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Abstract

When Lin and Reiter introduced the progression of basic ac-
tion theories in the situation calculus, they were essentially
motivated by long-lived robotic agents functioning over thou-
sands of actions. However, their account does not deal with
probabilistic uncertainty about the initial situation nor with
effector or sensor noise, as often needed in robotic applica-
tions. In this paper, we obtain results on how to progress con-
tinuous degrees of belief against continuous effector and sen-
sor noise in a semantically correct fashion. Most significantly,
and perhaps surprisingly, we identify conditions under which
our account is not only as efficient as the filtering mechanisms
commonly used in robotics, but considerably more general.

Introduction
Reiter’s (2001) reconsideration of the situation calculus
(McCarthy and Hayes 1969) has proven enormously use-
ful for the design of logical agents, essentially paving the
way for cognitive robotics (Lakemeyer and Levesque 2007).
Among other things, it incorporates a simple monotonic so-
lution to the frame problem, leading Reiter to define the no-
tion of regression for basic action theories (Waldinger 1977).
But for long-lived agents like robots, Lin and Reiter (1997)
argue that the notion of progression, that of continually up-
dating the current view of the state of the world, is perhaps
better suited. They show that progression is always second-
order definable, and in general, it appears that second-order
logic is unavoidable (Vassos and Levesque 2008). However,
Lin and Reiter also identify some first-order definable cases
by syntactically restricting situation calculus basic action
theories, and since then, a number of other special cases have
been studied (Liu and Lakemeyer 2009).

While Lin and Reiter intended their work to be used on
robots, one criticism leveled at their work, and indeed at
much of the work in cognitive robotics, is that the theory
is far removed from the kind of continuous uncertainty and
noise seen in typical robotic applications. What exactly fil-
tering mechanisms (such as Kalman filters (Thrun, Burgard,
and Fox 2005)) have to do with Lin and Reiter’s progression
has gone unanswered, although it has long been suspected
that the two are related.
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This paper remedies this situation. Building on a recent
extension to the situation calculus for dealing with continu-
ous uncertainty by Belle and Levesque (2013a) (henceforth
BL), we investigate progression in continuous domains. In
this paper, we make the following contributions:

1. We introduce a property of basic action theories called
invertibility, closely related to invertible functions in real
analysis (Trench 2003). We identify syntactic restrictions
on basic action theories that guarantee invertibility.

2. For our central result, we show a first-order progression of
continuous degrees of belief against continuous noise in
effectors and sensors for action theories that are invertible.

3. Finally, we prove that this account of progression is effi-
cient. Perhaps surprisingly, under the additional assump-
tion of context-completeness (Liu and Levesque 2005), it
is as efficient as commonly used filtering mechanisms in
the robotics literature, while considerably more general.

For the structure of this paper, we begin by introducing the
formalism, followed by results along the lines of the above
three points and conclude after discussion and related work.

The Situation Calculus
The language L of the situation calculus is a many-sorted
dialect of the predicate calculus, with sorts for physical ac-
tions, sensing actions, situations and objects, which is a
catch-all sort for everything else. A situation represents a
history as a sequence of actions. A set of initial situations
correspond to the ways the world might be before any action;
successor situations are obtained as a result of doing actions.
We use α to denote terms of the action sort, and so the term
do(α, s) denotes the unique situation obtained on doing α
in s. The term do(~α, s), where ~α is the sequence α1 · · ·αn,
abbreviates do(αn, do(. . . , do(α1, s) . . . )). Initial situations,
then, are those without a predecessor:

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation and
use the variable ι to range over initial situations only.

To reason about changing properties, L is assumed to in-
clude fluents, whose last argument is always a situation term.
Without loss of generality, we restrict ourselves to functional
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fluents. In addition, we assume that f1, . . . , fk are all the flu-
ents in L, and that these take no arguments other than a sin-
gle situation term.1 Note that this is not a propositional the-
ory in that we allow the values of the fluents f1, . . . , fk to
range over any set. As we are primarily interested in con-
tinuous domains, we will make the simplifying assumption
that fluents are all real-valued.

Following (Reiter 2001), we call a formula φ uniform
in a situation term σ if σ is the only situation term in φ
and rooted in σ if every situation term in φ is of the form
do(~α, σ) for some action sequence ~α.2 We often suppress
the situation argument in a formula φ, or use a distinguished
variable now. Either way, φ[σ] is used to denote the formula
with that variable replaced by the situation term σ.

Basic Action Theory
Again following Reiter, we model dynamic domains by
means of a set of sentences D called a basic action theory,
consisting of:3

• sentencesD0 describing what is true initially;

• precondition axioms describing the executability of ac-
tions using a distinguished symbol Poss;4

• successor state axioms that describe the change to fluents
after actions, of the form f (do(a, s)) = u ≡ γ f (a, u)[s];

• domain-agnostic foundational axioms and the unique
name axioms for actions, the details of which need not
concern us here (Reiter 2001).

We often lump the components in D other than D0 as Σ.
Properties of the formalism follow as entailments of D, for
which standard Tarskian models suffice. We will however
be assuming that models assign the usual interpretations to
=, <, >, 0, 1,+,×, /,−, e, π and xy (exponentiation).

The languageL used in this paper is the situation calculus
as characterized in (Reiter 2001). Nonetheless, it is very use-
ful to have certain abbreviations that will macro expand to
L-formulas. These abbreviations are used as logical terms,
that is, as arguments to functions or predicates. If E is such
an expression, its expansion is characterized by a definition
of the form E =u � φ(u),where u is a variable, and φ(u) is an
L-formula with u free. This should be interpreted as follows.
Let ρ(u) be any atomic formula with u free. Then the expres-
sion ρ(E) should be understood as standing for the formula
∃u(φ(u)∧ ρ(u)). To see this in action, consider the definition
of the conditional-if expression: u = If ∃zφ Then t1 Else t2
defined as (∃zφ ⊃ ∀z(φ ⊃ u = t1)) ∧ (¬∃zφ ⊃ u = t2). This
allows us to write, for example,

P(a, If Q( f , 3) Then 4 Else 5, b)

1See BL for a discussion of this particular limitation.
2Formulas that are rooted in σ are about σ and its future. More

general formulas about the future of a situation are considered in
(Vassos and Levesque 2008), but not here.

3Free variables, here and everywhere else, are assumed to be
implicitly quantified from the outside.

4For simplicity, we will say no more about Poss here, and as-
sume that actions are always executable.
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Figure 1: Robot moving parallel to the wall.

meaning (Q( f , 3) ⊃ P(a, 4, b)) ∧ (¬Q( f , 3) ⊃ P(a, 5, b)). As
a consequence of this convention, we will be able to write
Reiter’s successor state axioms as equality-expressions, and
use the RHS as terms than can be substituted in formulas.

For example, imagine a robot moving in a 2-dimensional
plane, parallel to a wall, as shown in Figure 1. Let its coordi-
nate be given by (h, v), where h and v are real-valued fluents.
Consider an action mv(z) that moves the robot away from the
X-axis by z units. Its effect on v might be described by:

v(do(a, s)) = u ≡ ∃z(a = mv(z) ∧ u = v(s) + z) ∨
u = v(s) ∧ ¬∃z(a = mv(z)).

This says that mv(z) is the only action affecting v, thereby
incorporating a solution to the frame problem (Reiter 2001).
We would now equivalently write this as:

v(do(a, s)) = If ∃z(a = mv(z))
Then v(s) + z Else v(s). (1)

Thus, successor state axioms axioms are henceforth as-
sumed to be of the form f (do(a, s)) = E f (a)[s].

We will also use expressions
∫

x t and
∑

x t for integra-
tion and summation, which are abbreviations defined us-
ing second-order logic in BL and (Bacchus, Halpern, and
Levesque 1999). Finally, we will often refer to common den-
sity functions, such as N and U (Gaussian and uniform
respectively), which are simply abbreviations for L-terms
built from arithmetic symbols and reals.

Noise and Likelihood
Building on (Bacchus, Halpern, and Levesque 1999), our
treatment of noisy acting and sensing will benefit from Re-
iter’s solution to the frame problem. It will involve a new dis-
tinguished symbol l for likelihood, where the modeler pro-
vides l-axioms inD, one per action A(~x), of the form:

l(A(~x), s) = ΥA(~x)[s].

Let us illustrate its usage with noisy sensors. (Noisy actions
are discussed later.) The concern here is that the value read
from a sensor may differ from the true value, but in some rea-
sonable way. Imagine a sonar sensor aimed at the wall, and
so its reading would correspond to the true value of fluent h.
If noisy, one might assume that the likelihood of a reading z
is obtained from a normal curve whose mean is h. We then
say it has additive Gaussian noise, and this is modeled as:

l(sonar(z), s) = N(z; h, 4)[s] (2)
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which gives the sensor’s reading a variance of 4. Note that
the l-axioms are more expressive than those typically seen in
probabilistic formalisms, and can be context-dependent. For
example, to model a sensor with systematic bias at subzero
temperatures, we might have

l(sonar(z), s) = If temp(s) > 0
Then N(z; h, 1) Else N(z; h + 2, 1).

Degrees of Belief
Probabilistic uncertainty about the initial situation and
changing degrees of belief are captured using a single dis-
tinguished symbol p. The p fluent can be seen as a numeric
variant of the K fluent in the Scherl and Levesque scheme
(2003). Intuitively, p(s′, s) gives us the probabilistic density
that the agent attributes to s′ when at s. In fully discrete do-
mains, p is the mass given to s′.

As part of D0, the modeler would provide a character-
ization of the density attributed by the agent to the initial
situations. For example,

p(ι, S0) = U(h; 2, 12) × N(v; 0, 1)[ι] (3)

says that the agent does not know the initial values of h and
v, but thinks of them as drawn independently from a uniform
distribution on [2, 12], and from a standard normal. Since p
is just like any other fluent, the framework is more expres-
sive than many probabilistic formalisms. For example,

∀ι(p(ι, S0) = U(h; 2, 3)[ι])
∨

∀ι(p(ι, S0) = U(h; 10, 20)[ι])
(4)

says that the agent takes h to be uniformly distributed on
[2,3] or on [10,20], but without saying which.

To give p the intended properties, the following non-
negative constraint is assumed to be included inD (Bacchus,
Halpern, and Levesque 1999):

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)). (P1)

This says that p values are never negative, and that they are
non-zero only for initial situations. While this is a stipulation
about initial situations, the following successor state axiom
for p ensures that the nonnegative constraint holds every-
where:

p(s′, do(a, s)) =
If ∃s′′. s′ = do(a, s′′) ∧ Poss(a, s′′)

Then p(s′′, s) × l(a, s′′) Else 0
(P2)

That is, the density of a situation s′ relative to do(a, s) is
the density of its predecessor s′′ times the likelihood of a
contingent on the successful execution of a at s′′. One con-
sequence of (P1) and (P2) is that (p(s′, s) > 0) will be true
only when s′ and s share the same history of actions.

As discussed in BL, to deal with continuity, the follow-
ing axiom explicating a precise space of initial situations is
needed (Baker 1989; Levesque, Pirri, and Reiter 1998):

[∀~x∃ι
∧

fj(ι)= x j] ∧ [∀ι, ι′.
∧

fj(ι)= fj(ι′) ⊃ ι= ι′] (P3)

This states that for every combination of fluents values, there
is a unique initial state where the fluents have these values.

With l and p axioms specified in D, the degree of belief
in a formula is defined as follows:5

Definition 1: Let φ be a formula and σ be a situation term,
both rooted in now. Then Bel(φ, σ[S0]) is defined as

1
η

∫
~x

If ∃ι
∧

fj(ι) = x j ∧ φ[σ[ι]]
Then p(σ[ι], σ[S0]) Else 0

where η is the normalization factor and is the same expres-
sion as the numerator but with φ replaced by true.

This says that belief is the result of integrating the density
function p over all possible initial values for the real-valued
fluents, and hence by (P3), over all possible initial situations.
Note that this definition of belief is restricted to cases where
the situation term is rooted in S0.

To summarize, all that was needed to reason about degrees
of belief and continuity in the situation calculus were the
following components:

• D0 as usual (possibly mentioning p);

• the action components and foundational axioms as before,
including the l-axioms, and p-constraints (P1), (P2) and
(P3) (lumped together as Σ);

• abbreviations for Bel, integrals, and summation.

It is easy to see that this framework generalizes the cate-
gorical knowledge treatment of (Scherl and Levesque 2003).
It can also be shown that the belief change mechanism ex-
hibited by the framework subsumes Bayesisan conditioning
(Pearl 1988). Finally, the scheme is also applicable to dis-
crete domains: for a discrete fluent f , one would simply re-
place

∫
x with

∑
x ranging over the possible values of f .

Noisy actions
The account of belief in BL left noisy actions for future
work. The idea behind noisy actions is that an agent might
attempt a physical move of 3 units, say, but as a result of
the limited accuracy of effectors, actually move 3.094 units.
Thus, unlike sensors, where the reading is nondeterministic,
observable, but does not affect fluents, the outcome of noisy
actions is nondeterministic, unobservable and changes flu-
ent properties. Of course, when attempting to move 3 units,
the agent knows that an actual move by 3.094 units is much
more likely than 30.94 units.

We suggest a simple specification of noisy actions where
instead of an action like mv(x), we use an action mv′(x, y)
where x is the intended motion (3 units) known to the agent
and y is the actual motion (perhaps 3.094 units) unknown to
the agent. The successor state axiom for h would be written
to reflect the fact that its value is changed by the y value.
Unlike noise-free actions where the likelihood is always 1,
noisy actions would have non-trivial l-axioms like this one:

l(mv′(x, y), s) = N(y; x, 1 + wet)[s].

5This is a minor reworking of the definition given in BL, but as
it turns out, it has the advantage of working seamlessly with noisy
actions as well.
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This is a context-dependent axiom that says that the actual
value moved is normally distributed around the intended
value, but with a variance that depends on the wet fluent (a
measure of how wet the floor is).

To capture the fact that the agent need not know the actual
amount moved, we use fluents arguments to the action. For
example, to find out the degree of belief in φ after a noisy
move action, instead of asking for the value of

Bel(φ, do(mv′(3, 3.094), S0)),

we instead ask for the value of something like

Bel(φ, do(mv′(3, g(S0)), S0)),

where g is a fluent whose value is not known, that stands for
the actual amount moved. The fluent g here represents na-
ture’s choice of a value, and as it is unaffected by any action,
its successor state axiom should be g(do(a, s)) = g(s). The
fluent will have different values in different initial states, of
course, and so the likelihood of the corresponding mv′ ac-
tion will also vary, as will the density given to the successor
situation by (P2). The definition of belief will then integrate
over all possible values of g as appropriate.

In general, a fluent can be used like this to handle any
argument to an action whose value is not known to the agent.
We believe this account is much simpler than the version
of noisy actions given in (Bacchus, Halpern, and Levesque
1999) which relied on Golog.

Invertible Action Theories
What we are after is an account of progression for belief in
the presence of continuous noise. However, subtleties arise
with the p fluent even in simple domains. For example,
imagine a noise-free action towall(z) that moves the robot
towards the wall but stopping when the robot hits the wall:

h(do(a, s)) = If ∃z(a = towall(z))
Then max(0, h(s) − z) Else h(s). (5)

If the robot were to begin with (3) and perform the action
towall(4), beliefs about the new value of h become much
more complex. Roughly, those points where h ∈ [2, 4] ini-
tially are mapped to a single point h = 0 that should then
obtain a probability mass of .2, while the other points retain
their initial density of .1. In effect, a probability density on
h is transformed into a mixed density / distribution (and the
(P3) assumption no longer holds). BL deal with this issue us-
ing regression: beliefs are regressed to the initial state where
(P3) does hold, and all the actual belief calculations can be
done in the initial state (Belle and Levesque 2013b).

In this paper, we develop a logical theory of progression
for basic action theories where such mixed distributions do
not arise. In this section, we provide a simple definition to
support this, and then discuss general syntactic restrictions
that satisfy this requirement.

Definition 2: Given a basic action theory D, a fluent f is
said to be invertible if there is an expression H f (a) uniform
in now such thatD |= f (s) = H f (a)[do(a, s)]. We say thatD
is invertible if every fluent in the theory is invertible.

Intuitively, a fluent is invertible when we can find a dual for-
mulation of its successor state axiom, that is, where we can
characterize the predecessor value of a fluent in terms of its
current value.

There are three syntactic conditions on a basic action the-
oryD that are sufficient to guarantee its invertibility:

i. There is an ordering on fluents such that all the fluents that
appear in E f (a) other than f are earlier in the ordering.

ii. Any situation term in E f (a) appears as an argument to one
of the fluents.

iii. The mapping from the value of f (s) to the value of
f (do(a, s)) given by E f (a) is bijective (Trench 2003).
(This is understood in the usual set-theoretic sense.)

Before considering some examples, here is the result:

Theorem 3: If a basic action theory satisfies (i), (ii) and (iii)
above, then it is invertible.

Proof sketch: The proof is by induction on the ordering
given by (i). By (iii), we can take f (do(a, s)) = E f (a)[s]
and solve for f (s), obtaining an equation f (s) = H, where
H mentions f (do(a, s)) and possibly other fluents f ′(s) that
appear earlier in the ordering. By induction, each f ′(s) in H
can be replaced by H f ′ (a)[do(a, s)]. By (ii), the result will
then be uniform in do(a, s), and thus we obtain a formula
H f (a) whereD |= f (s) = H f (a)[do(a, s)] as desired.

Example 4: Consider (1). This trivially satisfies (i) and (ii).
The mapping from v(s) to v(do(a, s)) is bijective and so (iii)
is satisfied also. (In general, any E f (a) that is restricted to
addition or multiplication by constants will satisfy (iii).) So
the fluent is invertible and we have v(s) = Hv(a)[do(a, s)],
where Hv(a) is If ∃z(a = mv(z)) Then v − z Else v.

Example 5: Consider (5). Here the mapping is not bijective
because of the max function and the fluent h is not invertible.
If h(do(α, s)) = 0 where α = towall(4), then the value of h(s)
cannot be determined and can be anything less than 4.

Example 6: Consider a successor state axiom like this:

v(do(a, s)) = If ∃z(a = mv(z)) Then (v(s))z Else v(s).

For α = mv(2), we obtain a squaring function, which is not
bijective. Indeed, from v(do(α, s)) = 9, one cannot deter-
mine whether v(s) was -3 or 3. So the fluent is not invertible.

Example 7: Consider this successor state axiom:

v(do(a, s)) = If ∃z(a = rapid(z)) ∧ wax(s) ≤ .3
Then v(s) + (fuel(s))z Else v(s).

Suppose further:
fuel(do(a, s)) = If ∃z(a = fill(z)) Then z·fuel(s) Else fuel(s).
wax(do(a, s)) = If a = clean Then wax(s)/10 Else wax(s).
Here, the fuel tank and the wax on the floor determine the
distance moved, and one can clean the floor wax and fill the
tank. This theory is invertible, and Hv(a) is given by

Hv(a) = If ∃z(a = rapid(z)) ∧ wax ≤ .3
Then v − fuel z Else v.
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That is, because rapid(z) does not affect wax and fuel, we
simply invert the successor state axiom for v and relativize
everything to do(a, s). If (say) the action rapid(z) also af-
fected fuel, by the ordering in (i), we would first obtain the
H-expression for fuel and use it in the H-expression for v.
Finally, note that the bijection property does not prevent us
from using non-bijective functions, such as squares, in the
successor state axiom of v, provided that these only apply to
the other fluents. (The remaining fluents essentially behave
as constants at any given situation.) In our experience, many
commonly occurring successor state axioms are invertible.

Progression
In this section we propose a definition of progression that
applies to any invertible basic action theory. Note that the
definition of invertibility imposes no constraint on D0. So
the definition in this section is general in that the p may ap-
pear inD0 in an unrestricted way, such as in (4). Given such
a theory D0 ∪ Σ and a ground action α, we define a trans-
formation D′0 such that D′0 ∪ Σ agrees with D0 ∪ Σ on the
future of α. Then, in the next section, we will consider how
D′0 grows as a result of this progression.

Classical Progression
Let us first consider the simpler case of progression for a
D0 that does not mention the p fluent (and the quantification
over initial situations that comes with it), and so whereD0 is
uniform in S0. In this case, because we are assuming a finite
set of nullary fluents, any basic action theory can be shown
to be local-effect (Liu and Lakemeyer 2009), where progres-
sion is first-order definable. The new theory is computed by
appealing to the notion of forgetting (Lin and Reiter 1994).
If the basic action theory is invertible, however, the progres-
sion can also be defined in another way. Let D′0 be D0 but
with any f (S0) term in it replaced by H f (α)[S0].
Theorem 8: LetD0∪Σ be any invertible basic action theory
not mentioning p and α any ground action. Then for any L-
formula φ rooted in now

D0 ∪ Σ |= φ[do(α, S0)] iff D′0 ∪ Σ |= φ[S0].
Example 9: Consider (1), and the Hv(a) from Example 4.
SupposeD0 = {v(S0) > 10}. Then:

D′0 = (Hv(mv(3))[S0]) > 10
= (If ∃z(mv(z) = mv(3))

Then v(S0) − z Else v(S0)) > 10
= (v(S0) − 3 > 10)
= (v(S0) > 13).

Therefore, as expected, the progression of v(S0) > 10 wrt a
noise-free motion of 3 units is v(S0) > 13. (The unique name
axiom and arithmetic are used in the simplification.)

Progressing Degrees of Belief
There are two main complications when progressing beliefs
wrt noisy sensors and actions. First, the p fluent will have to
take the likelihood of the action α into account. Second,D0
need not be uniform in S0, since p typically requires quan-
tification over initial situations (as in (3), for example). This
leads to the following definition:

Definition 10: LetD0 ∪ Σ be an invertible basic action the-
ory and α be a ground action of the form A(~t) where ~t is
uniform in now.6 Then Pro(D0, α) is defined asD0 with the
following substitutions:

• p(ι, S0) is replaced by
p(ι, S0)
ΥA(~t )[ι]

;

• every other fluent term f (u) is replaced by H f (α)[u].

Here, ΥA(~x ) refers to the RHS of the likelihood axiom for
A(~x).

The main result of this paper is the correctness of this
definition of progression:

Theorem 11: Under the conditions of the definition above,
let D′0 = Pro(D0, α). Suppose that D0 |= (ΥA(~t) , 0)[S0].
Then for any L-formula φ rooted in now,

D0 ∪ Σ |= φ[do(α, S0)] iff D′0 ∪ Σ |= φ[S0].

Proof sketch: The proof is based on ideas in (Lin and
Reiter 1997). To show thatD′0∪Σ is the progression ofD0∪

Σ, we need to show that for any model M, M is a model
of D′0 ∪ Σ iff there is a model M′ of D0 ∪ Σ such that for
any φ, M |= φ[S0] iff M′ |= φ[do(α, S0)]. We then use the
fact that for any situation term σ, f (σ) and f (do(α, σ)) are
related precisely to each other in terms of E f (α) and H f (α)
to satisfy this model-theoretic property.

This theorem gives us the desired property for Bel (which is
defined in terms of p) as a corollary:

Corollary 12: Suppose D0,Σ, D′0, φ, and α are as above.
Then for all real numbers n:

D0 ∪ Σ |= Bel(φ, do(α, S0)) = n
iff D′0 ∪ Σ |= Bel(φ, S0) = n.

Thus the degree of belief in φ after a physical or sensing
action is equal to the initial belief in φ in a progressed theory.

We now present some examples, considering, in turn,
noise-free actions, noisy sensing and finally noisy actions.

Example 13: Let us consider an action theory with a vertical
action mv(z), a sensing action sonar(z) and two horizontal
actions: towards moves the robot halfway towards the wall
and away moves the robot halfway away from the wall. For-
mally, letD0 ∪Σ be an action theory whereD0 contains just
(3), and Σ includes
• foundational axioms and (P1)-(P3) as usual;
• a l-axiom for sonar(z), namely (2);
• l-axioms for the other actions, which are noise-free, and

so these simply equal 1;
• a successor state axiom for v, namely (1);
• the following successor state axiom for h:

h(do(a, s)) =
If a = away Then 3/2 · h(s)
Else If a = towards Then 1/2 · h(s)
Else h(s).

6In the most common case (like noise-free or sensing actions),
the arguments to the action would simply be a vector of constants.
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We noted that (5) does not satisfy our invertibility property.
This variant, however, is invertible. The H-expression for v
was derived in Example 4. The H-expression for h is:

Hh(a) =
If a = away Then 2/3 · h
Else If a = towards Then 2 · h
Else h.

We now consider the progression ofD0 wrt the action away.
First, the instantiated H-expressions would simplify to:
• Hh(away) = 2/3 · h;
• Hv(away) = v.
Next, since away is noise-free, we have Υaway = 1. Putting
this together, we obtainD′0 = Pro(D0, away) as:

p(s, S0) = U(2/3 · h; 2, 12) × N(v; 0, 1) [s]
= U(h; 3, 18) × N(v; 0, 1) [s]

That is, the new p is one where h is uniformly distributed on
[3, 18] and v is independently drawn from a standard normal
distribution (as before). This leads to a shorter and wider
density function, as depicted in Figure 2. Here are three sim-
ple properties to contrast the original vs. the progressed:
• D0 ∪ Σ |= Bel(h ≥ 9, S0) = .3.

The Bel term expands as:

1
η

∫
x

∫
y

If ∃ι(h = x ∧ v = y ∧ h ≥ 9)[ι]
ThenU(h; 2, 12) × N(v; 0, 1)[ι] Else 0

which simplifies to the integration of a density function:

1
η

∫
x

∫
y

{
.1 × N(y; 0, 1) if x ∈ [2, 12], x ≥ 9
0 otherwise

=
1
η

∫
x

∫
y


.1 × N(y; 0, 1) if x ∈ [9, 12]

0 otherwise
= .3.

Only those situations where h ∈ [2, 12] initially are given
non-zero p values and by the formula in the Bel-term, only
those where h ≥ 9 are to be considered.

• D0 ∪ Σ |= Bel(h ≥ 9, do(away, S0)) = .6.
For any initial situation ι, h[do(away, ι)] ≥ 9 only when
h[ι] ≥ 6, which is given an initial belief of .6.

• D′0 ∪ Σ |= Bel(h ≥ 9, S0) = .6.
Basically, Bel simplifies to an expression of the form:

1
η

∫
x

∫
y

{
1/15 · N(y; 0, 1) if x ∈ [3, 18], x ≥ 9
0 otherwise

giving us .6.

Example 14: LetD0 ∪ Σ be exactly as above, and consider
its progression wrt towards. It is easy to verify that for in-
stantiated H-expressions we get:
• Hh(towards) = 2 · h;
• Hv(towards) = v;

0 5 10 15 20
 

 

 

 

 

 

Figure 2: Belief change about h: initially (solid magenta) and after
moving away (dotted blue).

Here too, because towards is noise-free, Υtowards is simply 1,
which is to say theD′0 = Pro(D0, towards) is defined as:

p(s, S0) = U(2 × h; 2, 12) × N(v; 0, 1) [s]
= U(h; 1, 6) × N(v; 0, 1) [s].

The new distribution on h is narrower and taller, as shown
in Figure 3. Here we might contrastD0 andD′0 as follows:
• D0 ∪ Σ |= Bel(h ∈ [2, 3], S0) = .1.
• D′0 ∪ Σ |= Bel(h ∈ [2, 3], S0) = .2.
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Figure 3: Belief change about h: initially (solid magenta) and
moving towards the wall (dotted blue).

Example 15: Let D0 ∪ Σ be as in the previous examples.
Consider its progression wrt the action sonar(5). Sensing ac-
tions do not affect fluents, so for H-expressions we have:
• Hh(sonar(5)) = h;
• Hv(sonar(5)) = v.
Here sonar(z) is noisy, and we have Υsonar(5) = N(5; h, 4).
This means that the progressionD′0 = Pro(D0, sonar(5)) is

p(ι, S0)
N(5; h, 4)[ι]

= U(h; 2, 12) × N(v; 0, 1)[ι],

which simplifies to the following:
p(ι, S0) = U(h; 2, 12) × N(v; 0, 1) × N(5; h, 4) [ι].

As can be noted in Figure 4, the robot’s belief about h’s true
value around 5 has sharpened. Consider, for example, that:
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• D0 ∪ Σ |= Bel(h ≤ 9, S0) = .7.
• D′0 ∪ Σ |= Bel(h ≤ 9, S0) ≈ .97.
If we were to progress D′0 further wrt a second sensing ac-
tion, say sonar(5.9), we would obtain the following:

p(ι, S0) =
U(h; 2, 12) × N(v; 0, 1) × N(5; h, 4) × N(5.9; h, 4) [ι].

As can be seen in Figure 4, the robot’s belief about h would
sharpen significantly after this second sensing action. If we
letD′′0 = Pro(D′0, sonar(5.9)) then:
• D′′0 ∪ Σ |= Bel(h ≤ 9, S0) ≈ .99.
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Figure 4: Belief change about h: initially (solid magenta), after
sensing 5 (red circles), and after sensing twice (blue squares).

Example 16: LetD0 be the conjunction of (3) and v(S0) = 3.
Let Σ be the union of:
• (P1)-(P3) and domain-independent foundational axioms;
• a successor state axiom for h as above;
• a noisy move action mv′ with the following l-axiom:

l(mv′(x, y), s) = N(y; x, 2)

• a successor state axiom for v using this noisy move:

v(do(a, s)) = If ∃x, y(a = mv′(x, y))
Then v(s) + y Else v(s).

(Recall that for a noisy move mv′(x, y), x is the intended
motion and y is the actual motion.) This is inverted using
the same idea as in Example 4.

Consider the progression of D0 ∪ Σ wrt mv′(2, g(S0)). The
simplified H-expressions are as follows:
• Hh(mv′(2, g)) = h;
• Hv(mv′(2, g)) = v − g.
By definition, occurrences of v(u) in D0 are to be replaced
by Hv(mv′(2, g))[u]. Also, Υmv′ (2, z) = N(z; 2, 2). Therefore,
D′0 = Pro(D0,mv′(2, g(S0))) is defined to be

(v − g)[S0] = 3 ∧(
p(ι, S0)

N(g; 2, 2)[ι]
= U(h; 2, 12) × N(v − g; 0, 1)[ι]

)
This simplifies to the conjunction of these two sentences:

• v(S0) = 3 + g(S0); and
• p(ι, S0) = U(h; 2, 12) × N(v; g, 1) × N(g; 2, 2) [ι].
Thus the noisy action has had two effects: the actual position
has shifted by g(S0) units, and the belief about the position
has also shifted by an amount g drawn from a normal distri-
bution centered around 2. This leads to a shifted and wider
curve seen in Figure 5. As expected, the agent is consid-
erably less confident about its position after a noisy move.
Here, for example, are the degrees of belief about being lo-
cated within 1 unit of the best estimate (that is, the mean):
• D0 ∪ Σ |= Bel(v ∈ [−1, 1], S0) ≈ .68.
• D′0 ∪ Σ |= Bel(v ∈ [1, 3], S0) ≈ .34.

Basically, Bel expands to an expression of the form

1
η

∫
x,y,z

{
.1N(y; z, 1) · N(z; 2, 2) if x ∈ [2, 12], y ∈ [1, 3]
0 otherwise

where η is∫
x,y,z

{
.1N(y; z, 1) · N(z; 2, 2) if x ∈ [2, 12]
0 otherwise

leading to .34.
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Figure 5: Belief change about v: initially (solid magenta) and after
a noisy move of 2 units (blue squares).

Constant Growth
As seen in the examples, the result of progression is a theory
D′0 which is essentially obtained by adding H-expressions,
and so, its size is linear in the size of the action theory:
Theorem 17: Suppose D = D0 ∪ Σ is any invertible basic
action theory. After the iterative progression ofD0∪Σ wrt a
sequence σ, the size of the new initial theory is O(|D| × |σ|).
Therefore, progression is both computable and efficient in
the sense of (Liu and Lakemeyer 2009). But for realistic
robotic applications, even this may not be enough, especially
over millions of actions. Consider, for example, that to cal-
culate a degree of belief it will be necessary to integrate the
numerical expression for p. What we turn to in this section
is a special case that would guarantee that over any length
of action sequences, the size of the progressed theory does
not change beyond a constant factor. It will use the notion
of context-completeness (Liu and Levesque 2005) and a few
simplification rules.
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Definition 18: Suppose F ⊆ { f1, . . . , fk} is any set of fluents,
andD0 ∪ Σ is any invertible basic action theory. We say that
D0 is complete wrt F if for any φ ∈ LF , either D0 |= φ or
D0 |= ¬φ, where LF is the sublanguage of L restricted to
the fluents in F.
Definition 19: An invertible basic action theory D0 ∪ Σ is
said to be context-complete iff
• for every fluent f , D0 is complete wrt every fluent other

than f appearing in the successor state axiom of f ;
• D0 is complete wrt every fluent appearing in a conditional

expression in the likelihood axioms.
That is, there is sufficient information in D0 to simplify all
the conditionals appearing in the context formulas of the
successor state axioms and the likelihood axioms.

STRIPS actions are trivially context-complete, and so are
Reiter’s context-free successor state axioms where only rigid
symbols appear in the RHS (Reiter 2001). In Example 7, if
D0 is complete wrt the fluents fuel and wax, then the theory
would be context-complete. Note that D0 does not need to
be complete wrt the fluent v in that example, and this is pre-
cisely why they are interesting. Indeed, both (5) and (1) are
also context-complete because, by definition, E f may men-
tion f , and (say) use its previous value.7 The reader may fur-
ther verify that all the density change examples developed in
the paper are context-complete.

As a result of context-completeness, the body of the suc-
cessor state axiom for a fluent f would simplify to an ex-
pression involving only f . As a consequence, H-expressions
simplify to expressions of the form:

f (s) = θ( f (do(a, s)))
where θ(x) is some rigid L-term, possibly an arithmetic ex-
pression, with a single free variable x. Analogously, if A(~t)
is any ground action, then,

ΥA(~t) = δ(~t, ~f ).
where δ(~x, ~y) is some rigid L-term, possibly an arithmetic
expression, with free variables ~x ∪ ~y. So in a progression,
every fluent f would be replaced by an arithmetic expression
using only f , resulting in a theory that is linear in the size of
the initial theoryD0 only:
Theorem 20: Suppose D0 ∪ Σ is any invertible basic ac-
tion theory that is also context-complete. After the iterative
progression ofD0 ∪ Σ wrt a sequence σ, the size of the new
initial theory is O(|D0| × |σ|).
This can make a substantial difference in the size of the
expression for p. Nevertheless, after n actions, we might
still end up with an expression consisting of a product of n
terms. We now simplify this computation further by appeal-
ing to the analytical tractability of conjugate distributions
(Box and Tiao 1973; Bertsekas and Tsitsiklis 2008), such
as Gaussians, where the product of two Gaussians is defin-
able as another Gaussian. We show how this helps with an
example.

7Strictly speaking, our notion of context-completeness is in-
spired by, but not the same as the one in (Liu and Levesque 2005).
This pertains to the clarification just made: we allow successor state
axioms to use the fluent’s previous value.

Example 21: LetD0 ∪ Σ be as in Example 16. We noted its
progression wrt mv′(2, g(S0)) includes:

p(ι, S0) = U(h; 2, 12) × N(v; g, 1) × N(g; 2, 2) [ι].

If we progress this sentence further wrt a second noisy action
mv′(3, g′(S0)), we would obtain:

p(ι, S0) = U(h; 2, 12) × N(v − g′; g, 1) ×
N(g; 2, 2) × N(g′; 3, 2) [ι] (6)

By letting g∗ be a new fluent symbol such that g∗ = g + g′, it
follows that (6) is equivalent to the following:

p(ι, S0) = U(h; 2, 12) × N(v; g∗, 1) × N(g∗; 5, 4) [ι].

Analogously, after any number n of noisy moves, we would
only need to integrate over 3 variables vs. n + 2 in (6).

Theorem 22: SupposeD0∪Σ is any invertible action theory
that is context-complete and the likelihood axioms are nor-
mal distributions. After the iterative progression of D0 ∪ Σ
wrt a sequenceσ, the size of the new initial theory is O(|D0|).

That is, the size of the progression does not grow beyond a
constant factor. This result is easily adapted to other conju-
gate distributions. Essentially, like other filtering techniques
(Thrun, Burgard, and Fox 2005), such as Kalman filters, we
conclude that progression can be made very efficient. But
unlike some of these other techniques, we are not limited
to Gaussians. More significantly, unlike all other probabilis-
tic formalisms, we can allow arbitrary context formulas, and
under the reasonable assumption of context-completeness,
still remain efficient.

Related Work and Discussion
This work builds on Lin and Reiter’s (1997) notion of pro-
gression. Other advances on progression have been made
since then (Liu and Lakemeyer 2009; Vassos 2009), mainly
by appealing to the notion of forgetting (Lin and Reiter
1994). We were motivated by concerns about continuity, and
this led to the notion of invertible theories. These theories
allowed us to perform first-order progression by inverting
successor state axioms in a way that, as far as we know,
has not been investigated before. Although we restricted L
to nullary real-valued fluents, we suspect that invertibility
and its connection to progression may apply more generally.
This is left for future investigations.

The progression of categorical knowledge against noise-
free effectors and sensors is considered in (Liu and Wen
2011; Lakemeyer and Levesque 2009). The progression of
discrete degrees of belief wrt context-completeness is con-
sidered in (Belle and Lakemeyer 2011). In the fluent calculus
(Thielscher 2001), a dual form of successor state axioms is
used, leading naturally to a form of progression. However,
continuity is not considered in any of these.

The form of progression considered here follows Lin and
Reiter and differs from weaker forms including the one pro-
posed by Liu and Levesque (2005), and the notion of logical
filtering (Shirazi and Amir 2005; Hajishirzi and Amir 2010),
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which is a form of (approximate) progression.8 Interestingly,
logical filtering is inspired by Kalman filters (Thrun, Bur-
gard, and Fox 2005), although the precise connection is not
considered. In situation calculus terminology, Kalman filters
and its variants are derived using strongly context-free (Re-
iter 2001) noisy actions and sensors, with additive Gaussian
noise, over normally distributed fluents. See, for example,
(Belle and Levesque 2013b). Indeed, as discussed in BL, the
framework used here is significantly more general than prob-
abilistic formalisms used in the robotics and uncertainty lit-
erature, including Dynamic Bayesian Networks (Boyen and
Koller 1998; Darwiche and Goldszmidt 1994) and hybrid
control structures (McIlraith et al. 2000), among others.

See BL for a discussion of how the formalism used
here also differs from other logical accounts for reasoning
about uncertainty, such as probabilistic logics (Fagin and
Halpern 1994), Markov logics (Richardson and Domingos
2006; Choi, Guzman-Rivera, and Amir 2011), probabilistic
planning languages (Kushmerick, Hanks, and Weld 1995;
Younes and Littman 2004; Sanner 2011), dynamic logics
(Van Benthem, Gerbrandy, and Kooi 2009), and previous
first-order proposals (Mateus et al. 2001; Thielscher 2001;
Martin and Thielscher 2009; Fritz and McIlraith 2009;
Poole 1998). In essence, none of these address continuous
uncertainty and continuous noise in a general way.

Conclusions
Lin and Reiter developed the notion of progression, with
long-lived agents in mind. However, their account does not
deal with probabilistic uncertainty nor with noise, as seen in
real-world robotic applications. In the work here, we con-
sider semantically correct progression in the presence of
continuity. By first identifying what we called invertible
basic action theories, we obtained a new way of comput-
ing progression. Under the additional restriction of context-
completeness, progression is very efficient. Most signifi-
cantly, by working within a richer language, we have ob-
tained progression machinery that, to the best of our knowl-
edge, has not been discussed elsewhere, and goes beyond
existing techniques. The unrestricted nature of the specifi-
cation of the p fluent, for example, which we inherit from
(Bacchus, Halpern, and Levesque 1999), allows for agents
whose beliefs are not determined by a unique distribution.

One major topic for future investigation is an implementa-
tion. But apart from simply progressing a theory, we would
also like to support the numerical calculation of degrees of
belief. For this, we may need to appeal to numerical inte-
gration techniques such as Monte Carlo sampling (Murphy
2012), and so we would also like to study formal constraints
on D0 which guarantee that sampling can be done in an ef-
fective manner.

8In (Shirazi and Amir 2005; Hajishirzi and Amir 2010), the no-
tion of a permuting action is introduced for computing their form
of progression, which bears some similarity to invertible fluents.
However, as mentioned above, our work on continuity led itself to
invertibility. Neither continuous uncertainty nor continuous noise is
considered in (Shirazi and Amir 2005; Hajishirzi and Amir 2010).
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