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Abstract

In this paper we present SmartPM, a model and a
prototype Process Management System featuring a set
of techniques providing support for automated adapta-
tion of knowledge-intensive processes at run-time. Such
techniques are able to automatically adapt process in-
stances without explicitly defining policies to recover
from exceptions and without the intervention of domain
experts at run-time, aiming at reducing error-prone and
costly manual ad-hoc changes, and thus at relieving
users from complex adaptations tasks. To accomplish
this, we make use of well-established techniques and
frameworks from Artificial Intelligence, such as situa-
tion calculus, IndiGolog and classical planning.

1 Introduction
This paper is concerned with the use of of three well-
established KR&R techniques—reasoning about actions,
high-level programming, and automated planning—for the
automated adaptation of knowledge-intensive processes that
execute in highly dynamic settings. The work falls within
the scope of Business Process Management (BPM) (van der
Aalst, ter Hofstede, and Weske 2003), an active area of re-
search that is highly relevant from a practical point of view
while offering many technical challenges.

BPM is based on the observation that each product and/or
service that a company provides to the market is the out-
come of a number of activities performed. Business pro-
cesses are the key instruments for organizing such activi-
ties and improving the understanding of their interrelation-
ships. Examples of traditional business processes include
insurance claim processing, order handling, and personnel
recruitment. In order to support the design and automation
of business processes, a new generation of information sys-
tems, called Process Management Systems (PMSs) have be-
come increasingly popular during the last decade (Weske
2012). A PMS is a software system that manages and exe-
cutes business processes involving people, applications, and
information sources on the basis of process models (Dumas,
van der Aalst, and ter Hofstede 2005). The basic constituents
of a process model are tasks, describing the various activities
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to be performed by process participants (i.e., software appli-
cations, agents, or humans). The procedural rules to control
such tasks, described by so-called “routing” constructs such
as sequences, loops, parallel and alternative branches, define
the control flow of the process. A PMS, then, takes a process
model (containing the process’ tasks and control flow) and
manages the process routing by deciding which tasks are en-
abled for execution. Once a task is ready for execution, the
PMS assigns it to those participants capable of carrying it on.

Current maturity of process management methodologies
has led to the application of process-oriented approaches in
new rich challenging scenarios, such as healthcare (Lenz and
Reichert 2007), emergency management (Marrella, Russo,
and Mecella 2012), and home automation (Helal et al. 2005).
In those settings, processes generally reflect “preferred work
practices”, and the control flow is influenced by user deci-
sion making and coupled with contextual data and knowl-
edge production. Such processes are known as knowledge-
intensive processes (KiPs) (Di Ciccio, Marrella, and Russo
2012)—genuinely knowledge and data centric—and require
the integration of the data dimension with the traditional
control flow dimension.

During the enactment of KiPs, variations or divergence
from structured reference models are common due to ex-
ceptional circumstances arising (e.g., autonomous user de-
cisions or contextual changes), thus requiring the ability to
properly adapt the process behavior (Sadiq, Sadiq, and Or-
lowska 2001). In knowledge-intensive scenarios, the fact is
that the number of possible exceptions is often too large, and
traditional manual implementation of exception handlers at
design-time is not feasible (Reichert and Weber 2012). In
fact, the designer often lacks the required knowledge to
model all the possible exceptions at the outset.

To tackle this issue, we develop in this paper an ap-
proach, together with an actual implementation, to automati-
cally adapt KiPs at run-time when unanticipated exceptions
occur, thus requiring no specification of recovery policies
at design-time. To that end, we shall resort to three popu-
lar Artificial Intelligence (AI) “technologies”: situation cal-
culus (Reiter 2001), IndiGolog (De Giacomo et al. 2009),
and classical planning (Nau, Ghallab, and Traverso 2004;
Geffner and Bonet 2013). We use the situation calculus for-
malism to model the domain in which KiPs are to be exe-
cuted, including available tasks, contextual properties, tasks’

518

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



(a) Initial configuration. (b) Actor act1 gets to loc03. (c) Robot rb1 re-establishes net-
work connectivity to actor act1.

(d) Robot rb2 gets to loc23 so that
act1 is connected once reached
the destination.

Figure 1: A train derailment situation; area and context of the intervention.

preconditions and effects, and the initial state. On top of such
a logic-based model, we use the IndiGolog high-level agent
programming language for the specification of the structure
and control flow of KiPs. We customize IndiGolog to monitor
the online execution of KiPs and detect potential mismatches
between the model and the actual execution. If an exception
invalidates the enactment of the KiP being executed, an ex-
ternal state-of-the-art planner is invoked to synthesise a re-
covery procedure for adapting the faulty process instance.
We refer to this adaptive framework for KiPs as SmartPM
(Smart Process Management), described in Section 4.

Besides providing the conceptual framework, we vali-
dated the approach with a case study based on real KiPs
coming from an emergency management domain (Sec-
tion 5). To do so, we have implemented SmartPM by re-
lying on an existing IndiGolog interpreter (De Giacomo
et al. 2009) and the state-of-the-art planning system LPG-
td (Gerevini, Saetti, and Serina 2003). In Section 6, we com-
pare SmartPM with other works that exploit AI techniques
for enhanced process adaptation. We conclude, in Section 7,
by drawing conclusions and discussing limitations and fu-
ture work.

Before jumping to the technical proposal, let us first start
with an overview of our case study and some preliminary
notions necessary to understand the rest of the paper.

2 Case Study
Our case study and evaluation involves a disaster manage-
ment inspired by the WORKPAD project.1 In particular, it
concerns the emergency management scenario described in
Figure 1(a), in which a train derailment situation is de-
picted in a grid-type map. For the sake of simplicity, the
train is composed of a locomotive (located at loc33) and two
coaches (located at loc32 and loc31, resp.).

During the management of complex emergency scenarios,
teams of first responders act in disaster locations to achieve
specific goals. In our train derailment situation, the goal of
an incident response plan is to evacuate people from the
coaches and take pictures for evaluating possible damages

1See http://www.dis.uniroma1.it/∼workpad/

to the locomotive. To that end, a response team is sent to
the derailment scene. The team is composed of four first re-
sponders, called actors, and two robots, initially all located
at location cell loc00. It is assumed that actors are equipped
with mobile devices for picking up and executing tasks, and
that each provide specific capabilities. For example, actor
act1 is able to extinguish fire and take pictures, while act2
and act3 can evacuate people from train coaches. The two
robots, in turn, are designed to remove debris from specific
locations. When the battery of a robot is discharged, actor
act4 can charge it.

In order to carry on the response plan, all actors and robots
ought to be continually inter-connected. The connection be-
tween mobile devices is supported by a fixed antenna located
at loc00, whose range is limited to the dotted squares in Fig-
ure 1(a). Such a coverage can be extended by robots rb1 and
rb2, which have their own independent (from antenna) con-
nectivity to the network and can act as wireless routers to
provide network connection in all adjacent locations.

An incident response plan is defined by a set of activi-
ties that are meant to be executed on the field by first re-
sponders, and are predicated on specific contexts. Therefore,
the information collected on-the-fly is used for defining and
configuring at run-time the incident response plan at hand.
A possible concrete realization of an incident response plan
for our scenario is shown in Figure 2(a), using the Business
Process Model and Notation (BPMN).2 The process is com-
posed of three parallel branches with tasks instructing first
responders to act for evacuating people from train coaches,
taking pictures of the locomotive, and assessing the gravity
of the accident. Due to the high dynamism of the environ-
ment, there are a wide range of exceptions that can ensue.
Because of that, there is not a clear anticipated correlation
between a change in the context and a change in the process.

So, suppose for instance that actor act1 is sent to
the locomotive’s location, by assigning to it the task
GO(loc00,loc33) in the first parallel branch. Unfortunately,
however, the actor happens to reach location loc03 instead.
The actor is now located at a different position than the de-

2See www.omg.org/spec/BPMN/
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(a) Main process (b) Adapted process

Figure 2: An emergency response plan and its adaptation.

sired one, and most seriously, is out of the network connec-
tivity range (Figure 1(b)). Since all participants need to be
continually inter-connected to execute the process, the PMS
has to first find a recovery procedure to bring back full con-
nectivity, and then find a way to re-align the process. To that
end, provided robots have enough battery charge, the PMS
may first instruct the first robot to move to cell loc03 (Fig-
ure 1(c)) in order to re-establish network connection to actor
act1, and then instruct the second robot to reach location
loc23 in order to extend the network range to cover the lo-
comotive’s location loc33. Finally, the task GO(loc03,loc33)
is (re)assigned to actor act1 (Figure 1(d)). The correspond-
ing updated process is shown in Figure 2(b), with the encir-
cled section being the recovery (adaptation) procedure. No-
tice that after the recovery procedure, the enactment of the
original process can be resumed to its normal flow.

The point is that it is not adequate to assume that the pro-
cess designer can pre-define all possible recovery activities
for dealing with exceptions in domains that are knowledge-
intensive as the one just described: the recovery procedure
will depend on the actual context (e.g., the positions of par-
ticipants, the range of the main network, robot’s battery lev-
els, whether a location has become dangerous to get it, etc.)
and there are too many of them to be considered.

3 Preliminaries
Situation Calculus The situation calculus is a logical lan-
guage designed for representing and reasoning about dy-
namic domains (Reiter 2001). The dynamic world is seen as
progressing through a series of situations as a result of var-
ious actions being performed. A situation s is a first-order
term denoting the sequence of actions performed so far. The
special constant S0 stands for the initial situation, where no
action has yet occurred, whereas a special binary function
symbol do(a, s) denotes the situation resulting from the per-
formance of action a in situation s. Features of the world
whose truth value may change from situation to situation
are modeled by means of so-called fluents. Technically, flu-
ents are predicates taking a situation term as their last ar-
gument. For example, fluent Holding(x, y, s) may state that

entity x is holding object y at situation s. A special predicate
Poss(a, s) is used to state that action a is executable in situ-
ation s. We write φ(~x) to denote a formula whose free vari-
ables are among variables ~x. A fluent-formula is one whose
only situation term mentioned is situation variable s.

Within this language, one can formulate action theories
describing how the world changes as the result of the avail-
able actions. A basic action theory (BAT) (Reiter 2001)D =
Σ∪DS0

∪Dposs∪Dss∪Duna includes domain-independent
foundational axioms to describe the structure of situations
(Σ), one successor state axiom per fluent capturing the ef-
fects and non-effects of actions (Dss), one precondition ax-
iom per action specifying when the action is executable
(Dposs), unique name axioms for actions (Duna) and initial
state axioms describing what is true initially in S0 (DS0

). In
particular, the successor state axiom for a fluent F (~x, s) is
an axiom of the form F (~x, do(a, s)) ≡ ΨF (~x, a, s),3 where
ΨF (~x, a, s) is a fluent-formula characterizing the dynamics
of fluent F (~x, s). Importantly, ΨF (~x, a, s) can accommo-
date Reiter (2001)’s solution to the frame problem. In addi-
tion, precondition axioms are of the form Poss(a(~x), s) ≡
Πa(~x, s), where Πa(~x, s) is a fluent-formula defining the
conditions under which action a can be legally executed in
situation s. Finally, DS0

is a collection of first-order sen-
tences whose only situation term mentioned is S0.

IndiGolog On top of situation calculus action theories,
logic-based programming languages can be defined, which,
in addition to the primitive actions, allow the defini-
tion of complex actions. In particular, we focus on In-
diGolog (De Giacomo et al. 2009), the latest in the Golog-
like family of programming languages for autonomous
agents providing a formal account of interleaved action,
sensing, and planning. IndiGolog programs are meant to be
executed online, in that, at every step, a legal next action is
selected for execution, performed in the world, and its sens-
ing outcome gathered. To account for planning, a special
look-ahead construct Σ(δ)—the search operator—is pro-
vided to encode the need for solving (i.e., finding a complete
execution) program δ offline.

IndiGolog allows us to define every well-structured pro-
cess as defined in (van der Aalst et al. 2003); it is equipped
with all standard imperative constructs (e.g., sequence, con-
ditional, iteration, etc.) to be used on top of situation calcu-
lus primitives actions. An IndiGolog program is meant to run
relative to an action theory, providing meaning to primitive
actions and conditions in the program. Here we concentrate
on the fragment defined by the following constructs:

a atomic action
φ? test for a condition
δ1; δ2 sequence
πx.δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
proc P (~x) do δ(x) endProc procedure

3Free variables are assumed to be universally quantified.
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δ1‖δ2 concurrency
δ1〉〉δ2 prioritized concurrency
〈φ→ δ〉 interrupt
Σ(δ) lookahead search

Test program φ? can be executed if condition φ holds true,
whereas program πx.δ(x) executes program δ(x) for some
nondeterministic choice of a binding for variable x, and δ∗
executes δ zero, one, or more times. The interleaved con-
current execution of two programs is represented with con-
structs δ1‖δ2 and δ1〉〉δ2; the latter considering δ1 at higher
priority level (i.e., δ2 can perform a step only if δ1 is blocked
or completed). Finally, interrupt 〈φ→ δ〉 states that program
δ ought to be executed to completion if φ happens to become
true, whereas Σ(δ) finds and executes a plan—a sequence of
actions—that is guaranteed to fully execute δ.

By properly combining prioritized concurrency and in-
terrupts, together with IndiGolog’s default online execution
style, it is possible to design processes that are sufficiently
open and reactive to dynamic environments. Furthermore,
by resorting to the search operator, one can specify local
places in programs where lookahead reasoning is required.
Both aspects will end up being fundamental for our adaptive
process management framework in the next section.

Classical Planning Planning systems are problem-solving
algorithms that operate on explicit representations of states
and actions (Nau, Ghallab, and Traverso 2004; Geffner and
Bonet 2013). PDDL (Edelkamp and Hoffmann 2004) is the
standard planning representation language; it allows one to
formulate a planning problem P = 〈I,G,PD〉, where I is
the initial state, G is the goal state, and PD is the planning
domain. In turn, a planning domain PD is built from a set
of propositions describing the state of the world (a state is
characterized by the set of propositions that are true) and a
set of operators (i.e., actions) that can be executed in the
domain. Each operator is characterized by its preconditions
and effects, stated in terms of the domain propositions.

There exist several forms of planning in the AI litera-
ture. In this paper, we focus on classical planning, char-
acterized by fully observable, static, and deterministic do-
mains. A solution for a classical planning problem P is a se-
quence of operators—a plan—whose execution transforms
the initial state I into a state satisfying the goal G. Such a
plan is computed in advance and then carried out (uncondi-
tionally). The field of classical planning has experimented
huge advances in the last twenty years, leading to a vari-
ety of concrete solvers (i.e., planning systems) that are able
to create plans with thousands of actions for problems con-
taining hundreds of propositions. In this work, we repre-
sent planning domains and planning problems using PDDL
2.2 (Edelkamp and Hoffmann 2004), which includes opera-
tors with disjunctive preconditions and derived predicates.

4 The SmartPM Approach
We adopt a service-based approach to process management.
Thus, tasks are executed by services, such as software appli-
cations, human actors, robots, etc. Each task can be seen as a
single step consuming input data and producing output data.

In this section, we show how one can put together the
three AI frameworks described above to build a PMS, which
we shall name SmartPM, that is able to not only enact KiPs,
but also to automatically adapt processes in case of unantici-
pated exceptions. Intuitively, situation calculus theories will
be used to model the contextual information in which the
process is meant to run, IndiGolog programs will encode the
KiP to be carried out, and planning systems will be used to
support the automated adaptation of a process when needed.

SmartPM Basic Action Theory
A BAT for a SmartPM application specifies:

1. the tasks and services of the domain of concern;

2. the support framework for managing the task life-cycle;

3. the contextual setting in which processes operate; and

4. the support framework for the monitoring of processes.

Let us start by describing the first three ones. So, to en-
code tasks and services, we use five non-fluent predicates:

• Service(srv): srv is a service (i.e., a process participant);

• Task(t): t is a task (e.g., GO(l1, l2) or TAKEPHOTO(l) may
denote the tasks of navigating or taking pictures);

• Capability(c): c is a capability;

• Provides(srv, c): service srv provides capability c; and

• Requires(t, c): task t requires the capability c.

Observe all these predicates are rigid: they do not depend
on a situation term and are hence static. A service srv is able
to perform certain task t iff srv provides all capabilities re-
quired by the task t. This is captured formally using the fol-
lowing abbreviation:

Capable(srv, t) def
= ∀c.Requires(t, c) ⊃ Provides(srv, c).

To talk about concrete runs of tasks, we associate them
with unique identifiers. A task instance is then a tuple t : id,
where t is a task and id is an identifier.

The life-cycle of tasks involves the execution of four
primitive actions executed by the PMS and two exogenous
actions arising from services. More concretely, the protocol
for a successful execution of a task t goes as follows:

1. First, the PMS assigns task instance t : id to a service
srv by performing primitive action ASSIGN(srv, id, t, ~oe),
where ~oe is the expected (sensing result) output.

2. When a service is ready for task execution, it generates
the exogenous action READYTOSTART(srv, id, t).

3. Next, the PMS performs primitive action START(srv, id, t)
to authorize the service in question that is formally al-
lowed to start carrying out the task instance.

4. When the service completes the task, it generates the
exogenous action FINISHED(srv, id, t, ~or), with ~or repre-
senting the physical actual outcome returned by the task
execution (we use ε to denote the empty output).

5. At this point, the PMS updates the properties (i.e., the flu-
ents) to reflect the effects of the task just completed.
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6. Finally, the PMS acknowledges the completion of the task
and releases the service from the task via primitive actions
ACKCOMPL(srv, id, t) and RELEASE(srv, id, t).
The intended meaning of all the above actions is cap-

tured by means of a set of domain-independent fluents that
are used to keep track of the life-cycle of tasks as well as
the resource perspective of a process. For example, fluent
Free(srv, s) denotes whether a service srv is available for
task assignments in situation s, whereas ExOut(id, t, s) de-
notes the expected output of the task; their dynamics are
captured via the following successor state axioms (which in-
clude Reiter (2001)’s solution to the frame problem):

Free(srv, do(a, s)) ≡
(∃t, id)a = RELEASE(srv, id, t) ∨
[Free(srv, s) ∧ (∀t, id, ~oe)a 6= ASSIGN(srv, id, t, ~oe)];

ExOut(id, t, do(a, s)) = ~o ≡
(∃srv, ~oe)a = ASSIGN(srv, id, t, ~oe) ∧ ~o = ~oe ∨

ExOut(id, t, s) = ~o.

That is, a service is free (for task assignment) after the
execution of an action a iff a releases the service from
some task assignment, or it was free before the execution
of a and a does not assign a task instance to it. Simi-
larly, the expected output of a task instance is determined
by the assignment step (and never changes). Initial ex-
pected outcomes are initialized to “no output” via an axiom
(∀t, id).ExOut(id, t, S0) = ε in DS0

. Other similar fluents
are used to manage the life-cycle of tasks.

The BAT shall also contain a set of domain-dependent
fluents, together with their corresponding precondition and
successor state axioms, capturing the contextual scenario in
which the process is meant to to be executed. We call them
data fluents. In general, such fluents will be affected upon
the release of an assignment task, that is, whenever a task
is considered fully executed. In addition, the actual outcome
result of a task is used to define the fluent in question.
Example 1 Consider the following successor state axiom
for functional fluent At(x, s) to keep track of the location of
entities (e.g., actors and robots) in our emergency scenario:

At(x, do(a, s)) = l ≡
(∃id, ls, ld)a = FINISHED(x, id, GO(ls, ld), l) ∨
[At(x, s) = l ∧
(¬∃id, l′)a = FINISHED(x, id, GO(ls, ld), l′) ∧ l′ 6= l].

In words, service x is in location l if x was just released of
a task GO whose actual physical outcome result was l. Ob-
serve that l, the new location of x, may happen to be different
to the expected (destination) location ld. �

An important property of the domain in question is that
one stating whether a service is connected to the network.
Rather than defining a new data fluent, an abbreviation will
be enough.
Example 2 The abbreviation Connected(x, s) denotes that
service x is within network connectivity range and is defined
as follows:

Connected(x, s)
def
=

Robot(x) ∨ Covered(At(x, s)) ∨
∃r.Robot(r) ∧ Neigh(At(x, s),At(r, s)).

That is, service x is connected to the network iff x is actually
robot (robots have their own connectivity), or x’s location is
covered by the main base network, or x is adjacent to a robot
providing network connectivity in its surroundings. �

Now, in KiPs, data fluents and abbreviations will be of-
ten used for defining the preconditions of domain tasks. By
doing so, the PMS can reason, at run-time, about the active
process instance relative to the current context.

Example 3 The following precondition axiom defines
when the PMS can assign a navigation task to a service:

Poss(ASSIGN(srv, id, GO(ls, ld), le), s) ≡
(At(srv, s) = ls) ∧ Connected(srv, s) ∧
(le = ld) ∧ Capable(srv, GO(ls, ld)).

That is, the service (e.g., human actor, robot, etc.) ought to
be at the source location ls, connected to the network, and
capable of locomotion. Moreover, the expected outcome of
the task needs to be the destination location ld. �

This concludes the exposition of the first three aspects of
a SmartPM action theory, as listed above.

Exception Monitoring We now turn our attention to the
mechanism for automatically detecting failures/exceptions.
To that end, we leverage on De Giacomo, Reiter, and
Soutchanski (1998)’s technique of adaptation from the field
of agent-oriented programming, by specializing it to our KiP
setting. We consider adaptation as reducing the gap between
the expected reality, the (idealized) model of reality, and the
physical reality, the real world with the actual conditions and
outcomes. A misalignment of the two realities stems from
errors or exceptions in the tasks’ outcomes, and may require
explicit intervention.

The physical reality is captured using data fluents (to-
gether with their corresponding successor state axioms) as
described above (e.g., fluent At(x, s)). The expected real-
ity, in turn, is captured by a set of automatically generated
fluents from the data fluents. Technically, for every fluent
F (~x, s), a new fluent Fexp(~x, s) (F -expected) is used. In-
tuitively, Fexp(~x, s) represents the value of F (~x, s) in the
“expected” (or “desired”) execution. If F (~x, do(a, s)) ≡
ΨF (~x, a, s) is F ’s successor state axiom, its expected ver-
sion Fexp(~x, s) is defined as follows:

Fexp(~x, do(a, s)) ≡
a = ALIGN ⊃ F (~x, s) ∨
[(∃srv, id, t, ~or)a = FINISHED(srv, id, t, ~or) ⊃

Ψ∗F (~x, FINISHED(srv, id, t,ExOut(id, t, s)), s)] ∨
[a 6= ALIGN ∧ (∀~y)a 6= FINISHED(~y) ⊃ Ψ∗F (~x, a, s)].

where Ψ∗F (~x, a, s) is obtained by replacing each fluent X in
ΨF (~x, a, s) (the right-hand-side formula of F ’s successor
state axioms) with its expected version Xexp.

The first disjunct states that the special action ALIGN as-
signs the actual value of the fluent to its expected value,
thus providing a synchronization mechanism between the
expected and physical realities. The remaining two disjuncts
state together that the dynamics of Fexp is that of F assum-
ing all task outcomes turn out to be the ones expected. Tech-
nically, this is achieved by replacing all data fluents in ΨF
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with their expected version and the actual outcomes ~or of
finished tasks with the expected ones (term ExOut(id, t, s)).
Example 4 The corresponding (syntactically simplified)
expected version for fluent Atexp(x, s) is as follows:

Atexp(x, do(a, s)) = l ≡
a = ALIGN ⊃ (At(x, s) = l) ∨
[(∃id, ls, ld, lr)a = FINISHED(x, id, GO(ls, ld), lr) ⊃
l = ExOut(id, GO(ls, ld), s)] ∨

[Atexp(x, s) = l ∧ a 6= ALIGN ∧
(∀id, ls, ld, lr)a 6= FINISHED(x, id, GO(ls, ld), lr)].

Observe that if the action a denotes the completion of a GO
task for x with some actual outcome lr, the new location of
x is that expected (denoted by ExOut(id, GO(ls, ld), s)). �

Similarly, for each abbreviation A(s)
def
= Ψ(s), one can

define corresponding abbreviation Aexp(s)
def
= Ψ∗(s), where

Ψ∗(s) is obtained by replacing each fluent (or abbreviation)
X in Ψ(s) with its expected version Xexp and all actual
task outcomes ~or with their expected ones ExOut(id, t, s).
Of course, one can also define special expected fluent or ab-
breviations that can encode particular expectations. For ex-
ample, by simply taking Connectedexp(x, s)

def
= true, we are

able to encode the constraint that actors are expected to al-
ways be connected.

So, using the data fluents and their expected versions, a
misalignment can be recognized. However, it may only be
important to check for mismatches among some properties
of the world. So, we assume that the designer specifies dis-
tinguished abbreviation Misaligned(s) to characterize mis-
alignment situations requiring process adaptation. The gen-
eral form of this abbreviation is as follows:

Misaligned(s)
def
=

∃ ~x1.ΦX1( ~x1, s) ⊃ ¬[X1( ~x1, s) ≡ X1
exp( ~x1, s)] ∨

...
∃ ~xn.ΦXn( ~xn, s) ⊃ ¬[Xn( ~xn, s) ≡ Xn

exp( ~xn, s)],

where Xi(~xi, s), with i ∈ {1, . . . , n}, are all the data flu-
ents and abbreviations used in the SmartPM application,
and ΦXi(~xi, s) states when fluent/abbreviation Xi(~xi, s)
needs to be monitored for misalignment between its phys-
ical and expected values. We use ΦXi(~xi, s) = true and
ΦXi(~xi, s) = false to specify permanent and no monitor-
ing, respectively, for the corresponding fluent/abbreviation.
Example 5 Assuming we are only interested in monitoring
the location of actors and their connectivity, we would spec-
ify the following definition:

Misaligned(s)
def
=

∃x1.Actor(x1) ⊃ ¬[At(x1, s) ≡ Atexp(x1, s)] ∨
∃x1.Actor(x1) ⊃
¬[Connected( ~x1, s) ≡ Connectedexp( ~x1, s)].

Observe the definition is not concerned about exceptions on
the location of robots or their connectivity, for example. �

This concludes the explanation on what type of situation
calculus BAT we shall use in a SmartPM application. Let us
call this theory DSmartPM.

SmartPM High-Level Program
Algorithm 1 shows the IndiGolog program for the SmartPM
system. The program, as any high-level program, is meant
to be executed relative to the basic action theoryDSmartPM
as developed above, which shall give meaning to conditions
and primitive statements in the program (i.e., actions).

The top-level part of PMS involves four interrupts running
at different priorities, as long as the domain process is yet not
finished. The highest two priority programs deal with auto-
mated process adaptation. First, if the system has just been
adapted, then the two realities—expected and physical—
must be aligned, as a new repair plan has been found and
a new synchronization point has been reached. Second, the
system checks for a misalignment between the two realities,
as explained above. If a mismatch is recognized, the adapta-
tion procedure is triggered (see below).

At medium priority, the PMS runs the IndiGolog pro-
gram reflecting the actual KiP, represented by procedure
Process() and corresponds to the process depicted in Fig-
ure 1(a). Finally, at the lowest priority (when the process
cannot advance a step further) the PMS just waits for an
exogenous action to arrive from one of the services (e.g.,
FINISHED signaling the completion of a task). While wait-
ing, the (human) process designer could also manually inter-
vene (for example, by adding new services or updating the
capabilities of existing services).

Managing the life-cycle of a task instance—procedure
ManageExecution()—involves selecting a free service ca-
pable of carrying it out, assigning the task to the chosen
service, allowing the start of the service, acknowledging its
completion and fully releasing the service from the task.
Notice the use of the non-deterministic choice of argument
πsrv.δ(srv) to select an appropriate service.

The most interesting part of the procedure involves pro-
cedure Adapt(). An adaptation is very simple: find a se-
quence of actions that will resolve the misalignment. This is
exactly what the code inside the search operator Σ does: pick
n actions (and execute them) zero, one, or more times such
that abbreviation Misaligned(s) becomes false. The action
SETMUSTALIGN at the front of the search construct will
just make MustAlign(s) true, which will trigger (provided
an actual adaptation plan is found) the top-priority program
in the main procedure to force an alignment of the two re-
alities. Observe that because the adaptation mechanism runs
at higher priority than the actual process, the recovery plan
found will be run before whatever part of the domain process
remains to be executed.

While this specification of the automated adaptation pro-
cedure turns out to be extremely clean and simple, the di-
rect use of the native search operator provided by the In-
diGolog architecture (De Giacomo et al. 2009) poses serious
problems in terms of efficiency. Indeed, the search opera-
tor provided by IndiGolog performs basic blind search and
as a result is not able to cope with extremely easy adapta-
tion tasks. The important observation to make is that while
the search operator is meant to handle any IndiGolog high-
level program (including ones containing nested search op-
erators), our SmartPM system uses a specific program that
encodes a (classical) planning problem. So, leveraging on
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Algorithm 1: IndiGolog high-level program for PMS.
Proc SmartPM()
〈¬Finished ∧MustAlign→ ALIGN〉 〉〉
〈¬Finished ∧Misaligned → Adapt()〉 〉〉
〈¬Finished → [Process(); FINISH]〉 〉〉
〈¬Finished → [WAIT]〉.

Proc Adapt()
ΣLPG[SETMUSTALIGN; (πa.a)∗;¬Misaligned?].

Proc ManageExecution(Task, id,ExpOut)
(π srv).

(Capable(srv, Task) ∧ Free(srv))?;
ASSIGN(srv, id, Task,ExpOut);
START(srv, id, Task);
ACKCOMPL(srv, id, Task);
RELEASE(srv, id, Task)

Proc Process()
[Branch1()‖ Branch2()‖ Branch3()].

Proc Branch1()
ManageExecution(GO(loc00, loc33), id1, loc33);
ManageExecution(TAKEPHOTO(loc33), id2, ok);
ManageExecution(UPDATESTATUS(loc33), id3, ok)

Proc Branch2()
ManageExecution(GO(loc00, loc32), id4, loc32);
ManageExecution(EVACUATE(loc32), id5, ok);
ManageExecution(UPDATESTATUS(loc32), id6, ok)

Proc Branch3()
ManageExecution(GO(loc00, loc31), id7, loc31);
ManageExecution(EVACUATE(loc31), id8, ok);
ManageExecution(UPDATESTATUS(loc31), id9, ok)

the recent progress of classical planning systems, we imple-
ment the search operator call in procedure Adapt(), by us-
ing an off-the-shelf planner to synthesise the recovery plan,
and then fit such a plan back into the IndiGolog framework.
In this work, we used the LPG-td system (Gerevini, Saetti,
and Serina 2003), one of the many state-of-the-art planning
systems available. The basic search scheme of LPG-td is
inspired by Walksat (Selman, Kautz, and Cohen 1994), an
efficient procedure for solving SAT-problems; as expected,
it outperforms the blind search operator by several orders
of magnitudes. Nonetheless, our approach is orthogonal to
other planning systems.

We do not go over all the details on how the interface
between IndiGolog and LPG-td has been implemented but
just go over the main ingredients. First of all, given a BAT
for a KiP application, the corresponding PDDL planning do-
main is built offline and stored. Because we are not con-
cerned with the exogenous actions generated by services to
acknowledge the start and termination of assigned processes
(i.e., actions READYTOSTART and FINISHED), we do not
model the full PMS assign-start-acknowledge-release task
life-cycle, but just encapsulates them all in the actual name
of the task being handled (e.g., GO). By doing that, we as-
sume that the life-cycle of a task instance will follow its nor-
mal evolution. The SmartPM BAT will define a form of tasks
and services repository, which may include entities not used
in the current running process. So, the PDDL domain for our
case study will contain, among others, the following action
schema:

(:action go
:parameters (?x - srv ?from - loc

?to - loc)
:precondition (and (free ?x)

(provides ?x movement)
(at ?x ?from) (connected ?x))

:effect (and
(not (at ?x ?from)) (at ?x ?to)))

Note that the task-action in the planning system will contain
the service in charge and its expected effects.

Then, whenever a search operator adaptation program is
called in procedure Adapt(), the current situation of the In-
diGolog system is encoded as a planning initial state (as the
set of fluents that are true) and formula Misaligned(s) is en-
coded as a goal state (by taking the collection of relevant
fluents to be as their expected versions). Those two states, to-
gether with the planning domain already pre-computed, are
then passed to the LPG-td system.

Finally, if the planner finds a plan that brings about
the (desired) expected reality, such a plan—built from
task names only—is translated into the typical assign-start-
acknowledge-release task life-cycle IndiGolog program. As
stated above, the plan will run before the actual domain pro-
cess, which shall resume then, hopefully from the expected
reality. In our running example, the full IndiGolog program
would encode the KiP depicted in Figure 2(b).

This concludes the complete overview of SmartPM, built
from a BAT and an IndiGolog high-level program that uses
a classical planner for its specific (classical planning) search
operator implementation. Let us now look at some empirical
evaluation of such a system.

5 Validation
In order to investigate the feasibility of the SmartPM ap-
proach, we performed experiments to study the time re-
quired for synthesizing a recovery plan for different adap-
tation problems. We made our tests by using the LPG-td
planner (Gerevini, Saetti, and Serina 2003). We chose LPG-
td as (i) it treats most of PDDL 2.2 features; and (ii) it has
been developed in two versions: a version tailored to com-
putation speed, named LPG-td.speed, which produces sub-
optimal plans that do not prove any guarantee other than the
correctness of the solution, and a version tailored for plan
quality, named LPG-td.quality. LPG-td.quality differs from
LPG-td.speed basically in that it does not stop when the first
plan is found, but continues until a stopping quality criterion
is met. In our experiments, the criterion for plan quality was
set to minimal plan length.

The experimental setup was performed with the test case
shown in our train emergency running example. We used a
tasks repository containing 20 different emergency manage-
ment tasks, annotated with 28 relational predicates, 2 de-
rived predicates, and 4 functional numeric fluents. We pro-
vided 185 different planning problems of different complex-
ity, by manipulating ad-hoc the values of the initial state and
the goal in order to devise adaptation problems of growing
complexity. The results are reported in Table 1. Each row
summarizes the results of various planning instances (#I
instances). Column L-RP indicates the length of the shortest
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Table 1: Performances of LPG-td. L-RP = length of the short-
est recovery plan; #I = number of problem instances; AT-
SOS/AL-SOS = average time/length for sub-optimal plan;
and AT-QS = average time for quality plan.

L-RP #I AT-SOS AL-SOS AT-QS
1 29 6.769 3 7.768
2 36 7.213 3 16.865
3 32 7.846 4 24.123
4 25 8.128 5 37.017
5 21 8.598 8 39.484
6 17 8.736 9 52.421
7 13 9.188 13 73.526
8 12 9.953 14 81.414

plans for all instances. Column AL-SOS indicates the av-
erage number of actions of the sub-optimal solutions found
by LPG-td.speed; whereas column AT-SOS reports the time
it took to find such plan solutions. Those plans will gen-
erally include more tasks than the ones strictly needed. Fi-
nally, column AT-QS indicates the average time taken by
LPG-td.quality to produce a quality plan. For example, on
21 different planning problems requiring a recovery proce-
dure of length 5, the LPG-td planner is able to find, on aver-
age, a sub-optimal plan in 8.598 seconds (with an average of
three tasks more) and a quality plan (of exactly 5 tasks nec-
essary for recovery) in 39.484 seconds. Consequently, the
approach is feasible for medium-sized dynamic processes
used in practice.4

Effectiveness of SmartPM in Adapting Processes
An important aspect to consider during the development of
a PMS with adaptation features concerns its effectiveness in
supporting process models having control flows with dif-
ferent structures. We define effectiveness as the ability of
a PMS to complete the execution of a process model (i.e., to
execute all the tasks involved in a path from the start event to
the end event) by adapting automatically its running process
instance if some failure/exception arises, without the need of
any manual intervention of the process designer at run-time.

To evaluate the effectiveness of SmartPM, we developed
a software module named the SmartPM Simulator, which
is able to automatically build IndiGolog processes and corre-
spondingDSmartPM theories, by simulating their execution
on the basis of some customizable parameters:

• Structure of the control flow, with tasks organized in se-
quence or in 3 or 5 parallel branches.

• Tasks repository size, equal to 25, 50, or 75 tasks.

• Number of available services in the initial situation for
task assignment. We fixed this value to 5 services.

• Number of task preconditions/effects; we allowed the gen-
eration of tasks having a maximum of 5 conditions in the
precondition/effect axioms.

4We did our tests by using an Intel U7300 CPU 1.30GHz Dual
Core, 4GB RAM machine.

• Number of available fluents; we allowed the generation of
50 relevant data fluents that may assume boolean values.
For each data fluent, the SmartPM Simulator automati-
cally builds the corresponding expected fluent for moni-
toring possible tasks failures.

• Percentage of tasks failures This parameter may assume
two possible values (30% or 70%), and affects the per-
centage of tasks error during the process execution.

• Percentage of capabilities coverage (30% or 70%), that
affects the ability of each available service to execute the
tasks stored in the repository.

Given (i) a specific structure of the control flow, (ii) a fixed
percentage of capabilities coverage and (iii) of tasks failures,
for each possible size of the tasks repository the SmartPM
Simulator generated 100 process models with control flows
composed respectively by 5 to 25 tasks randomly picked
from the tasks repository. In total, we tested 3600 process
models. Test results are shown in Figure 3. Collected data
are organized in 4 diagrams obtained by combining the per-
centage of failures (FP ) with the the percentage of capabil-
ities coverage (SC). Each bar corresponds to the enactment
of 100 different process models with a fixed size of the tasks
repository and a specific structure of the control flow.

The analysis of the performed tests points out some in-
teresting aspect. For example, let us consider the diagram in
Figure 3(a), that shows the effectiveness of SmartPM in ex-
ecuting processes with a FP equal to 30% and a SC fixed
to 30%. When the size of the tasks repository is equal to 75,
the effectiveness of SmartPM in executing 100 process mod-
els composed by a sequence of tasks is equal to 82%. This
means that 82 processes out of 100 that were executed have
been correctly enacted and completed, while for the other
18 processes the system did not find any recovery plan for
dealing with an exception occurrence. We can note that the
effectiveness decreases if the instances have tasks organized
in three parallel branches (79%) and in five parallel branches
(75%). In general, the effectiveness of the SmartPM system
decreases as the number of parallel branches increases, since
more services are possibly involved at the same time for
tasks execution, by letting only few services available for
process adaptation and recovery. Furthermore: (i) when the
FP increases, the effectiveness of the SmartPM system de-
creases; (ii) when the SC increases, the effectiveness of the
SmartPM system increases, because there are more possibil-
ities for a task in the repository to be selected by an available
service.

To sum up, the execution of 3600 process models with
different structures was a valid test for measuring the effec-
tiveness of SmartPM, that was able to complete 2537 process
instances, corresponding to an effectiveness of about 70.5%.

6 Related Work
The AI community has been involved with research on pro-
cess management for several decades, and AI technologies
can play an important role in the construction of PMS en-
gines that manage complex processes, while remaining ro-
bust, reactive, and adaptive in the face of both environmental
and tasking changes (Myers and Berry 1998). One of the
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Figure 3: Analysis of the SmartPM effectiveness. The x-axis states the size of the tasks repository, while the y-axis indicates
the effectiveness in executing process models with a specific structure of the control flow.

first works dealing with this research challenge is (Beck-
stein and Klausner 1999). It discusses at high level how the
use of an intelligent assistant based on planning techniques
may suggest compensation procedures or the re-execution of
activities if some expected failure arises during the process
execution. In (Jarvis et al. 1999) the authors describe how
planning can be interleaved with process execution and plan
refinement, and investigates plan patching and plan repair as
means to enhance flexibility and responsiveness.

A goal-based approach for enabling automated process
instance change in case of emerging exceptions is shown
in (Gajewski et al. 2005). If a task failure occurs at run-time
and leads to a process goal violation, a multi-step procedure
is activated. It includes the termination of the failed task, the
sound suspension of the process, the automatic generation
(through the use of a partial-order planner) of a new com-
plete process definition that complies with the process goal
and the adequate process resumption. A similar approach
is proposed in (Ferreira and Ferreira 2006). The approach
is based on learning business activities as planning opera-
tors and feeding them to a planner that generates a candi-
date process model that is able of achieving some business
goals. If an activity fails during the process execution at run-
time, an alternative candidate plan is provided on the same
business goals. The major issue of (Gajewski et al. 2005;
Ferreira and Ferreira 2006) lies in the replanning stage used
for adapting a faulty process instance. In fact, it forces to
completely re-define the process specification at run-time
when the process goal changes (due to some activity fail-
ure), by completely revolutionizing the work-list of tasks
assigned to the process participants (that are often humans).
On the contrary, our approach adapts a running process in-
stance by modifying only those parts of the process that need
to be changed/adapted and keeps other parts stable.

A work dealing with process interference is that of van
Beest et al. (2014). Process interference is a situation that
happens when several concurrent business processes de-
pending on some common data are executed in a highly
distributed environment. During the processes execution, it
may happen that some of these data are modified causing
unexpected or wrong business outcomes. To overcome this
limitation, the work van Beest et al. proposes a run-time

mechanism which uses (i) Dependency Scopes for identi-
fying critical parts of the processes whose correct execu-
tion depends on some shared variables; and (ii) Intervention
Processes for solving the potential inconsistencies generated
from the interference, which are automatically synthesised
through a domain independent planner based on constraint
techniques. While closely related to van Beest’s work, our
account deals with changes in a more abstract and domain-
independent way, by just checking misalignment between
expected/physical realities. Conversely, van Beest’s work re-
quires specification of a (domain-dependent) adaptation pol-
icy, based on volatile variables and when changes to them
become relevant.

7 Conclusion
As discussed in this paper, SmartPM defines a general ap-
proach, a concrete framework and a prototype PMS for au-
tomated adaptation of processes. Our purpose was to demon-
strate that the combination of procedural and imperative
models with declarative elements, along with the exploita-
tion of techniques from the field of AI such as situation
calculus, IndiGolog and classical planning, can increase the
ability of existing PMSs of supporting and adapting KiPs.

The adaptation mechanism is based on execution moni-
toring for detecting failures and context changes at run-time,
without requiring to predefine any specific adaptation policy
or exception handler at design-time (as most of the current
approaches do). The use of classical planning techniques for
the synthesis of the recovery procedure has a twofold con-
sequence. On the one hand, we can exploit the good perfor-
mance of current state-of-the-art planners to solve medium-
sized real-world problems as used in practice. On the other
hand, classical planning imposes some restrictions for ad-
dressing more expressive problems, including incomplete
information, preferences and multiple task effects.

We note that, besides task failures, the execution of a KiP
could be also jeopardized by the occurrence of exogenous
events—e.g., a sudden fire outbreak in a coach—that could
change, in asynchronous manner, some contextual proper-
ties of the scenario in which the process is under execution,
hence possibly requiring the KiP to be adapted. Future work
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is required to extend our approach to deal such disruptive
exogenous events.

The current prototype of SmartPM is developed to be ef-
fectively used by process designers and practitioners.5 Users
define processes in the well-known BPMN language, en-
riched with semantic annotations for expressing properties
of tasks, which allow our interpreter to derive the IndiGolog
program representing the process. Interfaces with human ac-
tors (as specific graphical user applications in Java) and soft-
ware services (through Web service technologies) allow the
core system to be effectively used for enacting processes.
Our future work will also improve the current prototype in
order to be compliant with many other technologies adopted
by process practitioners, e.g., RESTful services and HTML-
based user interfaces.
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