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Abstract

The situation calculus is a popular formalism for rea-
soning about actions and change. Since the language is
first-order, reasoning in the situation calculus is unde-
cidable in general. An important question then is how
to weaken reasoning in a principled way to guarantee
decidability. Existing approaches either drastically limit
the representation of the action theory or neglect impor-
tant aspects such as sensing. In this paper we propose a
model of limited belief for the epistemic situation calcu-
lus, which allows very expressive knowledge bases and
handles both physical and sensing actions. The model
builds on an existing approach to limited belief in the
static case. We show that the resulting form of limited
reasoning is sound with respect to the original epistemic
situation calculus and eventually complete for a large
class of formulas. Moreover, reasoning is decidable.

Introduction
The situation calculus (McCarthy 1963; Reiter 2001) is a
popular formalism for reasoning about action and change.
Since the language is first-order, one of the advantages of
the situation calculus is its high degree of expressiveness.
However, this comes at a price: reasoning in the situation
calculus is undecidable in general.

There are various ways of addressing this issue in a prin-
cipled way. One would be to drastically limit the expressive-
ness, either by moving to a propositional action language
such as the language A (Gelfond and Lifschitz 1993) or its
descendants, or by integrating actions into description log-
ics (Baader et al. 2005). Another would be to stay within
the situation calculus but limit its representational or infer-
ential capabilities (or both) without giving up its first-order
nature. In (Gu and Soutchanski 2007), the authors use the
two-variable fragment of first-order logic, which is known
to be decidable, as the base logic of the situation calculus.
In (De Giacomo et al. 2012; 2013), decidability is achieved
by bounding the extension of fluent predicates by some con-
stant. Going beyond two variables or boundedness requires
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further restrictions on the inference mechanism to retain de-
cidability. The approach by Liu and Levesque (2005) re-
stricts the representation of what holds in the current situa-
tion to literals. Such knowledge bases can then be queried
efficiently using a sound but incomplete evaluation-based
reasoner proposed in (Levesque 1998). When actions have
only local effects, the result of an action can be represented
by progressing the current knowledge base to a new set of
literals. In (Claßen and Lakemeyer 2009), the restriction to
literals is relaxed by allowing disjunctions in the represen-
tation of the initial situation. Queries about what holds after
actions have been performed are evaluated by first regressing
them to a query about the initial situation and then appealing
to a logic of limited belief for static knowledge bases with
disjunctions developed by Liu et al. (2004). Here a major
limitation is that sensing actions cannot be dealt with.

The last two approaches have in common that they sepa-
rate the reasoning task into two parts: one which addresses
the dynamics of actions using progression and regression,
respectively, and another which deals with querying a static
knowledge base using existing techniques. A downside of
this separation is that certain desirable features seem to get
lost. For example, it is not at all clear how to handle sensing
actions in the case of (Claßen and Lakemeyer 2009).

In order to avoid such limitations, we propose a new
model of limited belief, which avoids the above separa-
tion by incorporating actions directly into the model. The
starting point is the model of limited belief for the static
case proposed in (Lakemeyer and Levesque 2013), which
itself is based on (Liu et al. 2004). The general idea be-
hind logics of limited belief is to capture, in a semanti-
cally perspicuous way, weaker forms of logical entailment.
Other examples of such approaches are (Levesque 1984b;
Konolige 1986; Vardi 1986; Fagin and Halpern 1988; Fa-
gin et al. 1990; Lakemeyer 1996; Cadoli and Schaerf 1992;
Delgrande 1995).

In the case of (Liu et al. 2004; Lakemeyer and Levesque
2013), the semantic primitive is a setup, a possibly infi-
nite set of ground clauses closed under unit propagation.
Roughly, the clauses in a setup can be viewed as those which
the agent believes explicitly. Setups are used to give mean-
ing to a sequence of modalities Bk, for k ≥ 0, where Bkφ
should be read as “φ is believed at level k.” For example,
given a clause c, B0c is satisfied by a setup s just in case
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there is a clause in s contained in c. In other words, at level
0, belief essentially reduces to retrieval wrt. s. At level 1, the
agent believes everything that is believed at level 0 and, in
addition, the agent is able to reason by cases allowing to split
a single clause in s. At belief level 2, the number of possible
case splits increases to 2, and so on.

In order to extend this framework to a dynamic setting,
we borrow from a modal variant of the epistemic situation
calculus called ES (Lakemeyer and Levesque 2011), which
features formulas of the form [n]α meaning that α holds af-
ter action n. Setups are then allowed to not only mention
literals l but also extended literals of the form [n1] · · · [nm]l.
The new setups are thus able to talk about what is true ini-
tially and after any number of actions have been performed.
As we will see, this allows us to model Reiter’s basic action
theories (Reiter 2001) as infinite setups. Limited belief will
be defined in a way analogous to what we sketched in the
previous paragraph.1

We then specify a reasoning service in terms of valid sen-
tences of the form B0KB ⊃ [n1] · · · [nm]Bkφ, which may
be read as “if KB is explicitly believed initially, then after
actions n1 to nm φ is believed at level k.” Here φ itself may
mention actions and KB represents a basic action theory in
the sense of Reiter. We will show that this reasoning ser-
vice is sound wrt. the situation calculus variant ES. We also
obtain an eventual completeness result for a large class of
queries in the following sense: If KB ⊃ φ is valid in ES,
then there is a k such that B0KB ⊃ Bkφ is valid in the new
logic. Moreover, and perhaps most importantly, we obtain a
decidability result for so-called bounded queries.

The rest of the paper is organized as follows. In the next
section we briefly review the epistemic situation calculus
ES. We then introduce our new logic ESL, which is like ES
except that the classical belief operator K is replaced by its
limited counterparts Bk. We then define our reasoning ser-
vice and show soundness and eventual completeness. After
that we turn to decidability and then conclude.

The Logic ES
The language of ES is a modal first-order dialect with equal-
ity. It comes equipped with a countably infinite set of stan-
dard names, which can be thought of as special constants
that satisfy the unique name assumption and an infinitary
version of domain closure. In this sense, the standard names
can be identified with the domain of discourse. As we
will see, this greatly simplifies the semantic definitions be-
low like interpreting quantification substitutionally (exist-
ing criticism of substitutional quantification notwithstand-
ing (Kripke 1976)).

First-order variables and standard names come in two
sorts, action (like repair and bestAction) and object (like
block5 and location). We let N denote the set of all stan-
dard names andZ denote the set of all sequences of standard
names for actions, including 〈 〉, the empty sequence.
A term is either a variable or a standard name. The well-
formed formulas of the language form the least set such that

1A preliminary version of our model was developed by
Capes (2010).

1. If t1, . . . , tk are terms, and P is a k-ary predicate symbol
then P (t1, . . . , tk) is an (atomic) formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;
3. If t is an action term and α is a formula, then [t]α is a

formula;
4. If α and β are formulas, and v is a first-order variable,

then the following are also formulas: (α∨β), ¬α, ∃v. α,
�α, Kα.

We read [n]α as “α holds after action n”, and �α as “α holds
after any sequence of actions.” We will freely use ∧,⊃,≡,
and ∀ as the usual abbreviations. There are two distinguished
predicates SF and Poss: Poss(n) says that action n can be
executed, and SF (n) says that action n returns a binary
sensing result of 1 or 0.

Given a sequence of actions z = 〈z1, z2, . . . , zn〉
and a formula α, we usually write [z]α instead of
[z1][z2] · · · [zn]α. When z is the empty sequence, then
[z]α = α. For action sequences z and z′ we also write z · z′
to mean the action sequence consisting of z followed by z′.
We write z v z′ when z is a prefix of z′. For a set of action
sequences Z, we write z v Z to mean that there is some
z′ ∈ Z such that z v z′.

We call a formula without free variables a sentence.
By a primitive sentence we mean a formula of the form
P (n1, . . . , nm) where P is a predicate symbol and all of
the ni are standard names. For simplicity all predicates are
considered to be fluent, that is, they may vary as a result of
actions and their value may be unknown. It is convenient to
distinguish between certain types of formulas using the fol-
lowing terminology:
• a formula with no � operators is called bounded;
• a formula with no � or [t] operators is called static;
• a formula with no K operators is called objective;
• a formula with no fluent, �, or [t] operators outside the

scope of a K is called subjective;
• a formula with no K, �, [t], Poss, or SF is called a fluent

formula;
Intuitively, to determine whether or not a sentence α is

true after a sequence of actions z has been performed, we
need to specify two things: a world w and an epistemic state
e. We write e, w, z |= α. A world determines truth values
for the primitive sentences after any sequence of actions. An
epistemic state is defined by a set of worlds, as in possible-
world semantics. More precisely:
• a world w ∈ W is any function from the primitive sen-

tences and Z to {0, 1}.
• an epistemic state e ⊆W is any set of worlds.

To interpret what is known after a sequence of actions
possibly including sensing has taken place, we define w′ 'z

w (read: w′ and w agree on the sensing throughout action
sequence z) inductively by the following:

1. w′ '〈 〉 w for all w′;
2. w′ 'z·n w iff
w′ 'z w and w′[SF(n), z] = w[SF(n), z].
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Putting all these together, here is the semantic definition of
truth. Given e ⊆ W and w ∈ W , we define e, w |= α (read:
α is true) as e, w, 〈 〉 |= α, where for any z ∈ Z:

1. e, w, z |= P (n1, . . . , nm) iff w[P (n1, . . . , nm), z] = 1,
where P (n1, . . . , nm) is a primitive sentence;

2. e, w, z |= (n1 = n2) iff
n1 and n2 are identical standard names;

3. e, w, z |= (α ∨ β) iff
e, w, z |= α or e, w, z |= β;

4. e, w, z |= ¬α iff e, w, z 6|= α;

5. e, w, z |= ∃v. α iff e, w, z |= αx
n,

for some standard name n (of the same sort as v);

6. e, w, z |= [n]α iff e, w, z · n |= α;

7. e, w, z |= �α iff
e, w, z · z′ |= α, for every z′ ∈ Z;

8. e, w, z |= Kα iff
e, w′, z |= α, for every w′ ∈ e such that w′ 'z w.

When α is objective (has no K operators), we can leave
out the e and write w |= α. When Σ is a set of sentences and
α is a sentence, we write Σ |= α (read: Σ logically entails
α) to mean that for every e and w, if e, w |= α′ for every
α′ ∈ Σ, then e, w |= α. Finally, we write |= α (read: α is
valid) to mean {} |= α.

We will not go into details of the logical properties of ES
except to note that K behaves like an ordinary K45 modal
operator (Chellas 1980), after any number of actions.

Basic Action Theories
While ES in general is less expressive than the classical sit-
uation calculus, we showed in (Lakemeyer and Levesque
2011) that it suffices to fully capture Reiter’s basic action
theories (BATs).

Definition 1 Given a set of fluents F , a set Σ ⊆ ES of
sentences is called a basic action theory over F iff Σ =
Σ0 ∪Σpre ∪Σpost ∪Σsense where Σ mentions only fluents in F
and

1. Σ0 is any set of fluent sentences;
2. Σpre is a singleton sentence of the form �Poss(a) ≡ π,

where π is a fluent formula;2

3. Σpost is a set of sentences of the form �[a]F (~v) ≡ γF , one
for each relational fluent F , where γF is a fluent formula.3

4. Σsense is a sentence (parallel to the one for Poss) of the
form �SF(a) ≡ ϕ, where ϕ is a fluent formula.

Σ0 is intended to express what is true initially; Σpre charac-
terizes the preconditions of actions in a single axiom; Σpost

contains the successor state axioms, one per fluent, which
incorporate Reiter’s solution to the frame problem (Reiter

2We assume that � has lower syntactic precedence than the log-
ical connectives, so that �Poss(a) ≡ π stands for ∀a.�(Poss(a) ≡
π).

3The [t] construct has higher precedence than the logical con-
nectives. So �[a]F (~x) ≡ γF abbreviates ∀a.�([a]F (~x)) ≡ γF .

����
f f

sonar

............
........

..................... ....................
forward �

Figure 1: A simple robot

2001); following (Scherl and Levesque 2003), Σsense ex-
presses the sensing outcomes of every action. (In case an
action does not return a meaningful sensing results, the value
of SF can be defined to be vacuously true.)

To illustrate BATs, let us consider the example depicted in
Figure 1. Here a robot has two actions: forward moves it one
unit forward towards the wall, and sonar is a sensing action,
which returns 1 if the robot is close to the wall. Locations
are denoted by propositional fluents di, which may be read
as “the robot is located i units from the wall.”4

�Poss(a) ≡
a = forward ∧ ¬d0 ∨
a = sonar ∧ TRUE.

In other words, sonar is always possible, and forward is exe-
cutable only when the robot is not already at the wall. Next,
we define the sensing results for the actions:

� SF(a) ≡
a = forward ∧ TRUE ∨
a = sonar ∧ (d0 ∨ d1).

While forward always returns true as a sensing result,
SF(sonar) is 1 in case the robot is either at location d0 or
d1. Finally, here are the successor state axioms for the di:

� [a]di ≡
a = forward ∧ di+1 ∨
a 6= forward ∧ di for i > 0.

� [a]d0 ≡
a = forward ∧ d1 ∨ d0

In other words, after forward, di becomes true if di+1 was
true before, and false otherwise, except in the case of d0,
which remains true after forward was executed in d1. After
sonar the value of di does not change.

For a given basic action theory Σ, projection queries,
which are bounded sentences, are of particular importance,
as they are a basic ingredient of action languages such as
Golog (Levesque et al. 1997), among other things.

Let Σ consist of the above axioms together with (d2 ∨
d3),¬d1, and ¬d0. Then it follows from KΣ that the robot
believes that it is initially either 2 or 3 units away from the
wall. Suppose the robot is actually 2 units away from the
wall. Abbreviating forward as f and sonar as s, respectively,
let S = SF(f)∧ [f ]SF(s) represent the actual sensing values
obtained when executing f and s after f . We write Close
instead of (d0 ∨ d1). Then we have:

4This way of handling distances is needed because we are not
assuming any sort of built-in arithmetic in ESL.
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1. |= KΣ ⊃K¬Close;

2. |6= S ∧KΣ ⊃ [f ]KClose;

3. |= S ∧KΣ ⊃ [f ][s]KClose;

4. |= S ∧KΣ ⊃K[f ][f ]Close;

In other words: initially the robot knows that it is not close to
the wall (1); it does not know that it is close after executing
a forward action (2); it knows that it is close after a forward
and sensing the distance to the wall (3); it knows that it will
be close if it were to perform two forward actions (4).

Since ES is a full first-order language, answering projec-
tion queries is clearly undecidable, even in the case without
any actions at all. So let us now consider a variant of ES with
a limited model of belief as the basis for deciding projection
queries.

The Logic ESL
The language of ESL is that of ES except that the operator K
is replaced by operators Bk for k = 0, 1, 2, . . . For the pur-
poses of this paper, we also assume that the Bk do not occur
nested. The definitions of bounded, static, objective, subjec-
tive, and fluent formulas carry over in the obvious way, with
Bk replacing K.

As extended forms of literals and clauses play an impor-
tant role in the semantics, we introduce them here together
with some additional terminology. An extended literal is a
sequence of actions (possibly empty) followed by a literal,
where a literal is either an atomic formula not mentioning
= or its negation. ¬P (n) and [m1][m2]P (n) are examples
of extended literals. The complement of an extended literal
l, denoted as l, is obtained by complementing the literal it
contains. For example, the complement of [m1][m2]P (n) is
[m1][m2]¬P (n). An extended clause is a disjunction of ex-
tended literals. Often an extended clause is identified with
the set of extended literals it contains. In the following we
will often refer to extended clauses simply as clauses.

The empty clause is denoted as []. A unit clause is a clause
with a single extended literal. A primitive clause is a clause
whose atomic formulas are primitive sentences, and similar
for primitive literals. When z is a sequence of actions and c
a clause we write [z]c to mean c with every extended literal
l replaced by [z]l.

A setup is a (possibly infinite) set of primitive clauses. For
any setup s, the closure of s under unit propagation, which
we denote as UP(s), is defined as the least set s′ which con-
tains s, and if unit clause l ∈ s′ and {l} ∪ c ∈ s′, then
c ∈ s′. VP(s) is defined as the set {c | c is a primitive clause
and there exists a c′ ∈ UP(s) such that c′ ⊆ c}.

Similar to ES the semantics of ESL is defined wrt. a world,
an agent’s epistemic state, and a sequence of actions. While
worlds and action sequences are the same as in ES, the epis-
temic state is now characterized by a setup. Intuitively, the
clauses in a setup determine what the agent believes explic-
itly, or at level 0. Beliefs at higher levels are then obtained
by reasoning by cases.

Given a world w, a setup s, and an action sequence z, the
truth of a sentence α, written as s, w, z |= α, is inductively
defined as follows:

1. s, w, z |= P (n1, . . . , nm) iff w[P (n1, . . . , nm), z] = 1,
where P (n1, . . . , nm) is a primitive formula;

2. s, w, z |= (n1 = n2) iff n1 and n2 are identical;
3. s, w, z |= (α ∨ β) iff s, w, z |= α or s, w, z |= β;
4. s, w, z |= ¬α iff s, w, z 6|= α;
5. s, w, z |= ∃x. α iff s, w, z |= αx

n,
for some standard name n (of the same sort as x);

6. s, w, z |= [n]α iff s ∪ {[z]± SF(n)}, w, z · n |= α;5

7. s, w, z |= �α iff s, w, z |= [z′]α, for all z′ ∈ Z;
8. s, w, z |= Bkα iff s, z, k |= α.
Note that Rules 1–5 are essentially identical to those of ES.
Rule 6 differs in that we explicitly remember the sensing re-
sult of the action in s. Roughly, this has the same effect as
the compatibility relation 'z of ES when it comes to inter-
preting belief. Rule 7 is again essentially the same as in ES.
Let us now turn to the semantics of limited belief (Rule 8).
Let α be objective. s, z, k |= α is the least relation such that

9. s, z, k |= α if [] ∈ UP(s);
10. s, z, k |= c if k = 0, c is a clause and [z]c ∈ VP(s);
11. s, z, k |= α if k > 0 and

there is an extended primitive literal l such that
s ∪ {l}, z, k − 1 |= α and
s ∪ {l}, z, k − 1 |= α;

12. s, z, k |= (n = m) if n,m are identical std. names;
s, z, k |= ¬(n = m) if n,m are distinct std. names;

13. s, z, k |= ¬¬α if s, z, k |= α;
14. s, z, k |= (α ∨ β) if s, z, k |= α or s, z, k |= β;

s, z, k |= ¬(α ∨ β) if s, z, k |= ¬α and s, z, k |= ¬β;
15. s, z, k |= ∃x.α if s, z, k |= αx

n for some n;
s, z, k |= ¬∃x.α if s, z, k |= ¬αx

n for all n;
16. s, z, k |= [n]α if s ∪ {[z]SF(n)}, z · n, k |= α and

s ∪ {[z]¬SF(n)}, z · n, k |= α;
s, z, k |= ¬[n]α if s ∪ {[z]SF(n)}, z · n, k |= ¬α and
s ∪ {[z]¬SF(n)}, z · n, k |= ¬α;

17. s, z, k |= �α if s, z, k |= [z′]α for all z′ ∈ Z;
s, z, k |= ¬�α if s, z, k |= [z′]¬α for some z′ ∈ Z .

Rules 9–15 are similar to those proposed for limited belief
in the static case (Lakemeyer and Levesque 2013). Rule 9
says that whenever the empty clause can be derived by unit
propagation everything is believed. Rule 10, which we will
also refer to as the subsumption rule, says that a clause c is
believed at level 0 after z just in case [z]c is subsumed by a
clause in UP(s). Rule 11, which we will also refer to as the
split rule, says that α is believed at level k > 0 if the belief
holds at level k − 1 after splitting on an extended literal.6
Rule 12 deals with equality in a classical way, independent
of any setup. In other words, we assume perfect reasoning

5Here ±SF(n) stands for SF(n) if w[SF(n), z] = 1 and
¬SF(n) if w[SF(n), z] = 0, respectively.

6In (Lakemeyer and Levesque 2013) we considered splitting a
clause in s instead. As we will see below, splitting an arbitrary
literal has certain advantages.
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when it comes to equality. Rules 13–15 make sure that cer-
tain “obvious” beliefs are obtained. For example, to believe
(α ∨ β) at level k it suffices to believe either α or β. Rule
16 considers the case of believing that α (or its negation)
holds after an action n. Note that in thinking about what will
hold after action n, the agent has as yet no access to the
sensing information that will result from performing this ac-
tion. Therefore it needs to entertain both possibilities (SF(n)
and ¬SF(n)) when evaluating whether α is believed after n.
Finally, � is handled in the obvious way by considering all
action sequences. Note that Rules 7 and 17 are well-founded
when including the number of � operators occurring in α in
the measure for α.7

When a formula α is objective, we sometimes write
w, z |= α instead of s, w, z |= α. For subjective α, we write
s, z |= α. If, in addition, z is empty, we simply write w |= α
and s |= α, respectively.

To conclude the semantic definition, we say that a set of
sentences Σ logically entails a sentence α (written Σ |= α)
if for every setup s and world w, if s, w, 〈 〉 |= α′ for every
α′ ∈ Σ, then s, w, 〈 〉 |= α. Finally, α is valid (written |= α)
if {} |= α. (So far we have used |= for entailment in both ES
and ESL. In the following, we will write |=ES when referring
to entailment in ES.)

Some Properties
Here we will not go into a detailed discussion of the proper-
ties of ESL except to note the following. The logic of limited
belief presented in (Lakemeyer and Levesque 2013) is very
similar to ESL when restricted to formulas without nested
beliefs. This is because, in the case of static formulas, the
semantics of both logics is the same except for the split rule.
The same applies to a slight variant of the logic presented
in (Liu et al. 2004), and the properties discussed there for
static formulas generally carry over in a straightforward way
to the dynamic case. For example, a simple induction proof
establishes that for any k
|= �(Bk¬¬α ≡ Bkα)
|= �(Bk(α ∧ β) ≡ Bkα ∧Bkβ)
|= �(Bk∀x.α ≡ ∀x.Bkα)

While most of the equivalence preserving transformations of
formulas such as removing double negations are preserved
at all belief levels, there are exceptions. For example,

Bk(p ∧ (q ∨ r)) ⊃ Bk((p ∧ q) ∨ (p ∧ r))
is not valid. See (Liu et al. 2004) for a detailed discussion of
why this is so.

Intuitively, one would expect belief to be monotonic in
the sense that the beliefs held at a certain setup and level of
belief continue to hold when moving to larger setups or in-
creasing the level of belief. We now show that this is indeed
the case.
Theorem 1 Let s and s′ be setups such that s ⊆ s′. Then
for any z, k, and objective φ, if s, z, k |= φ then s′, z, k |= φ.

7We remark that there are equivalent versions of Rule 7 and 17,
where the sequence z′ is only mentioned on the left-hand side of
the rules, but at the expense of a more complicated definition.

Proof: The proof is by induction on k and the structure of
φ. Let k = 0. The only interesting case is when φ is a clause
c. It is easy to show that VP(s) ⊆ VP(s′) given that s ⊆ s′.
Hence, if [z]c ∈ VP(s) then [z]c ∈ VP(s′). Note also that,
in the case of actions (Rule 16+17), the same SF-formulas
are added to s and s′ so that the subset relation between the
augmented setups continues to hold.

Suppose the lemma holds for some k and let s, z, k+1 |=
φ. Again, the proof is by induction on the structure of φ.
Here the only interesting case is the split rule. So suppose,
there is some extended literal l such that s ∪ {l}, z, k |=
φ and s ∪ {l}, z, k |= φ. In both cases we can apply the
induction hypothesis for k and obtain s′, z, k + 1 |= φ.

Corollary 1 If VP(s) ⊆ VP(s′) then s, z, k |= φ implies
s′, z, k |= φ.

Theorem 2 If s, z, k |= φ then s, z, k + 1 |= φ.

Proof: Let s, z, k |= φ and let l be any extended literal.
Then, by Theorem 1, s∪{l}, z, k |= φ and s∪{l}, z, k |= φ.
Hence, by the split rule, s, z, k + 1 |= φ.

As an immediate corollary we obtain

Corollary 2 |= �(Bkφ ⊃ Bk+1φ).

Eventual completeness
When considering sentences e that only mention =, limited
belief behaves exactly like K, even at level 0. A simple in-
duction shows that |=ES �(Ke ≡ e) and |= �(B0e ≡ e),
that is, e is believed just in case e is true, after any number of
actions. In general, of course, Bk is much weaker than K,
especially when k is small. For example, while K(p∨¬p) is
valid, B0(p∨¬p) is not. For example, if s is the empty setup,
then s, 〈 〉 |6= B0(p ∨ ¬p) because neither Rule 10 nor Rule
14 applies. On the other hand, B1(p∨¬p) is valid, since we
can apply the split rule using p. This is not accidental. We
will now show that for any objective valid bounded proposi-
tional formula φ of ESL we can always find a k such Bkφ is
valid. By a propositional formula we mean a formula which
does not contain quantifiers and which does not mention =.

We begin with a useful lemma that shows the connection
between worlds and their corresponding setups for arbitrary
objective formulas.

Definition 2 Given a world w let

s(w) = {l | l is an extended literal and w |= l}.

In other words, s(w) is the setup consisting of all extended
literals true at w. Note that [z]l ∈ s(w) iff w, z |= l for any
literal l.

Lemma 1 For any objective φ and sequence of actions z,
s(w), z, k |= φ iff w, z |= φ for all k.

Proof: We first prove the lemma for k = 0 by induction
on the structure of φ. For a clause c we have s(w), z, 0 |= c
iff [z]l ∈ s(w) for some l ∈ c (by the subsumption rule) iff
w, z |= l for some l ∈ c (by the construction of s(w)) iff
w, z |= c. The lemma clearly holds for (n = m) and ¬(n =
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m) and also (by induction) for ¬¬φ, (φ ∧ ψ), ¬(φ ∧ ψ),
∀x.φ, and ¬∀x.φ.
s(w), z, 0 |= [n]φ iff s(w)∪ {[z]SF(n)}, z · n, 0 |= φ and

s(w)∪ {[z]¬SF(n)}, z · n, 0 |= φ iff s(w), z · n, 0 |= φ (be-
cause s(w) already contains either [z]SF(n) or [z]¬SF(n)
and hence either does not change by adding the extended
literal or it becomes inconsistent so that Rule 9 applies) iff
w, z · n |= φ (by induction) iff w, z |= [n]φ. (The case for
¬[n]φ is similar.) s(w), z, 0 |= �φ iff s(w)∪σ, z, 0 |= [z′]φ
for all z′ iff s(w), z ·z′, 0 |= φ for all z′ (since, similar to the
case of a single action, adding all combinations of sensing
results for z′ to s(w) leads either to inconsistency or leaves
s(w) as is) iff w, z · z′ |= φ for all z′ iff w, z |= �φ.

We now show that s(w), z, k |= φ iff s(w), z, k + 1 |= φ,
from which the lemma follows. The only-if direction follows
from Lemma 2. For the if direction, suppose s(w), z, k+1 |=
φ. The proof is by induction on the structure of φ. For a
clause c and since k + 1 > 0, the only applicable rule is
the split rule. Hence there is an extended literal l such that
s(w) ∪ {l}, z, k |= φ and s(w) ∪ {l}, z, k |= φ. Since s(w)
is a complete set of literals, either l or l is in s(w). Suppose
l ∈ s(w). Then s(w)∪{l} = s(w) and, hence, s(w), z, k |=
φ. The other case is symmetric. The case of =-expression is
obvious. For the induction step, if any of the rules (12)–(17)
apply, then the induction hypothesis applies immediately. In
case of the split rule the argument is the same as above.

For the rest of this subsection, we only consider propo-
sitional bounded formulas. The following definition charac-
terizes the positive extended literals contained in a formula,
or PEL(φ) for short.
Definition 3 Let φ be bounded and objective. Then PEL(φ)
is defined inductively as follows:

PEL(p) = {p} when p is a primitive sentence;
PEL(¬φ) = PEL(φ);
PEL(φ ∨ ψ) = PEL(φ) ∪ PEL(ψ);
PEL([n]φ) = {[n · z]p | [z]p ∈ PEL(φ)}.

For example, if φ = [n](p∨ [m](¬q ∨ [l]r)) then PEL(φ) =
{[n]p, [n ·m]q, [n ·m · l]r}. Note that PEL ignores negations.
Let PEL(φ)z = {[z · z′]p | [z′]p ∈ PEL(φ)} for any action
sequence z.
Definition 4 (Worlds compatible with a setup)
Let s be a setup. Then

C(s) = {w |w is a world and w |= c for all c ∈ s}
Lemma 2 Let A = {p1, . . . , pn} be a set of positive ex-
tended literals and L = {l1, . . . , ln} with li = pi or li = pi.
Let s be a setup such that L ⊆ s. Then for all sequences
of actions z, all φ with PELz(φ) ⊆ A, and all w ∈ C(s),
w, z |= φ iff s, z, 0 |= φ.

Proof: First note that in case s is inconsistent the lemma
holds vacuously, since there are no compatible worlds in this
case. Now suppose s is consistent. Then s does not contain
l for any l ∈ L as s already contains l.

The proof is by induction on the structure of φ. For a
clause c suppose w, z |= c. Then w, z |= l for some ex-
tended literal l ∈ c. By assumption, either [z]l ∈ A or

[z]l ∈ A. Since w is compatible with s and, in particular,
with L, [z]l ∈ L and hence [z]l ∈ s by assumption. There-
fore, by the subsumption rule, s, z, 0 |= c.

Conversely, let s, z, 0 |= c. Then [z]c ∈ VP(s) by sub-
sumption. Since L ⊆ s and since s is consistent, there
must be some extended literal l ∈ c such that [z]l ∈ s and
[z]l ∈ L. Thus w, z |= l follows and, hence, w, z |= c.

The cases for ¬¬φ, (φ ∨ ψ), and ¬(φ ∨ ψ) follow triv-
ially by induction. Let w, z |= [n]φ. Then w, z · n |= φ
and, by induction, s, z · n, 0 |= φ. (Note that PELz([n]φ) =
PELz·n(φ). By monotonicity, s ∪ {[z]SF(n)}, z · n, 0 |= φ
and s ∪ {[z]¬SF(n)}, z · n, 0 |= φ. Hence, s, z, 0 |= [n]φ.
Conversely, let s, z, 0 |= [n]φ. Then s ∪ {[z]SF(n)}, z ·
n, 0 |= φ and s ∪ {[z]¬SF(n)}, z · n, 0 |= φ. Suppose
w, z |= SF(n) (the other case is symmetric). Then w ∈
C(s ∪ {[z]SF(n)}). Hence, by induction, w, z · n |= φ and,
therefore w, z |= [n]φ.

We are now ready to prove our eventual-completeness
result. The interesting part is that any valid propositional,
bounded φ is believed at some level k. Roughly, this is be-
cause we can always split on every extended literal con-
tained in φ so that the resulting setups are essentially com-
plete valuations of all the extended literals mentioned.

Theorem 3 For any propositional, bounded, objective φ,
|= φ iff |= Bkφ for some k.

Proof: For the if direction, suppose |= Bkφ for some k
and consider any world w. Then s(w), 〈 〉, k |= φ and, by
Lemma 1, w, 〈 〉 |= φ.

Conversely, let |= φ. Let n be the size of PEL(φ), and for
any setup s, let ν(s) be the number of elements p of PEL(φ)
such that either p or p appears in s. We will first show that
for any s and k = n − ν(s), s |= Bkφ. The proof is by
induction on k.

For k = 0 we need to show that s, 〈 〉, 0 |= φ. If [] ∈ UP(s)
then clearly s, 〈 〉, 0 |= φ because of Rule 9. Otherwise, since
ν(s) = n, we have that for every atom p in φ, exactly one
of p or p is in s. Let L = {l1, . . . , ln} be the set of all such
literals. Let w ∈ C(L). Since w |= φ by assumption, L |=
B0φ holds by Lemma 2. Since L ⊆ s, by Theorem 1, s |=
B0φ.

Suppose for all s with k = n − ν(s) and 0 ≤ k < n,
s |= Bkφ. Now consider a setup s′ with n− ν(s′) = k + 1.
Let p be an atom occurring in φ such that neither p nor p
is in s′. Such p must exist since n 6= ν(s′) by assumption.
Since n− ν(s′ ∪{p}) = n− ν(s′ ∪{p}) = k, by induction,
s′∪{p} |= Bkφ and s′∪{¬p} |= Bkφ. Since φ is objective,
it follows that s′ ∪{p}, 〈 〉, k |= φ and s′ ∪{¬p}, 〈 〉, k |= φ.
Hence, using the split rule, we obtain, s′, 〈 〉, k+ 1 |= φ, that
is, s′ |= Bk+1φ.

To complete the proof of the only-if direction, let s be any
setup and let k = n. By the above argument, s |= Bk′φ
for k′ = n − ν(s). Since 0 ≤ k′ ≤ n, s |= Bkφ (using
|= Bk′φ ⊃ Bk′+1φ if needed).

We remark that this significantly strengthens an ear-
lier result by Liu et al. (2004), who showed that eventual
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completeness in the static case obtains only when query-
ing knowledge bases and only when the query belongs to
a restricted class of formulas in a normal form defined
in (Levesque 1998). The reason for our stronger result is
our modified split rule. While Liu et al. restricted splitting
to clauses in the setup, we allow splitting arbitrary literals,
which is strictly more general. In the next section we will
revisit the issue of eventual completeness also in the context
of querying knowledge bases.

A Reasoning Service Based on ESL
We now turn to the use of the logic as a specification of a
reasoning service for an agent with limited beliefs. In par-
ticular, we phrase it in terms of the valid sentences of the
following form:

B0φ ⊃ [z]Bkψ, (1)

where φ typically encodes a basic action theory of the kind
introduced earlier, andψ is a bounded formula, that is, it may
contain actions but not �. We will refer to sentences (1) as
belief implications, and they can be read as “if φ is explic-
itly believed initially then after actions z have occurred ψ is
believed at level k.” Belief implications specify a reasoning
service in the sense that determining beliefs at level k after
some actions requires computing whether the corresponding
belief implication is valid.

We begin our investigations by showing that belief im-
plications are sound with respect to the original epistemic
situation calculus ES.

Theorem 4 If |= B0α ⊃ [z]Bkβ then |=ES Kα ⊃ [z]Kβ.

Proof: Here we prove it for the case of a single action n.
Generalizing it to an arbitrary z is straightforward. Suppose
|= B0α ⊃ [n]Bkβ and let e, w |= Kα. Then w′ |= α for all
w′ ∈ e. Then s(w′), 〈 〉, 0 |= α by Lemma 1. Let w′ ∈ e and
suppose w′ 'n w. Thus s(w′), w |= B0α. By assumption,
s(w′) ∪ {±SF(n)}, w, 〈n〉 |= Bkβ and, therefore, s(w′) ∪
{±SF(n)}, 〈n〉, k |= β. Since w′ 'z w we have s(w′) ∪
{±SF(n)} = s(w′) and hence, by Lemma 1, w′, 〈n〉 |= β.
As this holds for all w′ ∈ e such that w′ 'n w, e, w |=
[n]Kβ follows.

Liu et al. (2004) considered so-called proper+ knowledge
bases, for which they showed that reasoning under limited
belief is decidable in the static case. We will now extend
this idea to knowledge bases representing basic action the-
ories. In the following we let e range over ewffs, which are
quantifier-free fluent formulas that mention only = and no
other predicate symbols. Let θ be a mapping from variables
to standard names (of the appropriate sort). Then we write
eθ to mean e with each variable substituted by the standard
name according to θ. For a formula α we write ∀α to denote
its universal closure.

Definition 5 (proper+ Knowledge Bases) Let e be an ewff
and c an extended clause. Then we call a formula of the form
∀(e ⊃ c) a ∀-clause and a formula of the form �∀(e ⊃ c)
a �-clause. A KB is called proper+ if it is a finite set of ∀-
and �-clauses.

Given a proper+ KB, we let gnd(KB) be the infinite setup
which is the union of {cθ | ∀(e ⊃ c) ∈ KB and |= eθ} and
{[z]cθ |�∀(e ⊃ c) ∈ KB, |= eθ, and z ∈ Z}.

In the following we will not consider proper+ KBs in their
full generality but only those which are the translation of
a basic action theory as defined earlier. We call such KBs
proper+ BATs. It will also be necessary to consider proper+
BATs augmented with a finite set of extended literals. We
call such KBs augmented proper+ BATs.

Note that a proper+ BAT has two kinds of �-formulas:
Those �∀(e ⊃ c) which are the result of the translation of a
successor state axiom are such that c mentions a single ex-
tended literal of the form [a]l, where l is a literal and a is
an action variable. All other �∀(e ⊃ c) like the ones re-
sulting from the translation of the SF-axiom are such that c
mentions only literals and no actions, that is, c is static.

As an example, let us consider the BAT for our robot
example. It is easy to translate the original axioms into a
proper+ KB. Here we consider only the translations of the
sensing axiom and the successor state axiom for di with
i > 0. The SF-axiom can be represented by the following
five �-clauses:

�∀(a 6= forward ⊃ (¬SF(a) ∨ d0 ∨ d1));
�∀(a 6= forward ∧ a 6= sonar ⊃ ¬SF(a));
�∀(a = forward ⊃ SF(a);
�∀(a = sonar ⊃ (¬d0 ∨ SF(a));
�∀(a = sonar ⊃ (¬d1 ∨ SF(a)).

The successor state axiom for di with i > 0 is captured by
these �-clauses:

�∀(a = forward ⊃ (¬di+1 ∨ [a]di));
�∀(a 6= forward ⊃ (¬di ∨ [a]di));
�∀(a 6= forward ⊃ ([a]¬di ∨ di));
�∀(a = forward ⊃ ([a]¬di ∨ di+1));

When considering belief implications, the following re-
sult is very useful as it reduces belief implications for
proper+ KBs to truth in the setup gnd(KB).
Theorem 5 |= B0KB ⊃ Bkφ iff gnd(KB) |= Bkφ.
Proof: For the only-if direction, let |= B0KB ⊃ Bkφ. It
suffices to show that gnd(KB) |= B0KB. It is easy to see
that this is the case. For consider �∀(e ⊃ c) ∈ KB. We
need to show that gnd(KB), z, 0 |= (¬eθ ∨ cθ) for any z and
substitution θ. Note that gnd(KB), 〈 〉, 0 |= [z]eθ iff |= eθ.
If |6= eθ, then the claim holds by Rule 14. Otherwise, the
subsumption rule applies. (The case of a ∀-clause is proved
the same way except that z = 〈 〉.)

For the if direction, suppose that gnd(KB) |= Bkφ. Let
s |= B0KB. Then VP(gnd(KB)) ⊆ VP(s). By Corollary 1,
s |= Bkφ.

Corollary 3
|= B0KB ⊃ [n]Bkφ iff gnd(KB)∪{SF(n)}, n, k |= φ and
gnd(KB) ∪ {¬SF(n)}, n, k |= φ.

Let KB be the proper+ BAT of our robot example, includ-
ing clauses (d2 ∨ d3),¬d1, and ¬d0 for the initial situation.
As before, suppose the robot is 2 units away from the wall
and let S = SF(f) ∧ [f ]SF(s). Then
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1. |= B0KB ⊃ B0(¬Close);

2. |6= S ∧B0KB ⊃ [f ]B0(d1 ∨ d2);

3. |= S ∧B0KB ⊃ [f ]B1(d1 ∨ d2);

4. |= S ∧B0KB ⊃ [f ][s]B1Close;

The robot believes that it is not close initially at level 0 by
subsumption, using the clauses ¬d0 and ¬d1 from gnd(KB);
after forward, it believes that it is at d1 or d2 only at level 1,
because it needs to split a literal, for example, d2, and then
use unit propagation on the (¬di∨[a]di) for i = 2 and i = 3;
After a forward and then sensing the distance to the wall,
we can show that the robot believes at level 1 that it is close
using the following argument: since the KB is augmented
by [f ]SF(s), [f ](d0 ∨ d1) obtains by unit propagation from
[f ](¬SF(s)∨d0∨d1)) ∈ gnd(KB). Then splitting [f ]d0 and
using [f ](¬di ∨ [s]di) the result obtains.

Decidability
We will now turn to the problem of deciding belief im-
plications for proper+ BATs and strictly bounded queries,
which are bounded objective formulas not mentioning any
action variables. In other words, all actions mentioned in
such queries are standard names, as in the examples above.

We will mostly consider belief implications of the form
B0KB ⊃ Bkφ. Once we have established decidability for
those, the extension to B0KB ⊃ [z]Bkφ-formulas will be
straightforward.

The following definition shows how to extract the action
sequences mentioned in such queries in a way very similar
to PEL (Definition 3).

Definition 6 Let φ be strictly bounded and objective. Then
AS(φ) is defined inductively as follows:

AS(p) = {〈 〉} when p is an atomic formula;
AS((t = t′)) = {〈 〉};
AS(¬φ) = AS(φ);
AS(φ ∨ ψ) = AS(φ) ∪ AS(ψ);
AS(∃x.φ) = AS(φ);
AS([n]φ) = {n · z | z ∈ AS(φ)}.

Let ASz(φ) = {z · z′ | z′ ∈ AS(φ)}, where z is any action
sequence.

The next result shows that, when considering a strictly
bounded query φ, we only need to consider those instances
of �-formulas in the KB which mention action sequences
that are subsequences of those in AS(φ). We begin by defin-
ing such instantiated KBs:

Definition 7 Let KB be proper+ and Z a set of action se-
quences. The Z-instantiation KB↓Z is then defined as the
union of the following sets:

• {[z]∀(e ⊃ c) | z v Z,�∀(e ⊃ c) ∈ KB, and c static}
• {[z]∀(e ⊃ can) | z ·n v Z,�∀(e ⊃ c) ∈ KB, c not static}
• {∀(e ⊃ c) | ∀(e ⊃ c) ∈ KB}
Theorem 6 Let KB be a proper+ BAT, φ a strictly bounded
objective formula, and Z = AS(φ). Then
|= B0KB ⊃ Bkφ iff |= B0KB↓Z⊃ Bkφ.

The proof is not hard. It involves showing that instances
of �-clauses that are not subsequences of action sequences
in AS(φ) are irrelevant in establishing beliefs about formu-
las whose action sequences are included in AS(φ). We re-
mark that the analogous theorem holds in ES as well, that
is, |= KKB ⊃ Kφ iff |= KKB↓Z ⊃ Kφ. It is crucial,
though, that KB is a proper+ BAT, that is, the �-clauses in
KB correspond to the dynamic part of a basic action the-
ories. Otherwise, it is easy to construct a counterexample:
for instance, there is a basic action theory KB such that
|= B0KB ⊃ B0[n1]F and |= B0KB ⊃ B0[n1][n2]F , yet
|= B0KB ⊃ B0[n1][n2][n3]¬F . Then adding �F to KB
would lead to an inconsistency by unit propagation at level
0, that is, [] ∈ UP(gnd(KB ∪ {�F})), and we obtain that
B0(KB ∪ {�F}) ⊃ B0p is valid for any atomic propo-
sition p. The problem is that we would need to instantiate
KB ∪ {�F} using all subsequences of n1 · n2 · n3 to dis-
cover this, yet AS(p) = {}.

Given Theorem 6, we can restrict our attention to AS(φ)-
instantiated proper+KBs for any given query φ. In order
to arrive at a decision procedure for belief implications we
need two more things: restrict the set of literals to choose
from when splitting and, most importantly, restrict the pos-
sible substitutions of standard names to consider to a finite
set. To achieve the former we let

PEL(KB, φ, Z) = {[z]p | p is an atom in KB or φ, z v Z}.

The idea is that only literals that mention atoms from the
KB or the query together with their respective action se-
quences need to be considered. To limit substitutions of stan-
dard names, we follow (Liu et al. 2004) and define a suffi-
ciently large but finite set of standard names for a given KB
and query φ:

For any m ≥ 0 let H+
m be the set of standard names men-

tioned in KB and φ plus m new standard names of type ob-
ject. Let n be the maximum number of (object) variables ap-
pearing in a ∀-clause appearing in KB. Then gnd(KB)|H+

n

denotes gnd(KB) with substitutions θ restricted to names
in H+

n . Similarly, PEL(KB, φ, Z)|H+
n

denotes the set of ex-
tended literals in PEL(KB, φ, Z) with all variables replaced
by names in H+

n .
With these abbreviations in hand, we now define a com-

putable function V , which, as will be shown below, returns
1 just in case gnd(KB), z, k |= φ, that is, V decides belief
implications.

Definition 8 Let φ be a strictly bounded objective sen-
tence, z an action sequence, KB an AS(φ)z-instantiated
augmented BAT, and k ≥ 0.

V [KB, φ, z, k] =

{
1 if any of the following

conditions (1)–(12) holds
0 otherwise

1. [] ∈ UP(gnd(KB)|H+
n );

2. k = 0, φ is a clause c, and there exists a
c′ ∈ UP(gnd(KB)|H+

n ) such that c′ ⊆ [z]c;
3. k > 0 and

for some extended literal l ∈ PEL(KB, φ,AS(φ)z)|H+
n

,
V [KB∪{l}, φ, z, k−1]=1 and V [KB∪{l}, φ, z, k−1]= 1
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4. φ = (n = m), and n,m are the same standard names;
5. φ = ¬(n = m), and n,m are distinct standard names;
6. φ = ¬¬ψ, and V [KB, ψ, z, k] = 1;
7. φ = (ψ ∨ χ), V [KB, ψ, z, k] = 1 or

V [KB, χ, z, k] = 1;
8. φ = ¬(ψ ∨ χ), V [KB,¬ψ, z, k] = 1 and

V [KB,¬χ, z, k] = 1;
9. φ = ∃x.ψ, and V [KB, ψx

n, z, k] = 1 for some n ∈ H+
1 ;

10. φ = ¬∃x.ψ, and V [KB,¬ψx
n, z, k] = 1 for all n ∈ H+

1 ;
11. φ = [n]ψ, V [KB ∪ {[z]SF(n)}, ψ, z · n, k] = 1 and

V [KB ∪ {[z]¬SF(n)}, ψ, z · n, k] = 1;
12. φ = ¬[n]ψ, V [KB ∪ {[z]SF(n)},¬ψ, z · n, k] = 1 and

V [KB ∪ {[z]¬SF(n)},¬ψ, z · n, k] = 1.

We will now show that the above restrictions, that is, con-
sidering only a finite number of substitution instances of the
KB and the query, and only finitely many split literals, are in-
deed sufficient to correctly compute belief implications. As
in (Liu et al. 2004), the main idea is that names not men-
tioned in the KB or the query are, in a sense, indistinguish-
able and hence interchangeable. The following definition of
a bijection over names makes this precise:

Let ∗ be a bijection over the set of names (preserving
sorts). For any formula α, let α∗ be α with every name n
replaced by n∗. We extend this notion to sets of formulas,
including setups, and substitutions θ in the obvious way. The
following properties of ∗ are easy to prove:

Lemma 3
• |= [z]e iff |= [z∗]e∗ iff |= e∗;
• c ∈ UP(s) iff c∗ ∈ UP(s∗);
• s, z, k |= φ iff s∗, z∗, k |= φ∗;
• gnd(KB)∗ = gnd(KB∗).

Lemma 4 Let m1, . . . ,mn be the names in H+
n that do not

occur in KB and φ. Let c ∈ UP(gnd(KB)) contain names
m′1, . . . ,m

′
l (l ≤ n) not mentioned in H+

n . Let ∗ be the bi-
jection which swaps mi and m′i for all 1 ≤ i ≤ l and is the
identity otherwise. Then c∗ ∈ UP(gnd(KB)|H+

n
).

The proof essentially follows the same argument as Lemma
4 in (Liu et al. 2004). Note that any c ∈ UP(gnd(KB))
mentions at most n names not in H+

n . Also note that the
lemma covers the special case that, if [] ∈ UP(gnd(KB))
then [] ∈ UP(gnd(KB)|H+

n
).

Lemma 5 Let φ be a strictly bounded objective formula
with a single object variable x. Let n,m be object names
not occurring in KB or φ.
Then gnd(KB), z, k |= φxn iff gnd(KB), z, k |= φxm.

The lemma is easily proved using Lemma 3. Note that this
justifies that restricting substitutions of names for quantified
variables (Rule 9+10) to elements of H+

1 is correct.

Lemma 6
Suppose that gnd(KB), z, k |= φ by splitting an extended
primitive literal l. Then gnd(KB), z, k |= φ by splitting an
extended primitive literal l in PEL(KB, φ,AS(φ)z)|H+

n
.

Proof: Clearly, only elements of PEL(KB, φ,AS(φ)z) are
relevant when choosing a literal for splitting. The fact that
only substitution instances from H+

n are needed can again
be shown using Lemma 3.

Finally, we are able to show that the beliefs of a proper
knowledge base at any level can be decided by V :

Theorem 7 gnd(KB), z, k |= φ iff V [KB, φ, z, k] = 1.

Proof: Given Lemma 4–6, the proof is a simple induction
on k and the structure of φ.

Given Theorem 5, we immediately obtain:

Corollary 4 The validity problem for sentences of the form
B0KB ⊃ Bkφ, where KB is a proper+ BAT, φ a strictly
bounded objective sentence, and k ≥ 0, is decidable.

The result can easily be extended to the case of be-
liefs after a sequence of actions. For simplicity, consider
a single action n. Then B0KB ⊃ [n]Bkφ iff gnd(KB) ∪
{SF(n)}, n, k |= φ and gnd(KB) ∪ {¬SF(n)}, n, k |= φ
(Corollary 3). In both cases, we obtain decidability because
Theorem 7 applies.

Corollary 5 The validity problem for sentences of the form
B0KB ⊃ [z]Bkφ is decidable.

Given the result on eventual completeness in the proposi-
tional case (Theorem 3), it is not hard to obtain a similar re-
sult for belief implications when the query is propositional.

Theorem 8 Let KB be a proper+ BAT and φ a propositional
strictly bounded objective sentence. Then |= KB ⊃ φ iff
|= B0KB ⊃ Bkφ for some k.

Proof: (Sketch) Note that |= B0KB ⊃ Bkφ iff gnd(KB ↓Z
)|H+

n
|= Bkφ for Z = AS(φ) (by Theorem 6,7). Moreover,

gnd(KB↓Z)|H+
n

is finite. By an argument very similar to the
proof of Theorem 3 one can show that, provided |= KB ⊃
φ, gnd(KB ↓Z)|H+

n
|= Bkφ holds where k is the size of

PEL(gnd(KB↓Z)|H+
n
, φ, Z).

We can even generalize the theorem to universal queries of
the form ∀~x.φ where φ mentions no quantifiers. Here we
only consider the case of a single universal quantifier:

Corollary 6
|= KB ⊃ ∀x.φ iff |= B0KB ⊃ Bk∀x.φ for some k.

Proof: |= B0KB ⊃ Bk∀xφ iff |= B0KB ⊃ ∀x.Bkφ iff
|= B0KB ⊃ Bkφ

x
n for all n mentioned in KB and φ plus

one new name (using Lemma 5). Now apply the theorem
for each such n and choose k to be the largest among all of
them.

Conclusions
In this paper we extended ideas of limited belief, which were
first explored by Liu et al. (2004) for static knowledge bases,
to the dynamic case. By modifying the split rule considered
by Liu et al. we were able to substantially extend results on
eventual completeness. Moreover, for proper+ knowledge
bases which encode Reiter-style basic action theories and
strictly bounded queries we showed decidability.
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In (Lakemeyer and Levesque 2013), we considered decid-
able reasoning with nested beliefs and unknown individuals,
but only in the static case. We believe that these results carry
over to the dynamic setting without much difficulty.

Furthermore, it is not hard to generalize our results to
bounded queries that may contain action variables. For ex-
ample, we could then ask whether ∃a1∃a2[a1][a2]φ is be-
lieved at some level k. Hence, with bounded queries we are
able to express a form of bounded planning problems. Al-
lowing � within a query is much more problematic, as �φ
expresses a state constraint about φ holding after any se-
quence of actions. Handling � as part of a query is prob-
lematic for reasons similar to those that make it essential
that proper+ KBs are restricted to those representing basic
action theories. In fact, we conjecture that answering queries
involving � is undecidable even for limited belief.

Finally, a possible extension we would like to consider
in the future is to allow for action functions like pickup(x).
These are clearly desirable when constructing a basic action
theory for a given domain. The main question will be how
to achieve this without losing decidability.
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