction axiom I3 plays an important role in bridging
the gap between belief and knowledge.
Theorem 4.3. • The axiom .2 is characterized w.r.t. the

pair (S4K ,KD45B) by the set of interaction axioms
{I1, I2, I3}.

• The axiom .4 is conservatively characterized w.r.t. the
pair (S4K ,KD45B) by the interaction axiom I4.

Proof. It follows from a direct application of Theorem 2.2
to the results of (Lenzen 1979), namely the facts that S4K +
KD45B + {I1, I2, I3} = S4.2K + {Bϕ ↔ 〈K〉Kϕ} and
S4K + KD45B + {I4} = KD45B + {I4} = S4.4K +
{Bϕ↔ 〈K〉Kϕ}.

5 Conclusion
Theorem 4.3 tells us that if we use S4.4 as the logic of
knowledge (and KD45 as the logic of belief), then we
implicitly assume that knowledge is in fact true belief (a
rather strong assumption for knowledge). Although it was
acknowledged by all epistemic logicians that axiom .4 char-
acterized knowledge as true belief, this could never be justi-
fied and explained rigorously. We claim that our meta-theory
of modal logic fills this conceptual gap. Likewise, if we use
S4.2 as the logic of knowledge (and KD45 as the logic for
belief), then Theorem 4.3 tells us that, by doing so, we are
only assuming that the agent knows his beliefs and disbe-
liefs and that his beliefs are in fact certainties, convictions,
and not simply weak beliefs.

Overall, our meta-theory of modal logic enables to carry
out a rigorous and fine-grained analysis of the intuitive as-
sumptions underlying the logics of knowledge between S4
and S5. This theory provides a meaningful logical founda-
tion for these analysis and can serve as a means to justify
and explain the intuitive arguments employed.
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