
Heuristic Guided Optimization for Propositional Planning

Andreas Sideris and Yannis Dimopoulos
Department of Computer Science

University of Cyprus
Nicosia, Cyprus

Abstract

Planning as Satisfiability is an important approach to Propo-
sitional Planning. A serious drawback of the method is its
limited scalability, as the instances that arise from large plan-
ning problems are often too hard for modern SAT solvers.
This work tackles this problem by combining two powerful
techniques that aim at decomposing a planning problem into
smaller subproblems, so that the satisfiability instances that
need to be solved do not grow prohibitively large. The first
technique, incremental goal achievement, turns planning into
a series of boolean optimization problems, each seeking to
maximize the number of goals that are achieved within a lim-
ited planning horizon. This is coupled with a second tech-
nique, called heuristic guidance, that directs search towards a
state which satisfies all goals.

Introduction
Planning as Satisfiability (Kautz and Selman 1996; Kautz,
Selman, and Hoffmann 2006) is an important method for
optimal propositional planning. One of the advantages of the
method is that it finds plans of optimal makespan. However,
it often happens that the instances generated from planning
problems, grow so large that they are unsolvable even by the
most advanced SAT solvers.

This motivated a number of recent attempts to improve
scalability at the cost of sacrificing the optimality of the gen-
erated solutions. One such example is Madagascar (Rin-
tanen 2012), that enhanced a SAT solver with a planning
specific variable selection heuristic, to generate suboptimal
plans quickly. In a different spirit, the PSP system (Sideris
and Dimopoulos 2012), introduced the idea of planning as
optimization. PSP employs the increasing planning horizon
technique, but unlike classic SATPLAN, it maximizes the
goals that are achieved within each horizon, and adds them
as intermediate goals in the problem model. However, as the
plan length can grow arbitrarily long, at some point it is ex-
pected that both approaches will be confronted with perfor-
mance difficulties.

In this work we take a different path. The basic idea is
to split a planning problem into smaller subproblems, of a
size that is not prohibitive for the underlying solver. PSP-H,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the new planning system that is described here, shares with
PSP the planning as optimization perspective, but it differs
in a number of important ways. The first is the incremen-
tal goal achievement which, at a high level, works as fol-
lows. PSP-H first generates a sub-plan that, starting from
the initial state, achieves a subset, of predefined size, of the
problem goals. The state that results after the execution of
the actions of this sub-plan, becomes the new initial state,
and a new sub-plan that satisfies a larger subset of goals is
computed. The procedure iterates and links together the sub-
plans that are generated along the way. Therefore, instead of
solving the original planning problem, PSP-H solves a se-
ries of smaller subproblems.

A downside of this greedy approach is that it focuses on
maximizing the number of achieved goals in a limited plan-
ning horizon, and it ignores completely goals that cannot
be achieved within this horizon. In order to overcome the
limitations that this would place on the effectiveness of the
system, PSP-H is enhanced by a second technique called
heuristic guidance, which imposes an additional require-
ment on the intermediate states that are computed by the
PSP-H algorithm. The property that these states need to sat-
isfy is that there must be a relaxed plan from each such state
to the final state. PSP-H employs three different relaxation
methods that are all based on ignoring some of the problem
constraints, but they differ in their strength.

The first relaxation method is the well-known delete lists
relaxation, whereas the second method ignores all action
mutexes. The last relaxation, which is stronger than the first
but weaker than the second, ignores action mutexes and uses
a subset of the fact mutexes that are heuristically selected.
PSP-H is a incomplete and suboptimal planner imple-

mented on top of the PSP system. Our experimental eval-
uation on a number of domains taken from planning com-
petitions, demonstrates that PSP-H can solve challenging
problems, that require long plans. Moreover, a preliminary
comparison with Madagascar shows that the new system
can solve more problems in some domains, and generate bet-
ter quality solutions both in term of plan length and number
of actions.

Some of the techniques employed in PSP-H are simi-
lar to those used in other planning systems. For instance,
the local optimization method of PSP-H bares some re-
semblance to the enforced hill-climbing approach of the

669

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



FF planner (Hoffmann and Nebel 2001). The CPT sys-
tem (Vidal and Geffner 2006) combines heuristic estima-
tors with constraint programming techniques in the context
of optimal temporal planning. Finally, a study of the rela-
tion between the relaxation methods of PSP-H and the red-
black heuristics of (Katz, Hoffmann, and Domshlak 2013a;
2013b) may lead to a tighter integration of heuristic and con-
strained optimization based planning.

Background

We assume familiarity with the planning as satisfiability
framework. We discuss in brief pseudo-boolean optimiza-
tion and the planning as optimization method of PSP.

A (STRIPS) planning problem is a triple P =<
I,G,A >, where I is the set of facts that hold in the ini-
tial state, G are the goals, and A is a set of actions. Each
action has preconditions, add effects, and delete effects. In
the SAT model of a planning problem, time-stamped propo-
sitional atoms (or variables) represent the action and facts of
the problem. An atom A(T ), where A is an action, corre-
sponds to the decision of whether action A is taken or not
at time T , and analogously for variables of the form f(T ),
where f is a fact.

PSP-H uses the SMP (Sideris and Dimopoulos 2010) en-
codings of a planning problem, that derives its clauses from
the planning graph (Blum and Furst 1997) of the problem.
Among the clauses of the SMP model there are those that
correspond to fact and action mutexes, that are derived from
the planning graph.

A (Linear) Pseudo-boolean constraint (PB-constraint) is
an inequality of the form

∑
aixi ≥ b, where xi is a

boolean variable, and ai, b integers. A Pseudo-boolean op-
timization (PBO) problem on a set of variables X con-
sists of a set of PB-constraints on X , together with a lin-
ear function on boolean variables from X . In PBO we seek
a value assignment on the variables of X that maximizes
the value of the boolean function, called objective func-
tion, and satisfies all the PB-constraints. The current imple-
mentation of PSP-H uses minisat+ (Eén and Sörensson
2006), to translate PB-constraints into CNF, and then in-
vokes precosat (Biere 2009), that solves the SAT in-
stance.

PSP-H is implemented as an extension of the PSP plan-
ning system (Sideris and Dimopoulos 2012). PSP follows a
similar to the classic solve and expand approach, with the
difference that it seeks to maximize the number of goals
that can be achieved within a fixed planning horizon of, say,
k steps. If this number is smaller than some user supplied
value, the planning horizon is extended to k + 1 steps, and
the procedure iterates. Moreover, the goals that are attained
within the k steps are added to the problem as intermediate
goals, that must be established in the k + 1 steps long plan
that is generated in the next iteration. For a more detailed
description of PSP the reader is referred to (Sideris and Di-
mopoulos 2012).

The PSP-H algorithm
PSP-H takes as input a (STRIPS) planning problem
(I,G,A), and a number of parameter values in the range
[0..1]. The main technique implemented in PSP-H is the
incremental goal achievement, that is embedded in its
optimization phase. The core of the computation that
is carried out in this phase is the solution of a series of PBO
problems, where the maximization objective is g1(T )+. . .+
gl(T ), where g1, . . . , gl are the goal atoms and T the plan-
ning horizon. Obviously, the highest value that can be as-
sumed by the objective function is l, which we denote by
fmax.
PSP-H is also supplied by the user with an objective

function value threshold thres. It starts with an initial plan-
ning horizon o that is determined by information that is ex-
tracted from the underlying planning graph as in the classic
SATPLAN system. PSP-H solves the PBO with horizon o
and obtains an optimal value f for the objective function.
If f < thres ∗ fmax, the planning horizon is set to o + 1,
and the procedure repeats. If for some horizon ob a solu-
tion is found with a value fb for the objective function such
that fb ≥ thres ∗ fmax, a plan is extracted from the so-
lution. At this point, the state I ′ that results after the exe-
cution of the actions in plan becomes the new initial state,
and PSP-H repeats the process with a new planning prob-
lem P ′ =< I ′, G,A >, where P =< I,G,A > and I are
the original problem and initial state respectively. Moreover,
the objective value threshold thres is increased and set to
thres+restart rate, where restart rate is a user supplied
value, called restart rate. As the maximization objective is
defined on the fact variables that correspond to goals, the in-
crease in the threshold translates into an increase in the num-
ber of goals that are achieved. Hence the term incremental
goal achievement.

The optimization phase of PSP-H terminates when the
value thres exceeds another user supplied value finphase.
Its output is a plan that is formed by concatenating the partial
plans that are generated during its iterations. The execution
of the action in this plan defines a state Isat. Then PSP-H,
similarly to PSP, enters the satisfaction phase, where
a new planning problem with initial state Isat, is solved by
SMP.

The periodic replacement of the initial state of the plan-
ning problem described above, is called restart strategy,
where the value of the restart rate parameter determines
the frequency of the restarts. With the restart strategy
PSP-H attempts to limit the length of the planning hori-
zon, and hence the size of the satisfiability instances that
are solved by the system. As it is often the case with greedy
search methods, a difficulty with incremental goal achieve-
ment is that it tends to generate locally optimal plans, i.e.
plans that maximize the number of attained goals in the lim-
ited planning horizon, and ignores goals that are not achiev-
able within that horizon. This bias may lead to poor qual-
ity solutions, as well as insolvability when actions interact
in complex ways, as in the case of the presence of non-
renewable resources.

To tackle this problem, PSP-H combines incremental
goal achievement with a heuristic method that is intended to

670



account for the effort that is needed to achieve the remaining
goals. This is accomplished by a problem model that con-
sists of the usual layers of action and fact propositions that
correspond to different times/points, but it is divided in two
parts: the constrained and the relaxed part.
The constrained part is the standard PB model of the prob-
lem, i.e. a straightforward translation of the SMP clauses into
linear inequalities. The relaxed part is also obtained from the
SMP encoding, but some of the constraints of the model are
omitted. In fact, as depicted in Figure 1, the relaxed part is
further divided into three segments that differ in the mutual
exclusion information they contain.

The first segment of the relaxed part is the action relax-
ation, which is the SMPmodel without action mutex clauses,
and it is similar to the ”∃ encoding” of (Rintanen, Heljanko,
and Niemelä 2006). The last segment is the full relaxation
that contains neither action nor fact mutexes. This segment
corresponds to the well-known delete-lists relaxation heuris-
tic that forms the basis of many heuristic search planners. All
goals are added as unit clauses in a final layer q + 1 (layer
numbering is taken from figure 1).

Between the above two segments lies the intermediate
relaxation segment. It is less constrained (more relaxed)
than the action relaxation, but more constrained (less re-
laxed) than the full relaxation. It contains no action mu-
texes, and only a subset of the fact mutexes that is heuris-
tically selected by PSP-H. This selection process is based
on the analysis of the multi-valued variable representation
of the problem that is carried out with the help of the pre-
processor of LAMA (Richter and Westphal 2010). For some
problem variables all corresponding mutexes are omitted,
for others all mutexes are added, whereas for some vari-
ables x with domain values x1, . . . , xn, instead of the con-
straint

∑n
i=1 xi <= 1, PSP-H adds the weaker inequality∑n

i=1 xi <= k, for heuristically selected values of k. Due
to space limitation, a more complete description of the inter-
mediate relaxation falls outside the scope of this paper.

Full 
Relaxation

Constrained Part Relaxed Part

0 k m n q
Action 

Relaxation
Intermediate 

Relaxation

Figure 1: The different part of the encoding in PSP-H.

From the above discussion it must have become appar-
ent that the problem model becomes less constrained as we
move from left to right in figure 1. All the constraints of
the different parts must be satisfied during the optimization
phase of PSP-H, while the objective function that is maxi-
mized is g1(k) + . . . + gl(k), i.e. the goals refer to the last
layer of the constraint part. The action variables of the first
k layers (ie. the constrained part) that are assigned true in
a solution generated by PSP-H in an iteration of the opti-
mization phase, form a valid plan that achieves some of the

goals at time k. The execution of the actions of this plan de-
fines a valid state sk at time k. As noted in the beginning of
this section, this state sk may become the initial state of the
new problem that is solved in the next iteration of the op-
timization phase. The PSP-H encoding ensures that a state
that satisfies all goals is reachable from sk within q + 1− k
relaxed steps. Therefore, PSP-H searches for a state sk for
which there is not only a valid plan from the current initial
state, but there is also a relaxed, heuristically specified, plan
from sk to a final state. Hence the term heuristic guided op-
timization.

The computation of the length of the full relaxation seg-
ment takes into account a user supplied value for parame-
ter h init perc, and is carried out as follows. PSP-H first
removes all delete-lists from all problem actions, and then
builds a planning graph until all goals are reachable. If the
number of layers of this graph is len, the length of the relax-
ation part (corresponding to value q− n in figure 1) is set to
len ∗ h init perc.
The length of the other segments of the relaxed part are com-
puted in a similar way. First, PSP-H builds a planning graph
of the original problem, and extends it until all goals are
reachable. If the graph has len layers, the length of the ac-
tion relation part is set to len ∗ r init perc1 and the inter-
mediate relaxation part to len ∗ r init perc2, where again
r init perc1 and r init perc2 are input parameter values.

In order to enhance the effects of heuristic guided opti-
mization, PSP-H shortens the relaxed part periodically as
the planner approaches a final state. The reduction always
starts with the full relaxation segment, while its rate is deter-
mined by an input parameter h red rate. Roughly speaking,
each time that the value of the objective function that is max-
imized in the optimization phase improves by h red rate,
the full relaxation segment is reduced by one step. When its
length reaches the value 1, the intermediate relaxation seg-
ment is reduced in a similar way. Action relaxation is never
reduced.

Experimental evaluation
PSP-H is a prototype system that has been implemented to
test the ideas that are presented in this work. It has been built
on top of SATPLAN, from which it inherits the very slow
and memory demanding planning graph construction phase.
This imposes serious limitations on the size of the problem
that can be solved by PSP-H. In fact, in many domains the
current version of PSP-H spends more time in manipulating
data structures than in constraint solving and optimization.
PSP-H has been evaluated on a number of domains from

various planning competitions and compared with LAMA and
Madagascar. All experiments were run on a server with
24 X5690 cores at 3.47GHz running under CentOS. Both
LAMA and Madagascarwere run with their default param-
eter values, and a CPU cutoff limit of 3600 seconds. In all
experiments with PSP-H, the optimization phase terminated
after 300 CPU seconds, in which case the planning horizon
was extended by one step. PSP-H was also run with a CPU
limit of 3600 seconds.

Table 1 summarizes the number of problems solved by
each system. The first column lists the domains of the ex-

671



Domain Num. of LAMA Madag PSP-H
Probl.

Pipesworld 25 25 22 25
Satellite 22 22 22 22
Storage 29 20 29 29
Openstacks 30 30 18 18
Elevators 30 30 30 30
Transport 19 19 19 18
Visitall 28 28 19 21
Barman 40 40 28 40
Total 223 214 187 202

Table 1: Number of problems solved by the planners within
a 3600 seconds CPU limit. The second column lists the num-
ber of problems tried in each domain.

perimental evaluation, with the name with which they are
known in the literature. The second column lists the num-
ber of problems included from each domain, as it was deter-
mined by PSP-H’s memory consumption. Problems which
exceed the memory capabilities of PSP-H are excluded
from the study. The third and fourth column present the
problems solved within the CPU cutoff limit by LAMA and
Madagascar respectively. The last column refers to a
characteristic run of PSP-H (the specific parameter values
of this run are not of particular interest) that feature frequent
restarts, thus making the satisfiability problems easier for the
underlying boolean optimizer.

A comparison of PSP-H’s column with that of LAMA,
clearly shows that the heuristic planner outperforms PSP-H.
In fact, the only domain where PSP-H (and Madagascar)
solves more problems is Storage. On the other hand,
PSP-H can solve more problems than Madagascar in
Pipesworld, but its advantage shows more clearly in the
Visitall and Barman domains, and this is not acci-
dental. The plans in these domains are long, and it seems
that the techniques employed by PSP-H address success-
fully this problem, at least in certain cases. We note that the
longest plan that PSP-H was able to synthesize comes from
Visitall and was 248 steps long.

Table 2 presents results about the quality of the plans that
were generated by the systems for the largest 5 problems
in each domain that were solved by all planners. The num-
bers in parentheses are the sums of the number of actions
in all the 5 problems, whereas the numbers outside paren-
theses sum the parallel plan lengths, and hence they are
not meaningful for LAMA which generates sequential plans.
Clearly, PSP-H generates better quality plans in all domains
except Satellite. On the other hand, in some domains
with low or no action parallelism, such as Openstacks,
Visitall and Barman, PSP-H generates plans that have
less actions than those of LAMA. However, in domains with
high parallelism, LAMA’s plans contain considerably fewer
actions.

Domain LAMA Madag PSP-H
Pipesworld (167) 193 (432) 152 (281)
Satellite (366) 99 (457) 109 (527)
Storage - 450 (1339) 194 (725)
Openstacks (662) 448 (606) 396 (572)
Elevators (839) 428 (2056) 382 (1629)
Transport (341) 432 (1161) 220 (666)
Visitall (448) 535 (535) 447 (447)
Barman (814) 896 (1184) 561 (780)
Total (3637) 3031 (6431) 2267 (4902)

Table 2: Sums of the solution length (number of parallel
steps) and in parentheses the sums of the number of actions
for the largest five problems in each domain. In the last line
the total counts for all domains except Storage.

References
Biere, A. 2009. P{re,ic}oSAT@SC’09. In SAT Competition
2009, http://fmv.jku.at/precosat/.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artif. Intell. 90(1-2):281–300.
Eén, N., and Sörensson, N. 2006. Translating pseudo-
boolean constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation 2(1-4):1–26.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Int.
Res. 14(1):253–302.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-black
relaxed plan heuristics. In AAAI, 489–495.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who said
we need to relax all variables? In ICAPS, 126–134.
Kautz, H. A., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic and stochastic search. In AAAI,
1194–1201.
Kautz, H. A.; Selman, B.; and Hoffmann, J. 2006. SAT-
PLAN: Planning as satisfiability. In Booklet of the 5th Plan-
ning Competition.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artif. Intell. 170(12-13):1031–1080.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tif. Intell. 193:45–86.
Sideris, A., and Dimopoulos, Y. 2010. Constraint propaga-
tion in propositional planning. In ICAPS, 153–160.
Sideris, A., and Dimopoulos, Y. 2012. Propositional plan-
ning as optimization. In ECAI, 732–737.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artif. Intell. 170(3):298–335.

672




