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Abstract

The paper addresses how the information state of an
agent relates to the arguments that the agent endorses.
Information states are modeled in doxastic logic and ar-
guments by recasting abstract argumentation theory in
a modal logic format. The two perspectives are com-
bined by an application of the theory of product logics,
delivering sound and complete systems in which the in-
teraction of arguments and beliefs is investigated.

1 Introduction
Leaving probabilistic approaches aside, one can recognize
in the KR tradition two main paradigms in the formal repre-
sentation of the knowledge or, more generally, of the infor-
mation state of an agent. One describes knowledge as what
holds in all the situations the agent considers possible—the
epistemic alternatives. That is the perspective of epistemic
logic (Meyer and van der Hoek 1995; Fagin et al. 1995). The
other describes knowledge as some form of ‘stable’ theory
about the world the agent endorses in the face of conflicting
information. This is the tradition of non-monotonic reason-
ing and of its most successful recent development, abstract
argumentation theory (Dung 1995).

The paper combines these two dimensions in a unified
framework where questions concerning the interaction of ar-
guments and beliefs can be systematically addressed, such
as: Is the set of arguments supporting an agent’s doxastic
state ‘justifiable’ from the point of view of abstract argu-
mentation (e.g., conflict-free, admissible, stable, etc.)?

Technically, the combination of the two perspectives—
epistemic and argumentation-theoretic—is achieved by de-
ploying techniques and results from the theory of product
modal logics (Gabbay et al. 2003). The key idea consists
in taking states in a doxastic (Kripke) model and arguments
in a (Dung) attack graph as two orthogonal dimensions for
the description of the information state of an agent. This
intuition suggests the use of bi-dimensional structures for
the study of argument-based beliefs. The logics obtained are
studied in their completeness and finite model properties.

More generally, the paper lays a bridge between epistemic
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logic and argumentation theory. We hope that the results pre-
sented can foster further interaction between the two fields.

Related work To the best of our knowledge, the only
works to date attempting to interface argumentation with
epistemic logic are (Grossi 2012) and (Schwarzentruber et
al. 2012). The first is concerned with the analysis, in dy-
namic epistemic logic (van Ditmarsch et al. 2007), of the
fixpoint behavior of some argumentation theoretic notions,
and the second enriches the standard framework of abstract
argumentation by enabling arguers to hold beliefs about
other arguers’ available arguments. In its broad purposes,
the present paper can be related to recent work (in particu-
lar, (Artemov 2008; van Benthem and Pacuit 2011)) aiming
at explicitly modeling the ‘justifications’ or ‘reasons’ upon
which agents base their information state. Our paper shows
the viability of using product logics for this type of analysis.

Outline of the paper The following section prepares the
ground recapitulating some basic notions from both epis-
temic logic and abstract argumentation. We then proceed
in a modular fashion. First (in Section 3) we introduce a
logic that combines the simplest modal logic of argumen-
tation (logic K, cf. (Grossi 2010)) and the simplest modal
doxastic logic (KD45). Argument-belief interaction proper-
ties are then formalized and discussed in Section 4. Then, we
allow the agent to have preferences among the arguments.
Finally, Section 6 then introduces and studies a more ex-
pressive logic, able to formalize ample fragments of Dung’s
argumentation theory as well as a rich set of doxastic atti-
tudes based on the set of arguments that an agent endorses.
We conclude by pointing at future research directions at the
interface of abstract argumentation and epistemic logic. All
proofs (or proof sketches) are provided in the appendix.

2 Preliminaries
We start by introducing the basic building blocks of our
analysis: simple structures for representing beliefs and for
representing arguments and their attacks. We then move to
motivate a specific way of combining the two: products.
Although we give all necessary definitions, space limita-
tions demand we do this succinctly: the reader may wish
to consult (Meyer and van der Hoek 1995) for more back-
ground on doxastic logic, (Baroni and Giacomin 2009;

131

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



Baroni et al. 2011) for abstract argumentation, and (Gab-
bay and Shehtman 1998; Gabbay et al. 2003) for products
in modal logic.

Doxastic structures
Definition 1 (Doxastic frame). A doxastic frame is a tuple
D = ⟨S,B⟩ where: i) S is a non-empty set of states; ii) B ⊆

S, s.t., B ≠ ∅. The class of all doxastic frames is denoted D.

A doxastic frame represents the non-empty setB of states
that an agent holds as most plausible among the set of all
states S. We will refer to elements of B as doxastic alterna-
tives or doxastically accessible states.

Given a doxastic frame, a Kripke model is obtained by
adding a valuation function V ∶ P Ð→ ℘(S) interpreting a
set of atoms P. A doxastic modality xB can then be inter-
preted as follows:

⟨D,V⟩, s ⊧xBϕ iff ∃s′ ∈ B ∶ ⟨D,V⟩, s′ ⊧ ϕ (1)

For any diamond ◇ in this paper, we define an associated ◻
as ◻ϕ = ¬◇ ¬ϕ. So ⊟Bϕ means that the agent believes ϕ.

Doxastic frames are somewhat simpler than the structures
typically used to study beliefs, namely relational frames
where the accessibility relation is transitive and euclidean
(cf. (Meyer and van der Hoek 1995)). The two, however,
can be proven equivalent for the purpose of this paper, using
some standard modal logic arguments:

Theorem 1. On the basic modal language, the class of dox-
astic frames is modally equivalent to the class of serial, tran-
sitive and euclidean relational frames.

So the logic of the class of doxastic frames is completely
axiomatized by the standard axiom system for logic KD45
containing: the rules Modus Ponens (MP: form ϕ and ϕ →
ψ, infer ψ) and Necessitation (Nec: from ϕ, infer ⊟Bϕ); the
axioms K ∶ ⊟B(ϕ → ψ) → (⊟Bϕ → ⊟Bψ) representing the
agent’s ability to reason propositionally, D ∶ ¬ ⊟B � (beliefs
are consistent) and the axioms 4 ∶ ⊟Bϕ → ⊟B ⊟B ϕ and
5 ∶ ¬⊟B¬ϕ→ ⊟B¬⊟B¬ϕ representing positive and negative
introspection, respectively. For later reference, recall that S5
is the logic KD45 +T ∶ ⊟Bϕ→ ϕ.

Argumentative structures
We start by the key structure of abstract argumentation:

Definition 2 (Attack graphs (Dung 1995)). An attack
graph is a tuple A = ⟨A,�⟩ where: i ) A is a non-empty set
of arguments; ii) �⊆ A2 is a binary relation (a � b stands
for a attacks b). The class of all attack graphs is denoted A.

These relational structures are the building blocks of ab-
stract argumentation theory. Once A is taken to represent
a set of arguments, and � an ‘attack’ relation between
arguments, the study of these structures provides general
insights on how competing arguments interact, and struc-
tural properties of subsets of A can be taken to formal-
ize how collections of arguments form ‘justifiable’ posi-
tions in an argumentation ((Baroni and Giacomin 2009;
Baroni et al. 2011)).

Conflict-free X ⊆ {x ∣ ∄y ∈X ∶ x � y}
Self-defended X ⊆ {x ∣ ∀y ∶ x � y⇒ ∃z ∈X,y � z}
Admissible X is conflict-free and self-defended
Complete extension X is conflict-free &

X = {x ∣ ∀y ∶ x � y⇒ ∃z ∈X,y � z}
Stable extension X = {x ∣ ∄y ∈X ∶ x � y}

Table 1: Properties of a set of arguments X in a given attack
graph A.

In this paper we will touch upon the argumentation-
theoretic notions of conflict-freeness, self-defense, admissi-
bility, complete and stable extensions. Table 1 recapitulates
these notions for the ease of the reader.

A Kripke modelM = ⟨A,←,V⟩ can be obtained from an
attack graph by inverting the attack relation (a ← b denotes
that a is attacked by b) and by adding a valuation function
V ∶ PÐ→ ℘(A) interpreting a set of propositional atoms P.
Consider now a modality yA with the following semantics:

⟨A,V⟩, a ⊧yAϕ iff ∃b ∈ A ∶ a � b & ⟨A,V⟩, b ⊧ ϕ (2)

An argument a satisfies yAϕ iff some attacker b of a satis-
fies ϕ. The logic of yA defined by the class of attack graphs
is, obviously, K. (Grossi 2010) shows that modal logic K can
express a number of argumentation theoretic notions from
(Dung 1995), such as: ¬yA p, expressing that the current
argument is not attacked by p; or qAyA p expressing that
the current argument is ‘defended’ by p-arguments (i.e., its
attackers are attacked by p-arguments). The logic K is ax-
iomatized by rules MP and Nec, and axiom K.

Doxo-argumentative structures
Let us start with a simple motivating example:

Example 1 (After (Modgil 2009)). Consider two individu-
als exchanging arguments about the weather forecast. Argu-
ment a: “Today will be dry in London since the BBC fore-
casts sunshine”. And argument a′: “Today will be wet in
London since CNN forecasts rain”. We have two arguments
(a and a′) concerned with whether the ‘real’ situation is a
state s where the sun shines in London or in a state s′ where
it rains in London.

In general, starting from a set of doxastic alternatives S
and a set of ‘arguments’ A, we are after structures that can
support the analysis of how elements of S interact with el-
ements of A. We want to be able to express properties of
state-argument pairs (s, a) such as, in particular, that “argu-
ment a supports state s” in the sense that a is ground for s
or increases its likeliness.

Example 2 (After (Modgil 2009), continued). Let then
S = {s, s′} and A = {a, a′}. We can represent the simple
scenario of Example 1 by the model on the left of Figure 1,
where the dark circles indicate that the pairs at issue have
a property of interest (in this case the property of ‘support-
ing’): a supports s and does not support s′; vice versa a′
supports s′ and does not support s.

So our domain becomes the Cartesian product S ×A. Now,
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Figure 1: Two doxo-argumentative structures.

if S andA also come equipped with accessibility relations—
the doxastic one in case of S and the attack one in case of
A—then studying how the logics of these relations interact
in S × A would allow one to talk about properties of state-
argument pairs that are of a doxastic and argumentation-
theoretic type in the same language. The paper takes this
perspective and sets out to develop a formal theory of how
arguments and their attacks relate to the doxastic state of an
agent. The key tool in accomplishing this, is that of product
logics.

Properties of states, arguments and their pairs

The above set up allows one to represent any property of
state-argument pairs. In this paper, we will focus on one in
particular, namely the property of support of an argument for
a doxastic state. This will be denoted by symbol σ. Notice
that the same argument can support several states and the
same state can be supported by several arguments. If a set of
states B is supported by a same argument a we say that a
supports B.

Critically, the set up allows one to represent properties of
states, or arguments alone. For instance, to express that a
state s has a property X (e.g., ‘the sun shines in London’)
it suffices for X to be true of all the state-argument pairs
whose state is s, i.e., to be a set of columns in the Cartesian
plane. Similarly, properties Y of arguments alone (e.g., ‘be-
ing upheld by BBC’) can be represented in the same fashion,
i.e., by sets of rows of the Cartesian plane.1

Figure 1 (right) illustrates all these different properties.
Dark circles indicate a relation (e.g., support) between argu-
ments and states: a2 supports both s1 and s3; s1 is supported
by both a1 and a2. RectangleX represents a state-only prop-
erty, of states s1 and s2, and rectangle Y (dashed line) rep-
resents an argument-only property, of argument a1.

Product logics

The product of two (uni-)modal logics2 is defined as follows
(Gabbay and Shehtman 1998). The product F ×F ′ between
two frames F = ⟨S,R⟩ and F ′ = ⟨S′,R′⟩ is the frame ⟨S ×

1Cf. (Sano 2011).
2The multi-modal case is a straightforward generalization. Cf.

(Gabbay and Shehtman 1998).

S′,H,V ⟩ where:

(s, s′)H(t, t′) iff sRt AND s′ = t′

(s, s′)V (t, t′) iff s′R′t′ AND s = t

Intuitively, the product of two frames can be depicted as a
Cartesian plane where H is the relation on the ’horizontal’
dimension consisting of the set S and V is the relation on
the the ’vertical’ one consisting of set S′. Following (Marx
1999), we will use x to denote the modality interpreted over
H—’horizontal’ modality—and y the modality interpreted
over V—’vertical’ modality.

The product of two classes of frames F and F′ is
{F ×F ′ ∣ F ∈ F AND F ′ ∈ F′}. Now, given two logics L and
L′ the product L × L′ is the logic of the class of frames de-
fined by the product of the two largest classes F and F′ for
which the two logics are complete. For instance, K×K is the
logic of the class of all frames consisting of the product of
two frames. Here we study products between logics L and
L′ where L—the ‘horizontal’ logic—is a doxastic logic and
L′—the ‘vertical’ logic—is a modal logic for argumentation.

3 A simple product logic: KD45 ×K
As a first framework in which to investigate interaction prin-
ciples between arguments and doxastic states we consider
the product of the simplest doxastic logic, namely KD45,
with the simplest modal logic of attack graphs, i.e., K.

Syntax and semantics
The language L(xB,yA), has the following BNF:

p ∣ � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣xBϕ ∣yAϕ

where p belongs to the set of atoms P. For any language L
that we consider, the variant Lσ adds an atom σ to it, where
σ intuitively says of (s, a) that s is supported by a. Seman-
tics is given as follows. Let D be a doxastic frame on S and
A an attack graph on A. A KD45 × K model is a structure
M = ⟨D×A,V⟩where V ∶ PÐ→ ℘(S×A). The satisfaction
relation is defined by the standard Boolean clauses plus the
following clauses (cf. the expressions (1) and (2)):

M, (s, a) ⊧yAϕ iff ∃a′ ∈ A ∶ a � a′ &M, (s, a′) ⊧ ϕ

M, (s, a) ⊧xBϕ iff ∃s′ ∈ B ∶M, (s′, a) ⊧ ϕ

As usual, we denote the truth-set of a formula ϕ by JϕK.

The expressionM, (s, a) ⊧ ϕ can be interpreted as: given
the ‘actual’ state is s and the ‘currently entertained’ argu-
ment is a, ϕ holds. So ⊟Bϕ expresses the property that, by
keeping fixed the current argument, all pairs consisting of
the current argument and a doxastically accessible state, sat-
isfy ϕ. Intuitively: it is believed that ϕ holds of the current
argument. Similarly, modalities yA and qA express proper-
ties of the attack relation. So yAϕ expresses the property
that, by keeping the current state fixed, there exists a pair
consisting of the current state and an argument that attacks
the current argument, and this pair satisfies ϕ.

Remark 1 (Satisfaction in products). As customary in
modal logic, formulae are interpreted on pointed models
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Figure 2: Rendering of Example 1 as a KD45×K model (left)
and a DA model (right). Universal relations are not depicted.

“M, (s, a)”. So, when we interpret a formula we fix both
an argument and a state and M, (s, a) ⊧ ϕ can be inter-
preted as: given the ‘actual’ state is s and the ‘currently
entertained’ argument is a, ϕ holds.

Example 3 (After (Modgil 2009), continued). We extend
Example 1 by making explicit that the two arguments a and
a′ attack one another, and that the agent believes the actual
state is s (the only one supported by argument a), so that the
set of doxastic alternatives B is {s} (left of Figure 2, where
the ellipsis encloses the set of doxastic alternatives). Dark
circles denote the truth set of atom σ (representing ‘sup-
port’) and the rectangle denotes the truth set of an atom sun
(for ‘sunshine’). Notice that sun is here a ‘column’ property
(Remark 2). Arrows on the vertical dimension denote attack.

Here are some formulae true at (s, a): (i) ⊟Bσ; (ii)
⊟B(σ ∧ qA¬σ). Intuitively: (i) says that my beliefs are sup-
ported by the current argument, in the sense that all my dox-
astic alternatives are supported by the current argument; (ii)
says that all my doxastic alternatives are supported by the
current argument and all its attackers are not supported by
my doxastic alternatives. Here are some of the formulae true
at (s′, a′): (i) ¬sun ∧ ⊟Bsun; (ii) ⊟B¬σ; (iii) ⊟B yA σ. In-
tuitively: (i) expresses a standard false belief property ‘I be-
lieve sun of the current argument but sun is false’; (ii) ex-
presses that no doxastic alternative is supported by the cur-
rent argument; (iii) states that for all doxastic alternatives,
the current argument is attacked by an argument supporting
that alternative.

Metalogical results
Axiomatization Logic KD45 × K is the logic on L of the
class of frames consisting of the product of one single-agent
doxastic frame and one attack frame. It is axiomatized by
taking KD45 for xB, and K for yA, plus the two following
axioms:

Com yA xB ϕ↔xB yA ϕ
Con xB qA ϕ→ qA xB ϕ

We will come back later to the intuitive meaning of these.
The completeness of this axiom system is established as

a corollary of known general theorems (Gabbay and Sheht-
man 1998, Theorem 7.12) or (Gabbay et al. 2003, Theorem
5.9): we only need to check that the axioms for K and KD45
are either without atoms (i.e., frame formulae), or else have
a specific syntactic form (called pseudo-transitivity), which

is the case.3

Decidability & Complexity A logic has the product finite
model property w.r.t. class F×F′ iff every satisfiable formula
on that class can be satisfied on a model built on the product
of finite frames in F and F′.

Logic KD45 × K has the (strong) product finite model
property as every ϕ can be satisfied on a finite model of size
exponential in the length of ϕ (Gabbay et al. 2003, Theorem
6.56). Logic KD45 × K is therefore decidable and its sat-
isfiability problem is NEXPTIME-complete (Gabbay et al.
2003, Theorem 6.57).

4 Interaction of attacks and beliefs
We now turn to the sort of insights that we gain by modeling
the interaction of doxastic structures (Kripke frames) and
argument structures (attack graphs) as a product, and what
logic KD45 ×K allows us to say about such interaction.

Beliefs
Let us first define formally the classes of state- and
argument-properties we have informally introduced in an
earlier section. A state-property (column property) is ex-
pressed by a formula σ ∈ L(xB,yA) such that the following
equation holds:

JσK = {(s, a) ∈ S ×A ∣ ∃a′ ∈ A ∶ (s, a′) ∈ JσK} .

Similarly, an argument-property (row property) is expressed
by a formula γ ∈ L(xB,yA) such that the following equa-
tion holds:

JαK = {(s, a) ∈ S ×A ∣ ∃s′ ∈ A ∶ (s′, a) ∈ JαK} .4

In the remaining of the paper we will denote state-properties
by a variable σ and argument properties by a variable α.

Logic KD45 ×K supports the representation of two types
of beliefs: the beliefs an agent can entertain about an ‘ex-
ternal’ state-of-affairs, and the beliefs an agent can entertain
about how the states it considers possible interact with avail-
able arguments.

Beliefs of the first type concern state-properties: ⊟Bσ.
Notice that beliefs of state-properties are themselves state-
properties. That is, formulae ⊟Bσ are independent of the
vertical coordinate, so we have M, (s, a) ⊧ ⊟Bσ iff
M, (s, a′) ⊧ ⊟Bσ for any a′ ∈ A. Put differently: the equiv-
alence ⊟Bσ↔ qU ⊟B σ is valid.

Beliefs of the second type concern properties ϕ express-
ing some kind of relation between doxastic states and ar-
guments. Both kinds of beliefs behave according to logic

3More precisely, the theorem states that the product LH × LV

of two logics LH and LV whose axioms are either formulae from
the frame language (i.e., without atoms, like ◊⊺) or have the form
▽◻p→△p where ▽ is a sequence of possibly different diamonds
and △ a sequence of possibly different boxes (so-called pseudo-
transitive formulae), is completely axiomatized by the axioms of
LH , the axioms of LV , plus the Com and Con axioms for each
pairs of modalities in the combined language. Notice that pseudo-
transitive formulae are Sahlqvist formulae.

4Cf. Remark 2 below.
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KD45, therefore validating the standard doxastic principles
(e.g., positive and negative introspection). To this type of be-
liefs we turn in the next section.

Interaction properties
Example 3 has already shown interaction properties express-
ible in KD45 ×K. Here are a few more examples, which we
illustrate using the designated atom σ:

(a) qAyA⊺ (b) σ ∧yA⊺ ∧ qAσ
(c) xBσ (d) σ ∧ qA¬xBσ

To understand these properties, let us see what they express
once evaluated at a pointed model M, (s, a), where s de-
notes the current state and a the argument currently enter-
tained. Formula (a) expresses that all attackers of a have an
attacker, i.e., a is defended by some argument. Formula (b)
states that the current argument a supports the current al-
ternative s, but a has attackers and indeed all attackers of a
support s. Intuitively, a is therefore a ’weak’ argument for s.
Formula (c) expresses that some doxastically accessible al-
ternatives are supported by the current argument a and hence
the beliefs of the agent are supported by that argument. For-
mula (d) states again that the current argument is supported
by the current alternative and that all attackers of the cur-
rent argument do not support any alternative. This property
expresses a form of safety of a state-argument pair: the argu-
ment supports the alternative but there is no other alternative
which is supported by an argument attacking the current one.

It is worth observing that that the latter property gen-
eralises a purely argumentative notion of safety as non-
existence of attackers (qA�), by requiring that if there are at-
tackers, then these are not effective as they rule out any dox-
astic alternative. So it makes the requirement of not having
attackers relative to whether they support any further doxas-
tic alternatives. The formula ⊟B(σ → qA¬xBσ)would then
express the agent’s belief of safety of the current argument,
across the set of doxastic alternatives.

Validities of KD45 ×K and their interpretation
Let us move to the interpretation of Com and Con.5

Intuitively, yA xB ϕ↔xB yA ϕ states that the property
‘there is an attacker of the argument I’m currently entertain-
ing, and a state I consider doxastically possible, such that the
first is in a relation ϕ with the latter’ can be formulated inde-
pendently of the order of the diamonds involved. The order
of quantification over attacks and over doxastic alternatives
does not matter.

As to xB qA ϕ → qA xB ϕ, it expresses that, if I hold
a state as doxastically possible which is in relation ϕ with
all the attackers of an argument I currently entertain, then
all the attackers of that argument I currently entertain are in
relation ϕ with one of my doxastic alternatives.

We conclude this section by listing some further validi-
ties of KD45 × K. They concern the interaction properties
of arguments and doxastic states and can all be proven by
applications of axioms Com and Con.

5Con is also known as the Church-Rosser property.

Proposition 1. The following are validities of KD45 ×K:

⊟B yA ϕ→xB yA ⊟Bϕ (3)
yA xB ϕ→ ⊟B yA xBϕ (4)

Again, to interpret these formulae it is useful to remember
that they are evaluated at a given state and argument. Let us
comment on the Formula (3): if all the states I hold possible
are such that they are in relation ϕ (e.g., ‘support’) with an
attacker of the argument I currently entertain, then I hold it
possible that some attacker is in relation ϕ (e.g., ‘support’)
with all the states I consider possible.

Neighborhoods
We conclude this section with a comment on related
work. Evidence and justification for doxastic attitudes
have been studied within neighborhood semantics (Chel-
las 1980) in (van Benthem and Pacuit 2011). It is worth,
albeit only in passing, to notice a straightforward formal
link between our two-dimensional models and neighbor-
hood frames. The intuition is that the set of states sup-
ported by each argument can be viewed as the element
of a neighborhood. So, any doxo-argumentative model
M = ⟨D × A,V⟩, where V evaluates a designated con-
stant σ, induces a static neighborhood frame ⟨S,N ⟩ where:
N = {{s ∈ S ∣ ∃a ∈ A ∶M, (s, a) ⊧ σ}}a∈A Vice versa, any
static neighborhood frame ⟨S,N ⟩ induces a class of doxo-
argumentative models suchM = ⟨D ×A,V⟩ such that: the
support of D is S; the support of A is N ; V is such that
M, (s, a) ⊧ σ iff s ∈ a ∈ N . With respect to neighborhood
frames, doxo-argumentative models contain extra structural
information encoded in the attack relation.

5 Believing & endorsing
We now want to express properties about the interaction of
a given set of doxastic alternatives and a given set of argu-
ments representing the arguments the agent endorses. Logic
KD45 × K lacks this expressivity. So, to do this, we enrich
the K component of the logic. We move from simple attack
graphs ⟨A,�⟩ to attack graphs designating a non-empty set
E of ‘endorsed arguments’: E = ⟨A,�,E⟩. We call these
frames enriched attack graphs and we denote their class by
E. In this section we study the logic of the products of dox-
astic frames with enriched attack graphs and discuss the sort
of insights the logic enables on the interaction between ar-
guments and beliefs.

Syntax and semantics
The language LE is defined by the following BNF:

p ∣ � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣xBϕ ∣yEϕ ∣yAϕ ∣xUϕ ∣yUϕ

with p ∈ P. As before, LE,σ extends LE with the desig-
nated atom σ. Modalities xB and yA are as above. As to the
others: yE means ‘for some endorsed argument by keeping
fixed the current state’;xU means ‘for some state by keeping
fixed the current argument’; yU means ‘for some argument
by keeping fixed the current state’. Notice that xU and yU

are nothing but universal modalities for the horizontal and,
vertical dimensions, respectively. We refer to the fragment
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of LE containing only xB, xU modalities as its horizontal
fragment, and to the fragment of LE containing only yE,
yA and yU modalities as its vertical fragment.

The semantics for LE is defined as follows. Let F be a
doxastic frame on S andA an enriched attack graph onA. A
model is a structureM = ⟨D×E ,V⟩ where V ∶ PÐ→ ℘(S×
A). The satisfaction relation is defined as follows (clauses
are limited to the newly introduced operators):

M, (s, a) ⊧yEϕ iff ∃a′ ∈ E ∶M, (s, a′) ⊧ ϕ

M, (s, a) ⊧xUϕ iff ∃s′ ∈ S ∶M, (s′, a) ⊧ ϕ

M, (s, a) ⊧yUϕ iff ∃a′ ∈ A ∶M, (s, a′) ⊧ ϕ

We call the logic on LE defined by the class of the above
models DA doxastic argument logic.

Remark 2 (‘Column’ and ‘row’ properties). Modalities
xU and yU make it possible to express that given proper-
ties are state- or argument-properties. A state- or ‘column’
property is a formula σ that satisfies (in the given model)
the equation: σ ↔ qUσ (i.e., σ holds of the current pair
independently of the argument). Similarly, an argument- or
‘row’ property is expressed by a formula α that satisfies the
equation: α ↔ ⊟Uα (i.e., α holds of the current pair in-
dependently of the state). Examples are, in the right model
of Figure 2: qUsun of state s, and ⊟UBBC of argument a.
We can then express that the agent believes ϕ, in the sense
that all its doxastc alternatives have column property ϕ by
⊟B qU ϕ (in the example: ⊟B qU sun). Similarly, we can ex-
press that all the arguments endorsed by the agent have row
property ϕ by qE ⊟U ϕ (in the example: qE ⊟U BBC).

Example 4 (After (Modgil 2009), continued). We expand
Example 3 by recasting it as a DA model and making thus
explicit that the agent endorses argument a, that is:E = {a}.
The new model is depicted on the right of Figure 2 where
the ellipsis on the vertical axis encloses the set of endorsed
arguments. The following are validities of the above model
(thus independent of the point of evaluation):

(a) ⊟B yE σ

(b) qE ⊟B (σ → ¬yA xBσ)

(c) ⊟B qU sun

(d) qU ⊟U ((σ ∧ sun)→ ¬yA xU(σ ∧ sun))

Intuitively: (a) expresses that the agent’s beliefs are sup-
ported by arguments it endorses; (b) that for all pairs of
endorsed arguments and doxastic alternatives, if the argu-
ment supports the alternative, then there is no attacker of
that argument which supports some other alternative; (c)
that all doxastic alternatives satisfy sun—i.e., the agent be-
lieves sun (cf. Remark 2); (d) that the state-argument pairs
satisfying σ ∧ sun do not contain any attack between their
arguments, that is, their arguments ar conflict-free.6 Notice
that none of these properties was expressible in the simpler
language L(xB,yA).

6We come back to a general formalization of conflict-freeness
and the other properties of Table 1 below.

Remark 3 (On the ‘support’ relation between states and
arguments). We have taken a liberal view on the notion
of support of a state by an argument. We have treated sup-
port as just one of the possible relations between arguments
and states (others can be ‘incompatibility’, ‘weak support’,
etc. depending on the application domain) and modeled it
through a dedicated atom σ, whose interpretation has not
been constrained. It is important to notice that meaning-
ful classes of DA models can be isolated by strengthening
our axiom system with axioms enforcing desirable proper-
ties on σ, such as: xUσ (every argument supports some
state); ⊟ByEσ (the agent considers possible only states that
are supported by some argument).

Metalogical results
We provide here a sound and complete axiom system for
DA. The axiomatization is built from axiom systems for the
horizontal and vertical components of the logic. We then es-
tablish the decidability of the logic and sample a few results
on its expressivity.

Axiomatization: horizontal logic Let us first concern
ourselves with axiomatizing the logic determined by the
class of doxastic frames on the horizontal fragment of LE .
Consider the logic—call it DAH—defined by the rules and
axioms of KD45 for modality xB, the rules and axioms of
S5 for modality xU plus:

IncBU xBϕ→xUϕ 4BU ⊟Bϕ→ ⊟U ⊟B ϕ
5BU xBϕ→ ⊟U xB ϕ

Lemma 1. DAH is sound and complete for class D.

Axiomatization: vertical logic As to the logic determined
by the class of enriched attack graphs on the vertical frag-
ment of LE we can proceed in a similar fashion. Notice that
an enriched attack graph E = ⟨A,�,E⟩ can be viewed as
a doxastic frame to which a binary relation � is added. So,
consider the logic—call it DAV —defined by: the rules and
axioms of KD45 for modality yE, the rules and axioms of K
for modalityyA and the rules and axioms of S5 for modality
xU, plus:

IncAU yAϕ→yUϕ IncEU yEϕ→yUϕ
4EU qEϕ→ qU qE ϕ 5EU yEϕ→ qU yE ϕ

Lemma 2. DAV is sound and complete for class E.
The proof proceeds as for Lemma 1.

An axiom system for DA Everything is now in place to
prove the following result:
Theorem 2 (Completeness of DA). The logic defined by
the axioms and rules of DAH and of DAV plus the following
instances of Com and Con:

Com xy ϕ↔yx ϕ
Con xq ϕ→ qx ϕ

where x ∈ {xB,xU}, and y ∈ {yE,yA,yU}, is sound
and complete for the class D × E consisting of products of
doxastic frames and enriched attack graphs.
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(Product) Finite model property & decidability We fi-
nally establish the two following results concerning the de-
cidability of DA:

Theorem 3. Logic DA does not have the product finite
model property.

Theorem 4. Logic DA is decidable.

Expressivity on frames We conclude with some technical
considerations about the expressivity of DA. The previous
subsection has shown how basic notions from argumentation
theory can be characterized at the level of models in DA.
We now look at the feasibility of characterizations at frame
level: are there formulae which characterize whether the set
of endorsed arguments E is conflict-free and self-defended?
This is a novel application of frame correspondence theory
(van Benthem 1983) to abstract argumentation. We start by
the following:

Proposition 2. LetF = D×E . IfF ⊧ qE(⊟Up→ ¬yA⊟Up)
then E in E is conflict free.

We next show that Proposition 2 cannot be strengthened
to a characterization of conflict-freeness:

Theorem 5. There exists no formula ϕ of DA s.t.: F ⊧ ϕ iff
E is conflict-free, for F ∈D ×E.

However, a characterization does exists for self-defense:

Proposition 3 (Characterization of self-defense ofE). Let
F = D × E . Then F ⊧ (qE p ∧yE yA q)→yU(q ∧yAp) if
and only if E in E is self-defended.

6 Justified beliefs & arguments in DA
This section concludes by showcasing DA as a rich frame-
work for the study of argument-based beliefs.

From beliefs to argument-based beliefs
In standard doxastic logic beliefs are properties that are true
of all (doxastically) accessible states. In DA, beliefs are
properties that are true of all (doxastically) accessible state-
argument pairs, independently of the argument. So, “I be-
lieve that ϕ” is formalized by ⊟B qU ϕ (cf. Remark 2). But
now, the argumentative structure available in DA allows us
to differentiate between beliefs based on how they relate to
underlying arguments, for instance by being supported by
some such arguments. The following definitions illustrate
the interaction between beliefs and endorsed arguments:

SBϕ ∶= ⊟B(qUϕ ∧yUσ) (5)
EBϕ ∶= ⊟B(qUϕ ∧yEσ) (6)

JB(ϕ,ψ) ∶= ⊟B(qUϕ ∧yE(σ ∧ ⊟Uψ)) (7)

The formulae appear in the order from logically weaker to
logically stronger and may be taken as definitions of dif-
ferent types of argument-based beliefs in ϕ: supported be-
lief (SB), endorsed supported belief (EB), and justified be-
lief (JB) where the type of justification is expressed by ψ.
Formula (5) expresses that the agent believes ϕ and its be-
liefs are supported by arguments—each doxastic alternative
is supported by some argument. Formula (6) expresses that

the agent believes ϕ and its beliefs are supported by argu-
ments it endorses. Finally, Formula (7) states that the agent
believes ϕ and its beliefs are supported by arguments it en-
dorses and which have property ψ (notice again the use of
⊟U to express that such ψ is a ‘row’ property, independent
of the doxastic state). In particular, such ψ can be chosen to
express properties such as: “the argument belongs to a given
conflict-free set”, “the argument belongs to a given stable
extension” and the like, to which we now turn.

Dung’s argumentation theory in DA We show now how
DA can capture some fundamental argumentation-theoretic
properties (Table 1). These properties are properties of sets
of arguments, that is, row properties (cf. Remark 2). For in-
stance, we want to formalize the property that says that a
given row property ⊟Uϕ identifies a set of admissible ar-
guments. The strategy for obtaining these formalizations is
based on (Grossi 2010). Let ∎ ∶= ⊟UqU:
(i) ϕ is a conflict free set ∎(⊟Uϕ→ ¬yA ⊟Uϕ)
(ii) ϕ is a self-defended set ∎(⊟Uϕ→ qA yA ⊟Uϕ)
(iii) ϕ is a fixpoint of qAyA ∎(⊟Uϕ↔ qA yA ⊟Uϕ)
(iv) ϕ is an admissible set (i) ∧ (ii)
(v) ϕ is a complete extension (i) ∧ (iii)
(vi) ϕ is a stable extension ∎(⊟Uϕ↔ ¬yA ⊟Uϕ)

We comment on (i) and (ii). Formula (i) says that if an ar-
gument satisfies row property ⊟Uϕ, then no attacker of that
argument exists which also satisfies the same property. For-
mula (ii) states that all arguments satisfying row property
⊟Uϕ are such that all their attackers are defended by some
argument satisfying the same property.

Example 5 (After (Modgil 2009), continued). Let us go
back to the model on the right of Figure 2. It is a valid-
ity of the model that: the agent believes that sun is the
case; that it has arguments for that belief, which it endorses;
and that those arguments also have the property of belong-
ing to the conflict-free set of arguments specified by prop-
erty BBC. That is, the agent holds a belief to the effect that
sun is the case and such belief is justified by the set of
conflict-free BBC arguments. Formally: JB(sun, ψ) where
ψ ∶= BBC ∧ ∎(⊟UBBC → ¬ yA ⊟UBBC). It is also a validity
of the model that the set of arguments supporting the agent’s
doxastic alternatives is an admissible set, that is:

∎(xBσ → ¬yA xBσ) ∧ ∎(xBσ → qA yA xBσ)

where, notice, xBσ is a row property (xBσ↔ ⊟U xB σ).

Properties of argument-based beliefs
Having interfaced beliefs with properties of supporting argu-
ments, the natural question arising is: how do the argument-
based beliefs we have introduced in Formulae (5)-(7) be-
have with respect to standard principles of doxastic logic?
In this final subsection we set out to provide a first answer to
this question, and show that argument-based beliefs offer in-
teresting insights into the failure of controversial principles
such as, in particular, negative introspection.

All the above types of argument-based beliefs—viz., sup-
ported beliefs, endorsed beliefs and justified beliefs—obey
the standard distribution and positive introspection princi-
ples, while they fail the negative introspection principle.
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Proposition 4. The following formulae are valid on D ×E:

SB(ϕ→ ψ)→ (SBϕ→ SBψ) (8)
EB(ϕ→ ψ)→ (EBϕ→ EBψ) (9)
JB(ϕ→ ψ,χ)→ (JB(ϕ,χ)→ JB(ψ,χ)) (10)
SBϕ→ SBSBϕ (11)
EBϕ→ EBEBϕ (12)
JB(ϕ,ψ)→ JB(JB(ϕ,ψ), ψ) (13)

Proposition 5 (Negative introspection failure). The fol-
lowing formulae are not valid on D ×E:

¬SBϕ→ SB¬SBϕ (14)
¬EBϕ→ EB¬EBϕ (15)
¬JB(ϕ,ψ)→ JB(¬JB(ϕ,ψ), ψ) (16)

A simple inspection of the proof (in the appendix) shows
that negative introspection fails only in one specific case,
namely when it is not the case that all doxastic states are
supported by some argument (resp., supported by endorsed
arguments, or supported by endorsed arguments with prop-
erty ψ). That is, negative introspection for argument-based
beliefs does not go through only when the to-be-introspected
belief itself is not supported by arguments.

This suggests that, although negative introspection fails in
its full form, it still holds in a restricted one:
Proposition 6. The following formulae are valid on D ×E:

(¬SBϕ ∧ ⊟B yU σ)→ SB¬SBϕ (17)
(¬EBϕ ∧ ⊟B yE σ)→ EB¬EBϕ (18)
(¬JBϕ ∧ ⊟B yE (σ ∧ ⊟Uψ))→ JB¬JBϕ (19)

In other words, if I do not believe (with justification) that
ϕ, but my beliefs are justified then I believe (with justifica-
tion) that I do not believe (with justification) that ϕ.

7 Concluding remarks
Summary We proposed an approach based on product
logics to study the interaction between the information state
of an agent and the arguments the agent endorses. The ap-
proach has been illustrated by two product logics, which
have been studied from a logical point of view, and have
been used to model simple scenarios and formalize a num-
ber of interaction properties between beliefs and arguments.

Justification logic A related framework to the one we pre-
sented is justification logic (Artemov 2008), which formal-
izes the logic of statements of the type “t is a justification
for ϕ”, where t is called a, possibly complex, term. Jus-
tification logic provides an articulated solution to the logi-
cal omniscience problem of standard epistemic logic. In our
framework arguments can well be seen as (atomic) terms
but, unlike in justification logic, they are reified in the se-
mantics of the logic and obtain the same ‘ontological’ status
as doxastic states. While on the one hand this reintroduces
logical omniscience, on the other hand it enables a classi-
cal modal approach for the study of (atomic) justifications
viewed as arguments, which was our primary aim with this
paper. Whether the reification of arguments/justifications in
the semantics can be reconciled with a solution to the logical
omniscience problem is an interesting open question.

Future work We point to three more research directions
we consider especially worth pursuing. First, in our analysis
we have assumed a primitive relation of ‘support’ between
doxastic alternatives and arguments. This relation enabled us
to say that a set of states (e.g., the truth-set of a column for-
mula) was supported by a set of arguments whenever each
state had an argument which was ground for it. Hence an
argument can support a set of states only if it supports each
alternative taken in isolation. This is clearly a strong require-
ment and is in part related to the logical omniscience issue
just mentioned. Arguments might be thought of supporting
sets of states without needing to support any of the states
in the set taken in isolation. How to achieve this weaken-
ing while remaining within the set up of product logics is an
interesting open question.

Second, we believe that studying our proposal in a multi-
agent context would be another prominent venue for further
research. For the beliefs, this would require that the alter-
natives for agents are modelled through a relation, rather
than just identifying one set of states that are deemed dox-
astically possible. For the dimension representing the argu-
ments, there is a range of possibilities one can consider. Are
the arguments commonly known by all agents? Note that
in our set-up, it is valid that ⧫ ⊟U ϕ ↔ ⊟B⧫ ⊟U ϕ (with
⧫ ∶= xUyU): there is an argument with row property ϕ
if and only if the agent believes that. For the single agent-
case this seems reasonable, but when reasoning about other
agents’ beliefs and justifications, there may be reasons to
assume (we order them from weak to stronger) that (1) not
all agents endorse the same arguments; (2) not all agents
agree on the attack relation between arguments, and (3) not
all agents need to be aware of the same arguments.7 Once
one agrees on some of those assumptions, one also needs to
take into account that agents make such assumptions about
each other (e.g., agent a believes that b’s beliefs are justified
by b’s arguments, but not by arguments that a endorses).

Third, the paper has started from the simplest possible
doxastic logic, KD45. Incorporating more sophisticated log-
ics of belief constitutes another natural avenue of research.
Apart from our interest to look at ways to cover the multi-
agent case, other options that present themselves are in-
corporating richer order-theoretic models for doxastic logic
(Baltag and Smets 2008); and studying the dyanmics sup-
ported by the horizontal and vertical dimensions with tools
from dynamic epistemic logic (van Ditmarsch et al. 2007).

A Appendix: proofs
Proof of Theorem 1. Let F the class of transitive and eu-
clidian frames and Fg the class of point-generated transitive
and euclidean frames. We know that F and Fg are modally
equivalent (Blackburn et al. 2001). [LEFT TO RIGHT] As-
sume D ⊧ ϕ. Let Fs = ⟨Ss,Rs⟩ ∈ Fg and s ∈ Ss. Define
B = {x ∣ sRsx} and notice that Ds = ⟨Ss,B⟩ ∈ D and
hence Ds ⊧ ϕ. An easy induction shows that Ds and Fs are
modally equivalent and thus F ⊧ ϕ [RIGHT TO LEFT] As-
sume F ⊧ ϕ. Let D = ⟨S,B⟩ ∈ D. Define a relation R on S

7Cf. (Schwarzentruber et al. 2012).
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by xRy iff y ∈ B. It is easy to see that R is transitive and eu-
clidean and hence F = ⟨S,R⟩ ∈ F. An easy induction proves
that D and F are modally equivalent, entailing D ⊧ ϕ.

Proof sketch of Theorem 2. The result follows from Lem-
mata 1 and 2 by (Gabbay and Shehtman 1998, Theorem
7.12) (cf. our comment on completeness of KD45 ×K).

Proof sketch of Theorem 3. We exhibit a satisfiable formula
fromLE which cannot be satisfied on a finite product model.
Consider the following formula ψ from LE :

qU xB p ∧ qU ⊟B (p→yA¬p) ∧ qU ⊟B (¬p→ qA¬p).

Let E = ⟨A,E,�⟩ be such that ⟨A,�⟩ consists of an in-
finite �-ascending chain of elements ⟨xn ∣ 0 ≤ n < ω⟩
such that ai /� aj for i < j. For any choice of E, this
is clearly a frame in E. Let then D consist of a point s0
accessing all other states (except itself) in the frame. Take
an enumeration s0, s1, . . . of these states. This is clearly a
frame in D. Set V(p) = {(sn+1, an) ∣ 0 ≤ n < ω}. We have
⟨D×E ,V⟩, (s0, a0) ⊧ ψ. Clearly, no model on a finite frame
in D ×E satisfies ψ.8

Proof sketch of Lemma 1. Soundness is straightforward. As
to completeness, the axiom system can be shown to be com-
plete with respect to the class of frames F = ⟨S,RB,RU⟩

consisting of one equivalence relation RU (axiomatized by
S5) which, within each of its equivalence classes, contains
(containment is enforced by IncBU) a transitive and eu-
clidean relation RB (axiomatized by KD45) with the ad-
ditional property (enforced by axioms 4BU and 5BU) that
within each equivalence class all states have access to the
same set of states: ∀x, y, z (in each equivalence class):
xRBy iff zRBy (in other words, there exists a set of states B
all of which elements are RB-accessible by all states in the
class, cf. Definition 1). The latter property is a consequence
of the fact that RB is a subrelation of RU (by IncBU) and
that axioms 4BU and 5BU—which, notice, are Sahlqvist—
correspond to the following properties: ∀x, y, z if xRUy and
yRBz then xRBz; ∀x, y, z if xRUy and xRBz then yRBz.
Call now this class F and consider the class Fg of frames in
F which are point-generated by the equivalence relation RU.
Any F ∈ Fg is thus such that RU is the universal relation
on F and F contains one unique set B RB-accessible by
all elements of the frame. F is therefore modally equivalent
(on the horizontal fragment of LE) to a D ∈ D. Vice versa,
any D ∈ D is modally equivalent to a F ∈ Fg (cf. proof of
Theorem 1). So D is modally equivalent to Fg which is, by
general results (Blackburn et al. 2001), modally equivalent
to F. Therefore, the axiom system is complete for D.

Proof sketch of Theorem 4. We provide a reduction of DAH

to S5 and of DAV to KU, proving that the satisfiability of
DA is reducible to the satisfiability of S5 × KU, which is
decidable (Gabbay et al. 2003, Theorem 6.58). [DAH to S5].
Take a fresh atom p and define a translation (Boolean clauses
omitted): t(xUϕ) = ◇t(ϕ); t(xBϕ) = ◇(p ∧ t(ϕ)). We
prove: ϕ is satisfiable in D iff t(ϕ) is satisfiable in the class

8The proof goes through also for the weaker logic KD45 ×KU.
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Figure 3: Two frames F and F ′ for the proof of Theorem 5.

of universal frames. [LEFT TO RIGHT] AssumeM, x ⊧ ϕ.
BuildM′ = ⟨S′,V ′⟩ with an extra atom p where: S′ = S and
V ′ = V ∪{⟨p,S⟩}. A simple induction shows that:M, x ⊧ ϕ
iffM′, x ⊧ t(ϕ). [RIGHT TO LEFT] AssumeM, x ⊧ t(ϕ).
BuildM′ = ⟨S′,B,V ′⟩ where: S′ = S, B = V(p) and V ′ =
V − {⟨p,S⟩}. A simple induction shows that:M, x ⊧ t(ϕ)

iffM′ ⊧ ϕ. [DAV to KU] Similar.

Proof sketch of Theorem 5. Consider the frames F and F ′
of Figure 3. We have that ∀ψ ∈ LE F ′ ⊧ ψ⇒ F ⊧ ψ, while
at the same time, E′ in F ′ is conflict free.

Proof sketch of Proposition 4. Simple semantic arguments
can be used to prove the claims. We do it for Formulae (8)
and (13). [Formula (8)] Assume M, (s, a) ⊧ ⊟B(qU(ϕ →
ψ) ∧ yUσ). It follows, by the semantics of ⊟B and qU that
M, (s, a) ⊧ ⊟B qU (ϕ → ψ) ∧ ⊟B yU σ and then, by
propositional reasoning, M, (s, a) ⊧ ⊟B(qUϕ ∧ yUσ) →
⊟B(qUψ ∧ yUσ), which proves the claim. [Formula (13)]
AssumeM, (s, a) ⊧ ⊟B(qUϕ ∧yE(σ ∧ ⊟Uψ)). It follows,
by the semantics of ⊟B and qU and propositional reasoning,
that M, (s, a) ⊧ qU ⊟B (qUϕ ∧ yE(σ ∧ ⊟Uψ)) ∧ ⊟B yE

(σ ∧ ⊟Uψ)). From this, by again the semantics of ⊟B we
concludeM, (s, a) ⊧ ⊟B(qU(⊟B(qUϕ∧yE(σ ∧⊟Uψ)))∧
yE(σ ∧ ⊟Uψ)), which proves the claim.

Proof sketch of Proposition 5. It suffices to exhibit some
counterexamples. We do that for Formula (14). Consider
the modelM = ⟨⟨{s} ,{s}⟩ × ⟨{a} ,∅,∅⟩,V⟩ consisting of
one pair (s, a) s.t. (s, a) ∈ V(p) and (s, a) /∈ V(σ). We
have thatM, (s, a) ⊧ ¬ ⊟B (qUϕ ∧ yUσ) andM, (s, a) /⊧
⊟B(qU(¬ ⊟B (qUϕ ∧yUσ)) ∧yUσ).

Proof sketch of Proposition 6. We prove the claim of For-
mula (17). The other two are analogous. Assume
M, (s, a) ⊧ ¬SBϕ ∧ ⊟B yU σ. It follows by Formula (5)
thatM, (s, a) ⊧ ¬ ⊟B qUϕ ∧ ⊟B yU σ, from which by the
semantics of ⊟B we obtainM, (s, a) ⊧ ⊟B(qU(¬⊟B qUϕ∧
yUσ) ∧ ⊟B yU σ). HenceM, (s, a) ⊧ SB¬SBϕ.
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