
Constructive Negation in Extensional Higher-Order Logic Programming

Angelos Charalambidis
Dept. of Informatics and Telecommunications

University of Athens
a.charalambidis@di.uoa.gr

Panos Rondogiannis
Dept. of Informatics and Telecommunications

University of Athens
prondo@di.uoa.gr

Abstract

Extensional higher-order logic programming has been re-
cently proposed as an interesting extension of classical
logic programming. An important characteristic of the new
paradigm is that it preserves all the well-known properties of
traditional logic programming. In this paper we enhance ex-
tensional higher-order logic programming with constructive
negation. We argue that the main ideas underlying construc-
tive negation are quite close to the existing proof procedure
for extensional higher-order logic programming and for this
reason the two notions amalgamate quite conveniently. We
demonstrate the soundness of the resulting proof procedure
and describe an actual implementation of a language that em-
bodies the above ideas. In this way we obtain the first (to our
knowledge) higher-order logic programming language sup-
porting constructive negation and offering a new style of pro-
gramming that genuinely extends that of traditional logic pro-
gramming.

1 Introduction
Extensional higher-order logic programming has been re-
cently proposed (Charalambidis et al. 2010; 2013) as an in-
teresting extension of classical logic programming. The key
idea behind the new paradigm is that all predicates defined
in a program (even the higher-order ones) denote sets and
therefore one can use standard extensional set theory in or-
der to understand the meaning of programs and reason about
them. A consequence of this fact is that the semantics and
the proof theory of extensional higher-order logic program-
ming smoothly extend the corresponding ones for traditional
(ie., first-order) logic programming.

In this paper we extend the new paradigm of extensional
higher-order logic programming with constructive nega-
tion (Chan 1988; 1989). The combination of higher-order
characteristics and constructive negation in the new lan-
guage, allows the programmer to specify in a compact way
many interesting problems. For example, in the new lan-
guage it is quite convenient to enumerate the sets that satisfy
a specific property (such as all the colorings of a graph, all
the subsets of a set that satisfy a condition, and so on). In
order to theoretically justify the proposed higher-order lan-
guage, we define its completion semantics and demonstrate

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the soundness of the proof procedure with respect to this se-
mantics. Finally, we describe an implementation of the new
language which embodies the above ideas. In conclusion,
the main contributions of the present work are the follow-
ing:

• We propose the first (to our knowledge) higher-order logic
programming language with constructive negation. The
amalgamation of the two ideas seems quite natural and ex-
pressive (but is non-trivial from a technical point of view).

• We provide a theoretical justification of our proposal by
defining the completion semantics for higher-order logic
programs and by demonstrating the soundness of the pro-
posed proof procedure with respect to this semantics. In
this way we provide a promising direction for the study
of the interplay between higher-order logic programming
and negation-as-failure.

The rest of the paper is organized as follows. Section 2 de-
scribes the motivation behind the present work. Section 3
provides the syntax and semantics of the proposed higher-
order language and Section 4 presents the corresponding
proof-procedure and discusses its implementation. Section 5
demonstrates the soundness of the proof-procedure. Sec-
tion 6 concludes the paper with discussion on future work.

2 Motivation
The purpose of this paper is to enhance extensional higher-
order logic programming with constructive negation. These
two notions prove to be very compatible, for reasons that we
are going to explain in detail below.

In (Charalambidis et al. 2013) the higher-order logic pro-
gramming language H is defined. Intuitively, H extends
classical logic programming with higher-order user-defined
predicates. The main novel characteristic of H with respect
to other existing higher-order logic programming languages
(such as Hilog (Chen, Kifer, and Warren 1993) and λ-
Prolog (Miller and Nadathur 1986)) is that it has a purely ex-
tensional semantics: program predicates denote sets of ob-
jects and the semantics of the language is an extension of the
traditional semantics of classical logic programming. Since
predicates in H denote sets, the programmer is allowed to
use uninstantiated predicate variables in clause bodies and
in queries; when the proof-procedure of H encounters such

12

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

a variable, it performs a systematic enumeration of the pos-
sible values that this variable can take. For further details
regardingH the interested reader should consult (Charalam-
bidis et al. 2013). The following two examples motivate the
language. To simplify our presentation for this section, we
use an extended Prolog-like syntax. The exact syntax of the
language that will be the object of our study will be specified
in the next section.

Example 1. Consider the program:

p(Q):-Q(0),Q(1).

The meaning of p can be understood in set-theoretic terms,
ie., p is a predicate that is true of all relations that contain (at
least) 0 and 1. Thus, it is meaningful to ask the query:

?-p(R).

which will respond with an answer of the form R={0, 1}∪L
(having the obvious meaning described above).

Example 2. Consider the following program stating that a
band is a group that has at least a singer and a guitarist:

band(B):-singer(S),B(S),guitarist(G),B(G).

Suppose that we also have a database of musicians:

singer(sally).
singer(steve).
guitarist(george).
guitarist(grace).

We can then ask the following query:

?-band(B).

which returns answers of the form B={sally, george}∪L,
and so on.

It should be noted that inH one can ask queries with free
predicate variables of any order; this means that we can have
queries that return sets of sets of objects, and so on.

As demonstrated in (Charalambidis et al. 2013), one can
define a sound and complete proof procedure for H and
based on it to obtain a reasonably efficient implementation
of the language. There are however certain aspects of the
language that require further investigation. One basic prop-
erty of all the higher-order predicates that can be defined
in H is that they are monotonic. Intuitively, the mono-
tonicity property states that if a predicate is true of a re-
lation R then it is also true of every superset of R. In the
above example, it is clear that if band is true of a rela-
tion B then it is also true of any band that is a superset
of B. However, there are many natural higher-order pred-
icates that are non-monotonic. For example, consider the
predicate disconnected(G) which succeeds if its input ar-
gument, namely a graph G, is disconnected. A graph is
simply a set of pairs, and therefore disconnected is a
second-order predicate. Notice now that disconnected
is obviously non-monotonic: given graphs G1 and G2 with
G1 ⊆ G2, it is possible that disconnected(G1) succeeds
but disconnected(G2) fails.

The obvious idea in order to add non-monotonicity to H
is to enhance the language with negation-as-failure. How-
ever, this is not as straightforward as it sounds, because even
the simpler higher-order programs with negation face the
well-known problem of floundering (Lloyd 1987). In clas-
sical logic programming a computation is said to flounder
if at some point a goal is reached that contains only non-
ground negative literals. In higher-order logic programming
this problem is even more extended since a goal may addi-
tionally contain uninstantiated higher-order variables.

Example 3. Consider the following simple modification to
the program of Example 1:

p(Q):-Q(0),not(Q(1)).

Intuitively, p is true of all relations that contain 0 but they do
not contain 1. The query:

?-p(R).

will not behave correctly if a simple-minded implementation
of negation-as-failure is followed; this is due to the fact that
in order to answer the given query one has to answer the sub-
query not(R(1)). Since the relation R is not fully known at
the point of this call, it is not obvious how the implementa-
tion should treat such a subquery.

Constructive negation (Chan 1988; 1989) bypasses the
problem of floundering. The main idea can be explained
by a simple example. Consider the program:

p(1).
p(2).

and the query:
?-not(p(X)).

The original idea (Chan 1988) behind constructive negation
is that in order to answer a negative query that contains unin-
stantiated variables, the following procedure must be ap-
plied: we run the positive version of the query and we collect
the solutions as a disjunction; we then return the negation of
the disjunction as the answer to the original query. This idea
can be extended even to the case where a query has an in-
finite number of answers (Chan 1989). In our example, the
corresponding positive query (namely ?-p(X).) has the an-
swers X=1 and X=2. The negation of their disjunction is the
conjunction (X 6= 1) ∧ (X 6= 2). Observe now that the pro-
cedure behind constructive negation returns as answers not
only substitutions (as it happens in negationless logic pro-
gramming) but also inequalities.

Generalizing the above idea to the higher-order setting re-
quires the ability to express some form of inequalities re-
garding the elements of sets. Intuitively, we would like to
express the property that some element does not belong to a
set. For example, given the query in Example 3, a reasonable
answer would be R = {0} ∪ {X | X 6= 1}.

We start with the syntax ofH as introduced in (Charalam-
bidis et al. 2013) and extend it in order to allow negation in
clause bodies. The new language, Hcn, has only one lim-
itation with respect to the initial H: the existential predi-
cate variables that appear in queries or in clause bodies of

13

Hcn can only be sets of terms (and not, for example, sets
of sets, or sets of sets of sets, and so on). The reasons for
our restriction are two-fold: first, it is not straightforward to
express inequalities regarding the elements of a set of sets;
and second, it would be much more difficult to express the
proof procedure if the queries were not restricted (and the
implementation would also face significant complications).

It turns out that Hcn is quite appropriate in expressing
problems that require a generate-and-test of sets in order to
reach a solution. For example, many graph problems re-
quire the enumeration and testing of subgraphs of a given
graph. In this respect, the language Hcn appears to have
an application domain that is similar to that of modern
ASP languages, which are being used for specifying com-
putationally difficult problems (Gelfond and Lifschitz 1988;
Lifschitz 2008). Of course, the higher-order approach is
completely different than the ASP one in terms of syntax
and semantics, and a comparative evaluation of the two
paradigms deserves further investigation.
Example 4. Consider the following program which defines
the subset relation:

subset(P,Q):-not(non subset(P,Q)).
non subset(P,Q):-P(X),not(Q(X)).

and assume that we have a predicate q which is true of 0, 1
and 2. Then, given the query

?-subset(P,q).

the interpreter produces all the subsets of the set {0, 1, 2}.
Example 5. Consider the following program which defines
the relation twocolor(G,R) which is true if R is a subset
of the set of vertices of G that can be painted with the same
color in a two-coloring of G.
twocolor(G,R):-subset(R,vertex_set(G)),

not(non_twocolor(G,R)).

vertex_set(G)(X):-G(X,_).
vertex_set(G)(X):-G(_,X).

non_twocolor(G,R):-G(X,Y),R(X),R(Y).
non_twocolor(G,R):-G(X,Y),not(R(X)),not(R(Y)).

Assume that g is a binary predicate defining a graph. By
asking the query:

?-twocolor(g,R).

the implementation will enumerate all the possible relations
R that constitute valid two-colorings of g.
Example 6. The following program can be used to enumer-
ate all the subgraphs of a given graph that are cliques:
clique(G,R):-subset(R,vertex_set(G)),

not(non_clique(G,R)).

non_clique(G,R):-R(X),R(Y),not(G(X,Y)).

3 Syntax and Semantics
This section defines in a formal way the syntax and the se-
mantics of the higher-order languageHcn.

The Syntax ofHcn
The languageHcn is in fact a more austere version of the ad-
hoc language used for the examples of the previous section.
Example 7. The subset predicate of Example 4 can be ex-
pressed inHcn as follows:

subset← λP.λQ. ∼∃X((P X)∧ ∼(Q X))

The subset predicate is defined by a λ-expression (which
obviates the need to have the formal parameters of the predi-
cate in the left-hand side of the definition). Moreover, in the
right-hand side we have an explicit existential quantifier for
the variable X (in Prolog, if a variable appears in the body of
a clause but not in the head, then it is implicitly existentially
quantified). Consider the query:

← subset R p

Notice that here the variable R is not explicitly existentially
quantified: we assume that the free variables of the goal are
the ones for which the proof procedure will attempt to find
bindings in order for the goal to be satisfied. If a variable
appears explicitly existentially quantified in the goal, then
the implementation will not produce a binding for it.

The type system ofHcn is based on two base types: o, the
type of the boolean domain, and ι, the type of the domain
of individuals (data objects). For example, every classical
logic programming term is of type ι.

The basic difference in the types ofHcn from those ofH is
the existence of a type µ which restricts the set of predicate
variables that can be existentially quantified or appear free
in goal clauses (as explained in the previous section).
Definition 1. A type can either be functional, argument, or
predicate, denoted by σ, ρ and π and defined as:

σ := ι | (ι→ σ)
ρ := ι | π
π := o | (ρ→ π)

The subtypes µ and κ of ρ and π are defined as follows:

µ := ι | κ
κ := ι→ o | (ι→ κ)

The types µ and κ will be called existential and set types
respectively.

The operator → is right-associative. A functional type
that is different from ιwill often be written in the form ιn →
ι, n ≥ 1. Similarly, a set type will often be written in the
form ιn → o, n ≥ 1. It can be easily seen that every pred-
icate type π can be written in the form ρ1→· · ·→ ρn→ o,
n ≥ 0 (for n = 0 we assume that π = o). We proceed with
the alphabet ofHcn:
Definition 2. The alphabet ofHcn consists of:

1. Predicate variables of every predicate type π (denoted by
uppercase letters such as R,Q, . . .).

2. Predicate constants of every predicate type π (denoted by
lowercase letters such as p, q, r, . . .).

3. Individual variables of type ι (denoted by uppercase let-
ters such as X,Y,Z, . . .).

14

4. Individual constants of type ι (denoted by lowercase let-
ters such as a, b, c, . . .).

5. Function symbols of every functional type σ 6= ι (denoted
by lowercase letters such as f, g, h, . . .).

6. The following logical constant symbols: the propositional
constants false and true of type o; the equality constant
≈ of type ι → ι → o; the generalized disjunction and
conjunction constants

∨
π and

∧
π of type π → π → π,

for every predicate type π; the generalized inverse im-
plication constants ←π of type π → π → o, for every
predicate type π; the equivalence constants ↔π of type
π → π → o, for every predicate type π; the existential
quantifiers ∃µ of type (µ→ o)→ o, for every existential
type µ; the negation constant ∼of type o→ o.

7. The abstractor λ and the parentheses “(” and “)”.
The set consisting of the predicate variables and the individ-
ual variables of Hcn will be called the set of argument vari-
ables ofHcn. Argument variables will be usually denoted by
V,U and their subscripted versions.
Definition 3. The set of body expressions of the higher-
order languageHcn is recursively defined as follows:

1. Every predicate variable (respectively, predicate constant)
of type π is a body expression of type π; every individ-
ual variable (respectively, individual constant) of type ι is
a body expression of type ι; the propositional constants
false and true are body expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are body
expressions of type ι, then (f E1 · · ·En) is a body expres-
sion of type ι.

3. If E1 is a body expression of type ρ→ π and E2 is a body
expression of type ρ, then (E1 E2) is a body expression of
type π.

4. If V is an argument variable of type ρ and E is a body
expression of type π, then (λV.E) is a body expression of
type ρ→ π.

5. If E1,E2 are expressions of type π, then (E1

∧
π E2) and

(E1

∨
π E2) are body expressions of type π.

6. If E1,E2 are expressions of type ι, then (E1 ≈ E2) is a
body expression of type o.

7. If E is an expression of type o and V is an existential vari-
able of type µ, then (∃µVE) is a body expression of type
o.

8. If E is a body expression of type o, then (∼E) is a body
expression of type o.
The type subscripts (such as µ in ∃µ) will often be omitted

when they are obvious or immaterial in the foregoing discus-
sion. Moreover, we will write∧ and∨ instead of

∧
o and

∨
o.

We will use type(E) to denote the type of the body expres-
sion E. The notions of free and bound variables of a body
expression are defined as usual. A body expression is called
closed if it does not contain any free variables. Given an ex-
pression E, we denote by fv(E) the set of all free variables of
E. By overloading notation, we will also write fv(S), where
S is a set of expressions.

We will often write Â to denote a (possibly empty)
sequence 〈A1, . . . ,An〉 of expressions. For example we

will write (E Â) to denote an application (E A1 · · ·An);
(λX̂.E) to denote (λX1. · · ·λXn.E); (∃V̂ E) to denote
(∃V1 · · · ∃Vn E). When Â or X̂ or V̂ is empty, then the cor-
responding expression is considered identical to E.

A body expression of the form (E1 ≈ E2) will be called an
equality while an expression of the form∼∃V̂(E1 ≈ E2) will
be called an inequality; in the latter case V̂ may be empty (in
which case the inequality is of the form ∼(E1 ≈ E2)). Let
Ê = 〈E1, . . . ,En〉 and Ê′ = 〈E′1, . . . ,E′n〉, where all Ei,E′i
are of type ι, we will write (Ê ≈ Ê′) to denote the expression
(E1 ≈ E′1)∧· · ·∧ (En ≈ E′n); if n = 0, then the conjunction
is the constant true.
Definition 4. The set of clausal expressions of the higher-
order languageHcn is defined as follows:

1. If p is a predicate constant of type π and E is a closed body
expression of type π then p ←π E is a clausal expression
ofHcn, also called a program clause.

2. If E is a body expression of type o and each free variable
in E is of type µ then false ←o E (usually denoted by
←o E or just ← E) is a clausal expression of Hcn, also
called a goal clause.

3. If p is a predicate constant of type π and E is a closed body
expression of type π then p ↔π E is a clausal expression
ofHcn, also called a completion expression.

All clausal expressions ofHcn have type o.
Notice that (following the tradition of first-order logic

programming) we will talk about the “empty clause” which
is denoted by � and is equivalent to← true.
Definition 5. A program of Hcn is a finite set of program
clauses ofHcn.

We proceed by defining the completion of a program:
Definition 6. Let P be a program and let p be a predicate
constant of type π. Then, the completed definition for p with
respect to P is obtained as follows:
• if there exist exactly k > 0 program clauses of the form
p ←π Ei where i ∈ {1, . . . , k} for p in P, then the com-
pleted definition for p is the expression p ↔π E, where
E = E1

∨
π · · ·

∨
π Ek.

• if there are no program clauses for p in P then the com-
pleted definition for p is the expression p↔π E, where E
is of type π and E = λX̂.false.

The expression E on the right-hand side of the completed
definition of p will be called the completed expression for p
with respect to P.

We can now extend the notion of completion (Clark 1977;
Lloyd 1987) to apply to our higher-order programs:
Definition 7. Let P be a program. Then, the completion
comp(P) of P is the set consisting of all the completed def-
initions for all predicate constants that appear in P.

The Semantics ofHcn
In this section we introduce the semantics of Hcn. We start
by defining the meaning of types of Hcn; for the predicate
types we also define a corresponding partial order (which
will be used in the definition of the semantics ofHcn).

15

Definition 8. Let D be a non-empty set. Then the meanings
of the types of our language can be specified as follows:
• [[ι]]D = D;
• [[ιn → ι]]D = Dn → D;
• [[o]]D = {false, true}. A partial order vo can be defined

on the set [[o]]D as follows: false vo true , false vo false
and true vo true;
• [[ρ → π]]D = [[ρ]]D → [[π]]D. A partial order vρ→π can

be defined as follows: for all f, g ∈ [[ρ→ π]]D, f vρ→π g
if and only if f(d) vπ g(d), for all d ∈ [[ρ]]D.
It can be easily shown that for every predicate type π,

[[π]]D is a complete lattice, and therefore for every subset of
[[π]]D there exists a lub function (denoted by

⊔
π) and a glb

function (denoted by
d
π).

The notions of interpretation and state can be defined in
a standard way:
Definition 9. An interpretation I ofHcn consists of:

1. a nonempty set D, called the domain of I
2. an assignment to each individual constant symbol c, of an

element I(c) ∈ D
3. an assignment to each predicate constant p of type π, of

an element I(p) ∈ [[π]]D
4. an assignment to each function symbol f of type ιn → ι,

of a function I(f) ∈ Dn → D.
Definition 10. Let D be a nonempty set. Then, a state s
of Hcn over D is a function that assigns to each argument
variable V of type ρ ofHcn an element s(V) ∈ [[ρ]]D.

In the following, s[V/d] is used to denote a state that is
identical to s the only difference being that the new state
assigns to V the value d.
Definition 11. Let I be an interpretation ofHcn, letD be the
domain of I and let s be a state over D. Then, the semantics
of expressions of Hcn with respect to I and s is defined as
follows:

1. [[false]]s(I) = false

2. [[true]]s(I) = true

3. [[c]]s(I) = I(c), for every individual constant c
4. [[p]]s(I) = I(p), for every predicate constant p
5. [[V]]s(I) = s(V), for every argument variable V

6. [[(f E1 · · ·En)]]s(I) = I(f) [[E1]]s(I) · · · [[En]]s(I), for ev-
ery n-ary function symbol f

7. [[(E1E2)]]s(I) = [[E1]]s(I)([[E2]]s(I))

8. [[(λV.E)]]s(I) = λd.[[E]]s[V/d](I), where d ranges over
[[type(V)]]D

9. [[(E1

∨
π E2)]]s(I) =

⊔
π{[[E1]]s(I), [[E2]]s(I)}, where

⊔
π

is the least upper bound function on [[π]]D
10. [[(E1

∧
π E2)]]s(I) =

d
π{[[E1]]s(I), [[E2]]s(I)}, where

d
π

is the greatest lower bound function on [[π]]D

11. [[(E1≈E2)]]s(I) =

{
true, if [[E1]]s(I) = [[E2]]s(I)
false, otherwise

12. [[(∃VE)]]s(I) =

 true, if there exists d ∈ [[type(V)]]D
such that [[E]]s[V/d](I) = true

false, otherwise

13. [[(∼E)]]s(I) =
{

true, if [[E]]s(I) = false
false, if [[E]]s(I) = true

14. [[p←π E]]s(I) =

{
true, if [[E]]s(I) vπ I(p)
false, otherwise

15. [[p↔π E]]s(I) =

{
true, if [[E]]s(I) = I(p)
false, otherwise

16. [[← E]]s(I) =

{
true, if [[E]]s(I) = false
false, otherwise

Definition 12. Let S be a set of expressions of type o and
let I be an interpretation ofHcn. We say that I is a model of
S if for every E ∈ S and for every state s over the domain
of I , [[E]]s(I) = true.

Clark’s Equality Theory can also be added to our fragment
as follows:

Definition 13. Let I be an interpretation of Hcn. We will
say that I satisfies Clark’s Equality Theory (CET) if for all
states s over the domain of I , all the following hold:

1. [[(f Ê) ≈ (f Ê′)]]s(I) = [[Ê ≈ Ê′]]s(I) for every n-ary
function symbol f and for all Ê = 〈E1, . . . ,En〉 and for
all Ê′ = 〈E′1, . . . ,E′n〉

2. [[c ≈ d]]s(I) = false for all different individual constants
c and d

3. [[(f Ê) ≈ c]]s(I) = false for every function symbol f and
every individual constant c

4. [[(f Ê) ≈ (g Ê′)]]s(I) = false for all different function
symbols f and g and all Ê and Ê′

5. [[X ≈ E]]s(I) = false if X ∈ fv(E) and X 6= E

In the rest of this paper we will often talk about “models
of the completion comp(P) of a program P”; in every such
case we will implicitly assume that our models also satisfy
Clark’s Equality Theory.

4 Proof Procedure
In this section we define a proof procedure for Hcn and dis-
cuss its implementation. As in the case of classical logic pro-
gramming, substitutions and unifiers also play an important
role in our setting. However, they need to be significantly
extended, as discussed below.

Substitutions and Unifiers
In classical logic programming, a substitution is a mapping
from variables to terms. Since in our case queries may con-
tain uninstantiated variables of set types, the notion of sub-
stitution must be extended to assign to these variables ex-
pressions that represent sets. In the following we define the
notion of basic expression which generalizes the notion of
term from classical logic programming. Intuitively, a basic
element is either a term or a set of terms.

Definition 14. The set of basic expressions of Hcn of type
µ is defined recursively as follows:

1. Every expression ofHcn of type ι is a basic expression of
type ι.

16

2. Every predicate variable of type κ is a basic expression of
type κ.

3. If E1,E2 are basic expressions of type κ then E1

∨
κ E2

and E1

∧
κ E2 are basic expressions of type κ.

4. The expressions of the following form, are basic expres-
sions of type ιn → o:

• λX̂.∃V̂(X̂ ≈ Â)

• λX̂. ∼∃V̂(X̂ ≈ Â)

where X̂ = 〈X1, . . . ,Xn〉, Â = 〈A1, . . . ,An〉, each Xi is a
variable of type ι, each Âi is a basic expressions of type ι
and V̂ is a possibly empty subset of fv(Â).

Example 8. The basic element λX. ∼∃Y(X ≈ Y) repre-
sents the empty set while λX.(X ≈ a)

∨
λX.(X ≈ (f b))

represents the set {a, (f b)}. The basic element
λX.∃Y(X ≈ (f Y)) is the set that contains all the
terms of the form (f · · ·). The basic element
λX. ∼∃Y(X ≈ (f Y)) is the set that contains all the terms
that are not of the form (f · · ·). The basic element
λX.∃Y(X ≈ (f Y))

∧
λX. ∼(X ≈ (f b)) is the set that

contains all the terms of the form (f · · ·) with the excep-
tion of (f b).

The definition of a substitution can be extended:

Definition 15. A substitution θ is a finite set of the form
{V1/E1, . . . ,Vn/En} where Vi are different argument vari-
ables ofHcn and each Ei is a body expression ofHcn having
the same type as Vi. We write dom(θ) = {V1, . . . ,Vn}
and range(θ) = {E1, . . . ,En}. A substitution is called ba-
sic if all Ei are basic expressions. A substitution is called
zero-order if the type of Vi is ι for all i ∈ {1, . . . , n}. The
substitution corresponding to the empty set will be called the
identity substitution and will be denoted by ε.

In the following definition (and also in the rest of the
paper) we assume that if expressions E1, . . . ,En occur in
a certain mathematical context, then in these expressions
all bound variables are chosen to be different from the free
variables. This is called the the bound variable convention
in (Barendregt 1984, pages 26–27) (and is actually equiva-
lent to the α-renaming operation of λ-calculus).

Definition 16. Let θ be a substitution and let E be a body
expression. Then, Eθ is an expression obtained as follows:

• Eθ = E, if E is false, true, c, or p
• Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V

• (f E1 · · ·En)θ = (f E1θ · · ·Enθ)
• (E1 E2)θ = (E1θ E2θ)

• (λV.E)θ = (λV.Eθ)

• (E1

∨
π E2)θ = (E1θ

∨
π E2θ)

• (E1

∧
π E2)θ = (E1θ

∧
π E2θ)

• (E1 ≈ E2)θ = (E1θ ≈ E2θ)

• (∃VE)θ = (∃VEθ)

• (∼E)θ =∼Eθ

In the following, if Ê = 〈E1, . . . ,En〉, we will write Êθ to
denote the sequence 〈E1θ, . . . ,Enθ〉.

Definition 17. Let θ = {V1/E1, . . . ,Vm/Em} and σ =
{V′1/E′1, . . . ,V′m/E′m} be substitutions. Then the compo-
sition θσ of θ and σ is the substitution obtained from the
set {V1/E1σ, . . . ,Vm/Emσ,V

′
1/E
′
1, . . . ,Vn/E

′
n} by delet-

ing any Vi/Eiσ for which Vi = Eiσ and deleting any V′j/E
′
j

for which V′j ∈ dom(θ).
The notions of “unifier” and “most general unifier” are the

same as in classical first-order logic programming.
Definition 18. Let S be a set of terms of Hcn (ie., expres-
sions of type ι). A zero-order substitution θ will be called a
unifier of the expressions in S if the set Sθ = {Eθ | E ∈ S}
is a singleton. The zero-order substitution θ will be called a
most general unifier of S (denoted by mgu(S)), if for every
unifier σ of the expressions in S, there exists a zero-order
substitution γ such that σ = θγ.

The most general unifier of a set of terms S can be com-
puted using the unification algorithm described in (Lloyd
1987). The output of the unification algorithm is denoted
by unify(S).

The following substitution lemma can easily be estab-
lished by structural induction on E:
Lemma 1 (Substitution Lemma). Let I be an interpre-
tation of Hcn and let s be a state over the domain of I .
Let θ be a basic substitution and E be a body expression.
Then, [[Eθ]]s(I) = [[E]]s′(I), where s′(V) = [[θ(V)]]s(I) if
V ∈ dom(θ) and s′(V) = s(V), otherwise.

The above lemma will be used in the proof of the sound-
ness of the resolution proof procedure that follows.

The Procedure
In this subsection we describe the actual proof procedure for
Hcn. Intuitively, we could say that our approach generalizes
to the higher-order case the constructive negation procedure
proposed by D. Chan in (Chan 1989). In order to define
the overall proof procedure we utilize three definitions, de-
scribed as follows:
• The central definition of our procedure is Definition 20

which defines the single-step derivation of goals. Intu-
itively, the single-step derivation is an extension of the
single-step derivation of classical logic programming (see
for example (Lloyd 1987, pages 50–41)) in order to ap-
ply to higher-order logic programming and to construc-
tive negation. Notice that the single-step derivation is the
only one among the three that may produce substitutions
(whose final composition will lead to the computed an-
swer for the initial goal).

• The reduction (Definition 21) is the simplest among the
three definitions. Roughly speaking it corresponds to cer-
tain simple computational steps that advance the evalua-
tion of the goal. For example, the β-reduction step for a
λ-expression belongs to this reduction relation. Another
simple reduction step is the replacement of a predicate
constant with its defining expression in the program.

• The negative reduction (Definition 22) is the most com-
plicated among the three. Intuitively, it corresponds to
what D. Chan in (Chan 1989) refers to as “the negation of

17

answers” and the “normalization of answers”. The defini-
tion is more complicated in our case since it applies to the
more demanding setting of higher-order logic program-
ming.

One difference between the proof procedures for construc-
tive negation (such as for example the one given in (Chan
1989)) and the traditional SLD-resolution for negationless
logic programming, is the following: in classical SLD-
resolution, a derivation is successful if we reach the empty
goal; however, in constructive negation, a derivation may
be successful if we reach a goal that consists of inequalities
that can not be further simplified. Therefore, the termination
condition for constructive negation is different than that of
SLD-resolution. Moreover, an answer in classical resolution
is simply a substitution for some of the variables of the goal.
In constructive negation, an answer is a pair consisting of a
substitution and of a conjunction of inequalities (intuitively,
the inequalities that remain at the end of the derivation)1. In
the higher-order case that we are examining, an answer is
also a pair, the only difference being that the domain of the
substitution may contain higher-order variables.

Before we present the actual definitions, we need the fol-
lowing categorization of inequalities, which is pretty stan-
dard in the area of constructive negation (see for exam-
ple (Chan 1989)):

Definition 19. An inequality ∼∃V̂(E1 ≈ E2) is considered
• valid if E1 and E2 cannot be unified;
• unsatisfiable if there is a substitution θ that unifies E1 and

E2 and contains only bindings of variables in V̂;
• satisfiable if it is not unsatisfiable.
An inequality will be called primitive if it is satisfiable, non
valid and either E1 or E2 is a variable.

In the following definition we will refer to a conjunction
A1 ∧ · · · ∧ An of expressions. We will assume that each Ai
is not a conjunction itself. The conjunction of a single ex-
pression is the expression itself and the conjunction of zero
expressions is the expression true.
Definition 20. Let P a program and let Gk and Gk+1 be goal
clauses. Moreover, let Gk be a conjunction← A1∧· · ·∧An,
where each Ai is a body expression of type o. Let Ai be one
of the A1, . . . ,An and let us call it the selected expression.
Let A′ = A1 ∧ · · · ∧ Ai−1 ∧ Ai+1 ∧ · · · ∧ An. We say that
Gk+1 is derived in one step from Gk using θ (denoted as
Gk

θ→ Gk+1) if one of the following conditions applies:
1. if Ai is true and n > 1 then Gk+1 =← A′ is derived from

Gk using θ = ε;
2. if Ai is (E1∨E2) then Gk+1 =← A1∧· · ·∧Ej ∧· · ·∧An

is derived from Gk using θ = ε where j ∈ {1, 2};
3. if Ai is (∃V E) then Gk+1 =← A1 ∧ · · · ∧ E∧ · · · ∧An is

derived2 from Gk using θ = ε;

1Actually, in (Chan 1989) the substitution is combined with the
inequalities so as to obtain a sequence consisting of equalities and
inequalities.

2Recall that by the Bound Variable Convention, V does not ap-
pear free in A′.

4. if Ai A′i then Gk+1 =← A1 ∧ · · · ∧ A′i ∧· · ·∧An is
derived from Gk using θ = ε;

5. if Ai is (E1 ≈ E2) then Gk+1 =← A′θ is derived from Gk
using θ = mgu(E1,E2);

6. if Ai is (R Ê) and R is a predicate variable of type κ
then Gk+1 =← A′θ is derived from Gk using θ =

{R/(λX̂.(X̂ ≈ Ê)
∨
κ R
′)} where R′ is a fresh3 predicate

variable of type κ;
7. if Ai is ∼∃V̂ E and Ai is negatively-reduced to A′i then

Gk+1 =← A1 ∧ · · · ∧ A′i ∧ · · · ∧ An is derived from Gk
using θ = ε;

8. if Ai is ∼∃V̂(R Ê) and R is a predicate variable of type κ
and R 6∈ V̂ then Gk+1 =← A′θ is derived from Gk using
θ = {R/(λX̂. ∼∃V̂(X̂ ≈ Ê)

∧
κ R
′)} where R′ is a fresh

predicate variable of type κ;
9. if Ai is ∼∃V̂ ∼ (R Ê) and R is a predicate variable of

type κ and R 6∈ V̂ then Gk+1 =← A′θ is derived from
Gk using θ = {R/(λX̂.∃V̂(X̂ ≈ Ê)

∨
κ R
′)} where R′ is a

fresh predicate variable of type κ.

Definition 21. Let P be a program and E,E′ be body ex-
pressions of type o. We say that E is reduced (wrt. to P) to
E′ (denoted as E E′) if one of the following conditions
applies:

1. p Â E Â, where E is the completed expression for p
with respect to P;

2. (λX.E) B Â E{X/B} Â;

3. (E1

∨
π E2) Â (E1 Â) ∨o (E2 Â);

4. (E1

∧
π E2) Â (E1 Â) ∧o (E2 Â).

Definition 22. Let P be a program and B,B′ be body ex-
pressions where B =∼∃Û(A1 ∧ · · · ∧ An) and each Ai is a
body expression except from conjunction. Let Ai be the se-
lected expression and A′ = A1∧· · ·∧Ai−1∧Ai+1∧· · ·∧An.
Then, we say that B is negatively-reduced to B′ if one of the
following conditions applies:

1. if Ai is false then B′ = true;
2. if Ai is true and n = 1 then B′ = false else B′ =∼∃Û A′;
3. if Ai is (E1 ∨ E2) then B′ = B′1 ∧ B′2 where B′j =

∼∃Û(A1 ∧ · · · ∧ Ej ∧ · · · ∧ An), j ∈ {1, 2};
4. if Ai is (∃V E) then B′ =∼∃ÛV(A1∧· · ·∧E∧· · ·∧An);4

5. if Ai A′i then B′ =∼∃Û(A1 ∧ · · · ∧ A′i ∧ · · · ∧ An);
6. if Ai is (E1 ≈ E2), then

(a) if ∼∃Û(E1 ≈ E2) is valid then B′ = true;

(b) if ∼∃Û(E1 ≈ E2) is non-valid and neither E1 nor E2 is
a variable then B′ =∼∃Û(A1∧· · ·∧Ai−1∧ (X̂≈ X̂θ)∧
Ai+1 ∧ · · · ∧ An) where θ = unify(E1,E2) and X̂ =
dom(θ);

3This means a variable that has not appeared in goals and sub-
stitutions until this point of the derivation.

4Recall that by the Bound Variable Convention, V does not ap-
pear free in A′.

18

(c) if ∼∃Û(E1 ≈ E2) is unsatisfiable and either E1 or E2 is
a variable in Û, then B′ =∼∃Û(A′θ) where θ = {X/E}
and X is the one expression that is a variable in Û and
E is the other;

(d) if ∼ ∃Û(E1 ≈ E2) is primitive and n > 1 then
B′ =∼∃Û1 Ai ∨ ∃Û1(Ai∧ ∼∃Û2 A

′) where Û1 are the
variables in Û that are free in Ai and Û2 the variables
in Û not in Û1;

7. if Ai is (R Ê) and R is a predicate variable, then

(a) if R ∈ Û then B′ =∼∃Û′(A′θ) where substitution θ =
{R/(λX.(X ≈ E)

∨
κ R
′)}, R′ is a predicate variable of

the same type with R and Û′ is the same with Û but the
variable R has been replaced with R′;

(b) if R 6∈ Û and n > 1 then B′ =∼∃Û1 Ai ∨ ∃Û1(Ai ∧
∼∃Û2 A

′) ∧ B where Û1 are the variables in Û that are
free in Ai and Û2 the variables in Û not in Û1;

8. if Ai is ∼∃V̂ E and Ai is negatively-reduced to A′i then
B′ =∼∃Û(A1 ∧ · · · ∧ A′i ∧ · · · ∧ An);

9. if Ai is a primitive inequality ∼∃V̂(E1 ≈ E2) then

(a) if Ai contains free variables in Û and A′ is a conjunction
of primitive inequalities then B′ =∼∃Û A′;

(b) if Ai does not contain any free variables in Û then B′ =
∃V̂(E1 ≈ E2)∨ ∼∃Û A′;

10. if Ai is ∼∃V̂(R Ê) and R 6∈ V̂ is a predicate variable, then

(a) if R ∈ Û then B′ =∼ ∃Û′(A′θ) where substitution
θ = {R/(λX. ∼∃V̂(X ≈ E)

∧
κ R
′)}, R′ is a predicate

variable of the same type κ with R and Û′ is the same
with Û but the variable R has been replaced with R′;

(b) if R 6∈ Û and n > 1 then B′ =∼∃Û1 Ai ∨ ∃Û1(Ai ∧
∼∃Û2 A

′) ∧ B where Û1 are the variables in Û that are
free in Ai and Û2 the variables in Û not in Û1;

(c) if R 6∈ Û, n = 1 and V̂ is nonempty then B′ =

∃V̂ ∼∃Û(∼(R Ê)∧ ∼∃V̂′(R E′));

11. if Ai is ∼∃V̂ ∼(R Ê) and R is a predicate variable and
R 6∈ V̂, then

(a) if R ∈ Û then B′ =∼∃Û′(A′θ) where substitution θ =

{R/(λX.∃V̂(X ≈ E)
∨
κ R
′)}, R′ is a predicate variable

of the same type κ with R and Û′ is the same with Û
but the variable R has been replaced with R′;

(b) if R 6∈ Û and n > 1 then B′ =∼∃Û1 Ai ∨ ∃Û1(Ai ∧
∼∃Û2 A

′) ∧ B;
(c) if R 6∈ Û, n = 1 and V̂ is nonempty then B′ =

∃V̂ ∼∃Û((R Ê)∧ ∼∃V̂′ ∼(R E′)).

One can easily check that all the three above definitions
preserve the main property of Hcn goals, namely that all the
free variables in them have existential types.

We proceed by defining the notion of a multi-step deriva-
tion and by characterizing when a multi-step derivation is
successful and the form of the computed answer. We first
define the notions of terminal and primitive goals:

Definition 23. Let P be a program and G =← A be a goal
clause. Then, G will be called terminal if no goals can be
derived in one step from G. The goal G is called primitive if
A is a (possibly empty) conjunction of primitive inequalities.

Notice that every primitive goal is also terminal. Notice
also that the empty goal � is primitive.

Definition 24. Let G =← A1 ∧ · · · ∧An be a primitive goal
and S be a set of variables. We say that GS is a primitive
goal obtained by restricting G to S when for each inequality
Ai in GS every free variable of Ai is in S.

Definition 25. Let P be a program and G be a goal. Assume
that P ∪ {G} has a finite derivation G0 = G,G1, . . . ,Gn
with basic substitutions θ1, . . . , θn, such that the goal Gn is
primitive. Then we will say that P ∪ {G} has a successful
derivation of length nwith primitive goal Gn and using basic
substitution θ = θ1 · · · θn.

Notice that it can easily be verified that the composition of
basic substitutions is indeed a basic substitution as implied
by the above definition.

We can now define the important notion of computed an-
swer:

Definition 26. Let P be a program, G be a goal and assume
that P ∪ {G} has a successful derivation with primitive goal
G′ and basic substitution θ. Then (σ,G′′) is a computed an-
swer for P ∪ {G} where σ is the basic substitution obtained
by restricting θ to the free variables of G and G′′ is the prim-
itive goal G′ restricted to the free variables of G and the vari-
ables in fv(range(σ)).

Example 9. Consider the following simple definition for the
predicate q

q← λZ1.λZ2.(Z1 ≈ a) ∧ (Z2 ≈ b)

that holds only for the tuple (a, b). Then, consider the goal

← (R X)∧ ∼(q X Y)

that requests bindings for the variables R, X and Y.
We will underline the selected expression in each step

when it is not obvious. We will also omit the substitution
in a step if the rule used produces an identity substitution.

0. ← (R X)∧ ∼(q X Y)
1. ←∼(q X Y)

using rule 20.6 and θ1 = {R/λZ.(Z ≈ X)
∨
R′}

2. ←∼((λZ1.λZ2.(Z1 ≈ a) ∧ (Z2 ≈ b)) X Y)
using rules 20.7, 22.5 and then 21.1

3. ← ∼((X ≈ a) ∧ (Y ≈ b))
using rules 20.7, 22.5 and then 21.2

4. ←∼(X ≈ a) ∨ (X ≈ a)∧ ∼(Y ≈ a)
using rules 20.7 and then 22.6(d)

5. ←∼(X ≈ a)
using rule 20.2

In step 4 the procedure generates two branches. The first
one terminates immediately with a primitive inequality. The
computed answer is ∼(X ≈ a) and {R/λZ.(Z ≈ X)

∨
R′}.

The second branch will continue as follows:

19

5. ← (X ≈ a)∧ ∼(Y ≈ a)
using rule 20.2

6. ←∼(Y ≈ a)
using rule 20.5 and θ6 = {X/a}

The procedure will now terminate successfully yielding the
substitution {R/λZ.(Z ≈ a)

∨
R′, X/a} and the primitive

goal ∼(Y ≈ a).

Implementation
In order to verify and experiment with the ideas presented
in this paper, an implementation of the proposed proof pro-
cedure has been undertaken. For our implementation we
extended an existing interpreter for the language H intro-
duced in (Charalambidis et al. 2010; 2013). The modified
interpreter supports the language Hcn and implements ex-
actly the proof procedure presented in this section. The
current version of the interpreter can be retrieved from
https://www.github.com/acharal/hopes.

The source language5 of the interpreter uses an extended
Prolog-like syntax, similar to the one we used for motivation
purposes in Section 2. Given a source program, the inter-
preter first derives the types of the predicates using a special-
ized but relatively straightforward type-inference algorithm.
The well-typed program is then transformed toHcn-like syn-
tax. The interpreter works interactively, ie., in the same way
as ordinary Prolog interpreters. Every time the user speci-
fies a goal, the type information that has been derived from
the program is used to typecheck the goal. Subsequently,
the goal together with the program is passed to a prover that
implements the rules of the proposed proof procedure. The
interpreter has been coded in Haskell and it implements the
proof procedure as-is, namely it does not apply any low level
compilation or any specialized optimizations.

5 The Soundness Theorem
In this section we state the soundness theorem for the pro-
posed proof procedure.

To specify the soundness theorem for the proof procedure,
one has to first define the notion of correct answer:

Definition 27. Let P be a program and G be a goal. An
answer (θ,Q) for P ∪ {G} is a basic substitution θ and a
primitive goal Q.

Definition 28. Let P be a program and let G =← A be
a goal. An answer (θ,← A′) is a correct answer for
comp(P)∪{G} if for every modelM of comp(P) and for ev-
ery state s over the domain of M , [[Aθ]]s(M) wo [[A′]]s(M).

The soundness theorem (Theorem 1 below) essentially
amounts to demonstrating that every computed answer is
a correct answer. To establish this fact, we need a lemma
for each one of Definitions 21, 20 and 22. In particular,
Lemma 2 demonstrates the correctness of Definition 21,
Lemma 3 shows the correctness of Definition 22, and
Lemma 4 the correctness of Definition 20 regarding single-
step derivations. Lemma 5 actually shows the correctness of

5The language is called HOPES standing for Higher-Order Pro-
log with Extensional Semantics.

many-step derivations. The most demanding proof is that of
Lemma 3. The proof of Lemma 3 (as-well-as the proof of
the auxiliary Lemma 6 that will be given below) utilize one
important and common assumption that exists in all previ-
ous works on constructive negation: we assume that “the
language contains an infinite number of constants and func-
tions” (see (Chan 1989, page 478)).

Lemma 2. Let P be a program, let E,E′ be body expressions
of type o and assume that E is reduced to E′. Then, for every
model M of comp(P) and for every state s over the domain
of M , it holds [[E]]s(M) = [[E′]]s(M).

Proof. Straightforward using the semantics ofHcn.

Lemma 3. Let P be a program, let E,E′ be body expres-
sions of type o and assume that E is negatively-reduced to
E′. Then, for every modelM of comp(P) and for every state
s over the domain of M , it holds [[E]]s(M) = [[E′]]s(M).

Lemma 4. Let P be a program, let G =← A and G′ =← A′

be goals and let θ be a basic substitution such that G θ→ G′.
Then, for every model M of comp(P) and for every state s
over the domain of M , it holds [[Aθ]]s(M) wo [[A′]]s(M).

Proof. By case analysis and standard logical argu-
ments.

Lemma 5. Let P be a program and G =← A be a goal.
Let G0 = G,G1 =← A1, . . . ,Gn =← An be a derivation
of length n using basic substitutions θ1, . . . , θn. Then, for
every model M of comp(P) and for every state s over the
domain of M , [[Aθ1 · · · θn]]s(M) w [[An]]s(M).

Proof. Using Lemma 4, Lemma 1 and induction on n.

Finally, we will need another auxiliary lemma, which will
be used to obtain the Soundness theorem:

Lemma 6. Let E be a body expression of type o and G a con-
junction of primitive inequalities. Then, for all states s and
interpretations I if [[E]]s(I) wo [[G]]s(I) then [[E]]s(I) wo
[[G′]]s(I) where G′ is a conjunction of primitive inequalities
that is obtained from G by restricting it to the free variables
of E.

Using the above, we obtain the soundness theorem:

Theorem 1 (Soundness Theorem). Let P be a program and
G be a goal. Then, every computed answer for P ∪ {G} is a
correct answer for comp(P) ∪ {G}.

Proof. A direct consequence of Lemma 5 using the auxiliary
Lemma 6.

6 Future Work
We have introduced the higher-order language Hcn which
supports constructive negation. There have been various
proposals for higher-order logic programming languages,
the most notable among them being Hilog (Chen, Kifer,
and Warren 1989; 1993) and λ-Prolog (Miller and Nadathur
1986; Nadathur and Miller 1990); to our knowledge how-
ever, none of these languages has ever before been extended
to support constructive negation.

20

One possible direction for future work is the investigation
of completeness results for the proposed proof-procedure.
This is an interesting venue for research but appears to be
quite demanding due to the non-trivial nature of the proof
procedure (note that, to our knowledge, no completeness re-
sults have been reported for the work of (Chan 1989)). Pos-
sibly a completeness result could be obtained for the case of
finite-tree queries. An easier goal for future research would
be to extend the language with other useful programming
features that would enhance its higher-order style of pro-
gramming (such as for example, type polymorphism).

References
Barendregt, H. P. 1984. The Lambda Calculus – Its Syn-
tax and Semantics, volume 103 of Studies in Logic and the
Foundations of Mathematics. North-Holland.
Chan, D. 1988. Constructive negation based on the com-
pleted database. In ICLP/SLP, 111–125.
Chan, D. 1989. An extension of constructive negation and
its application in coroutining. In NACLP, 477–493.
Charalambidis, A.; Handjopoulos, K.; Rondogiannis, P.; and
Wadge, W. W. 2010. Extensional higher-order logic pro-
gramming. In Janhunen, T., and Niemelä, I., eds., JELIA,
volume 6341 of Lecture Notes in Computer Science, 91–
103. Springer.
Charalambidis, A.; Handjopoulos, K.; Rondogiannis, P.;
and Wadge, W. W. 2013. Extensional higher-order logic
programming. ACM Transactions on Computational Logic
14(3).
Chen, W.; Kifer, M.; and Warren, D. S. 1989. Hilog as
a platform for database languages. IEEE Data Eng. Bull.
12(3):37–44.
Chen, W.; Kifer, M.; and Warren, D. S. 1993. Hilog: A
foundation for higher-order logic programming. J. Log. Pro-
gram. 15(3):187–230.
Clark, K. L. 1977. Negation as failure. In Logic and Data
Bases, 293–322.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R. A., and
Bowen, K. A., eds., ICLP/SLP, 1070–1080. MIT Press.
Lifschitz, V. 2008. What is answer set programming? In
Fox, D., and Gomes, C. P., eds., AAAI, 1594–1597. AAAI
Press.
Lloyd, J. W. 1987. Foundations of Logic Programming, 2nd
Edition. Springer.
Miller, D., and Nadathur, G. 1986. Higher-order logic pro-
gramming. In Shapiro, E. Y., ed., ICLP, volume 225 of Lec-
ture Notes in Computer Science, 448–462. Springer.
Nadathur, G., and Miller, D. 1990. Higher-order horn
clauses. J. ACM 37(4):777–814.

21

