
Advanced Measures for Empirical Testing

Joachim Baumeister
Institute of Computer Science

University of Würzburg, Germany
joba@uni-wuerzburg.de

Abstract

Empirical testing is a very popular evaluation method
for the development of intelligent systems. Here, previ-
ously solved problems with correct solutions are given
as cases to the system. Validity is tested by comparing
the expected results with the derived solutions. Besides
classic forms of boolean testing of occurring solutions
more refined methods are required for a thorough eval-
uation of real world knowledge systems. We present
extended precision and recall functions for interactive
knowledge systems that are generalizations of the exist-
ing measures. Additionally, we propose a visualization
method for inspecting the validation result for interac-
tive systems. A case study with a second-opinion sys-
tem from the medical domain demonstrates the useful-
ness of the approach.

Introduction

In the context of quality management of (intelligent) sys-
tems we see that the empirical testing technique denotes a
very important and frequently applied method. Empirical
testing is simple and effective: previously solved test cases
with correct results are given as input to the system and the
derived results are compared with the expected results that
are given in the test cases. The derivation quality is typically
measured by precision/recall or the combining F-measure,
for example see (Makhoul et al. 1999) for a detailed com-
parison.

As the original versions of these measures are sufficient
for many evaluation tasks we motivate that sometimes more
advanced versions of the precision and recall are needed to
meet the requirements of the evaluation process. We propose
two extensions:

1. The rated precision/recall that are able to compare so-
lution states rather than the usual boolean occurrence of
solutions, i.e., the default states derived/not derived.

2. The chained precision/recall that not only take into ac-
count the final solutions of a case but also intermediate
solutions during a problem-solving process. They are also
able to weight intermediate solutions in comparison to the
final solutions.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The paper is organized as follows: We introduce the
classic evaluation measures precision and recall, and show
its extensions rated precision/recall and chained preci-
sion/recall. We show that every extension is a true gener-
alization of the traditional measures. Thereafter, we intro-
duce the visualization method DDTree that allows for an in-
tuitive visualization of empirical test runs. The usefulness
of these measures is demonstrated by a case study that was
conducted during the evaluation of a medial second-opinion
system for rescue missions. A discussion and outlook con-
cludes the paper.

Empirical Testing with Sequential Test Cases

We first define basic notions that are used throughout the
subsequent discussion of the advanced testing measures.

Basic Notions

A (knowledge) system is typically defined by its possible
input and output elements. In the context of intelligent sys-
tems a possible input is often called finding and a possible
output is defined as a solution.
Definition 1 (Finding) Let I be the (universal) set of ob-
servable input values. An assignment f : a = v is called a
finding, where a ∈ I is an input (attribute) and v ∈ dom(a)
is an assignable value. For a set of observable inputs I we
call FI the corresponding universal set of findings (in clear
cases we omit index I and only use F for short).
Definition 2 (Solution) Let S be the universal set of output
values, i.e., solutions derivable by the knowledge system. In
the simplest case a boolean value is assigned to a solution
s ∈ S in order to express the positive or negative deriva-
tion of the particular output. For the refined case a more
expressive range of states is assigned to s, for example to
additionally represent a state of its “possible” derivation.

Empirical testing usually runs a collection of test cases,
where the expected results of each test case is known be-
forehand. Formally, a test case can be defined as follows.
Definition 3 (Test Case) A test case tc is a tuple storing a
list of findings and a set of derived solutions:

tc =
(
[f1, . . . , fp], {s1, . . . , sq}

)
, (1)

where fi ∈ F is a finding and si ∈ S is a positively derived
solution.

378

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

Since there is no order of the derived solutions in the
test case every derived solution is equally important. Often
it is beneficial to specify a more refined confirmation state
of the particular solutions, for example, some solutions are
only derived as possible outputs whereas other solutions are
strongly derived as a suitable solution. For this reason we
introduce the notion of a rated solution and a rated test case,
respectively.
Definition 4 (Rated Test Case) Let R be the universal set
of ratings that is used to (partially) order the set of solutions.
The specified ratings ri ∈ R are expected to be derived by a
valid knowledge base when entering the findings fi given in
the case.

A rated test case rtc is a tuple consisting of a list of find-
ings and a set of rated solutions:

rtc =
(
[f1, . . . , fp], {rs1, . . . , rsq}

)
, (2)

where fi ∈ F is a finding and rsi ∈ S × R is a rated
solution, i.e., for rsi : (si = ri) a rating ri ∈ R is assigned
to a solution si ∈ S.

Possible domains for the universal set of ratings R are real
values in [0, 1], for example to represent probabilities de-
rived by a Bayesian network, but also symbolic values like
R = {undefined, excluded, suggested, established}. It is
easy to see that for a rating ri = established (∀i = 1, . . . , q)
a rated test case collapses to a standard test case as given in
Definition 3.

Although the use of rated test cases improves the testing
possibilities it is often not sufficient to test the derivation
quality of the knowledge base at the end of each test case,
but also to test the derivation state during the execution of a
test case. In order to enable this type of testing we partition
the test case into a sequence of (partial) test cases, where
each partial test case stores its findings entered in this phase
and the solutions (with ratings) derived so far. More for-
mally, we introduce the notion of a sequential test case.
Definition 5 (Sequential Test Case) A sequential test case
seq is defined as a list of rated test cases rtci

stc = [rtc1, . . . , rtcn] ,

where a rated test case rtci depends on its predecessors rtcj

(j < i), i.e., solutions in rtci are derived based on the ob-
servation of the findings in rtc1, . . . , rtci.

We see that a sequential test case partitions a standard test
case into distinct rated test cases, where every case contains
an ordered list of findings fi,j that are supposed to be entered
by a user in the given order. Additionally, a rated test case
stores a set of solutions si,j with their corresponding ratings
that are expected to be derived by a valid knowledge system
after entering the findings ∪k=1,...,j fi,k, i.e., the findings
fi,j and all preceding findings defined in the sequential test
case.

It is worth noticing that the order of the finding se-
quences defined in a sequential test case is explicit and im-
portant. Thus, every sequence rtci depends on its prede-
cessor rtci−1, especially with respect to the ratings of the
particular solutions. The rating of solutions can also depend
on findings that were entered in previous cases.

A sequential test case stc = [rtc1, . . . , rtcn] is a general-
ization of a rated test case; for n = 1 a sequential test case
contains only one sequence and collapses to a rated test case.

Traditional Validation Measures

Usually, the quality of the derived solutions is computed
using standard measures such as precision, recall, and the
combined F-measure (Makhoul et al. 1999). In literature
the measures simply compare the set of positively derived
solutions with the set of expected solutions.

Definition 6 (Precision) Let exp ⊆ S be the set of expected
solutions and let der ⊆ S be the set of derived solutions.
Then, the precision of der and exp is defined as follows:

precision(der , exp) =

⎧⎪⎨
⎪⎩
| der ∩ exp |
| der | if der �= ∅ ,

1 if der = exp = ∅ ,

0 otherwise.
(3)

In summary, the precision measures how many of the de-
rived solutions were expected to be derived by the case tc.
Analogously, the recall of a test case is defined as follows.

Definition 7 (Recall) Let exp ⊆ S be the set of expected
solutions and let der ⊆ S be the set of derived solutions.
Then, the recall of der and exp is defined as follows:

recall(der , exp) =
{|der ∩ exp|/ |exp| if exp �= ∅ ,

1 otherwise.
(4)

The recall measures how many expected solutions were ac-
tually derived by the knowledge base. For multiple solu-
tions it is usually interesting to provide a single metric that
combines the precision and recall. Often, the F-measure is
applied in such a context.

Definition 8 (F-Measure) Let exp ⊆ S be the set of ex-
pected solutions and let der ⊆ S be the set of derived so-
lutions. Then, the F-measure of der and exp is defined as
follows:

fβ(der , exp) =

=
(β2 + 1) · precision(der , exp) · recall(der , exp)

β2 · precision(der , exp) + recall(der , exp)
(5)

The F-measure describes single measure to weight the out-
comes of precision and recall of the derived solutions. Here,
the constant β is used to weight the calculated precision in
relation to the recall. Often, we use the f1 measure, where
precision and recall are defined to be equally important.

Extended Validation Measures

When using sequential test cases for empirical testing we
need to take into account that we also have intermediate so-
lutions defined in each finding sequence of a sequential test
case. Furthermore, the traditional measures only perform a
boolean check on the derived and expected solutions. Thus,
only the (non-)derivation of the solutions is compared but
not their current rating. However, we often see a more pre-
cise rating of solutions, for example in Bayesian networks

379

solutions are rated by probabilities p ∈ [0, 1]. In heuristic
decision trees (Puppe 2000) a solution can be derived either
as unclear, excluded, suggested or established. In summary,
a refined set of measures need to take the following into ac-
count:
1. Comparison of rated solutions instead of a boolean inter-

section of the solution occurrences.
2. Evaluation of the quality of a chained case sequences in-

stead of one single test case.
Concerning the first issue we introduce “rated” versions of
the precision/recall measures that generalize the standard
measures and are applicable to arbitrary solution ratings. We
further extend the measures by a sequentialized version of
precision/recall in order to handle the second issue.

Rated Precision/Recall We define the comparison of so-
lution sets with ratings by introducing a special intersection
function.

Definition 9 (Intersection of Rated Solutions) Let
RS1, RS2 ⊆ S × R be two sets of rated solutions.
The rated intersection ∩(RS1, RS2) is defined by

∩ (RS1, RS2) =

=
{

s ∈ S
∣∣ (s = r1) ∈ RS1 ∧ (s = r2) ∈ RS2

}
. (6)

Instead of simply intersecting the set of derived solutions
with the set of expected solutions we use the function
∩(RS1, RS2) to extract all solutions s contained in both
rated solutions sets independent from their current rating.

Definition 10 (Rated Precision) Let exprs ⊂ S × R be
the set of expected solutions of a rated test case, and let
der rs ⊂ S × R be the set of derived solutions. Then, the
rated precision is defined as

precisionrs(der rs , exprs) =

=

⎧⎨
⎩

precrs(der rs , exprs) if der rs �= ∅ ,

1 if der rs = exprs = ∅ ,

0 else,
(7)

where the precrs is defined by

precrs(der rs , exprs) =

=

∑
s∈∩(derrs ,exprs)

rsim
(
r(s, der rs), r(s, exprs)

)
| der rs | . (8)

The rated precision is computed by using the similarity func-
tion rsim : R×R → [0, 1] for different ratings of a solution
s contained in der rs as well as in exprs . Function r(s, RS)
returns the current rating of solution s in the rated solution
set RS, i.e.,

r(s, RS) =
{

r for (s = r) ∈ RS ,

0 else.
(9)

Before applying the definition of the rated precision in an
application domain, we need to formulate the function for
the rated similarity appropriately. It is important to notice

that the similarity function rsim is defined for a value range
between 0 and 1, i.e., rsim : R × R → [0, 1]. If it is not
defined appropriately for a specific application, then we can
simply use the individual similarity function as the default:

rsimi

(
r(s, RS1), r(s, RS2)

)
=

=
{

1 if r(s, RS1) = r(s, RS2) ,

0 else.
(10)

When using the individual similarity function the rated sim-
ilarity reduces to a boolean comparison as already known
from the standard precision measure (see Equation 3).

Example. In the following we give an example for a possi-
ble rated similarity function that could be used for symbolic
ratings with the following domain R = {unclear, excluded,
suggested, established}.

rsim
(
r(s, der rs), r(s, exprs)

)
=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if r(s, der rs) = r(s, exprs) ,

0.8 if r(s, der rs) = suggested∧
r(s, exprs) = established ,

0.5 if r(s, der rs) = established∧
r(s, exprs) = suggested ,

0 else.

(11)

We can see that the function uses the intermediate evalua-
tions 0.8 and 0.5, so that it returns a better similarity when
the expected result is better than currently derived. In some
applications the counter-intuition may be appropriate.

Definition 11 (Rated Recall) Let exprs ⊂ S × R be the
expected solutions of a rated test case and let der rs ⊂ S×R
be the collection of derived solutions. Then, the rated recall
is defined as

recallrs(der rs , exprs) =

=
{

recrs(der rs , exprs) if exp �= ∅ ,

1 otherwise,
(12)

where the recrs is defined by

precrs(der rs , exprs) =

=

∑
s∈∩(derrs ,exprs)

rsim
(
r(s, der rs), r(s, exprs)

)
| exprs |

.

As already introduced in the context of Definition 9 we use
the function ∩(RS1, RS2) defined in Equation 6 and the
rated similarity function rsim(. . .) as discussed before. For
the individual similarity function given in Equation 10 the
rated recall recallrs is equivalent to the standard recall mea-
sure recall .

Chained Precision/Recall Based on the extensions of pre-
cision/recall made above we further generalize the measure
to evaluate the quality of a sequential test case.

Definition 12 (Chained and Rated Precision) Let stc =
(rtc1, . . . , rtcn) be a sequential test case. Every rated test

380

case rtci stores its expected solutions expi,rs ⊂ S × R
in sequence i of the test case stc. Accordingly, we de-
fine der i,rs ⊂ S × R to be the derived solutions in se-
quence i. Then, we define the chained and rated preci-
sion for DERrs = (der1,rs , . . . , dern,rs) and EXPrs =
(exp1,rs , . . . , expn,rs) as follows:

precisionrs,c(DERrs,EXPrs) =

=
∑

i=1...n wp(i) · precisionrs(der i,rs , expi,rs)∑
i=1...n wp(i)

, (13)

where wp : N → [0, 1] defines the weight of the intermedi-
ate solutions in sequence i. The measure precisionrs was
already introduced in Definition 10.

It is easy to see that for n = 1 and wp(n) = 1 the chained
and rated precision precisionrs,c yields the rated precision
precisionrs introduced in Definition 10.

The appropriate specification of the weights depends on
the particular application domain. We see two typical possi-
bilities to define the weights for the chained and rated preci-
sion:

• Equi-important: The quality of the derived solutions is
equally important for every sequence, i.e., wp(i) = 1 for
all i = 1, . . . , n.

• Inverse-annealing: The quality of the derived solutions
becomes more important in later sequences. Then, we
define wp(i) = i/n for i = 1, . . . , n.

The definition of the chained and rated recall is analogous
to the definition of the chained and rated precision.

Definition 13 (Chained and Rated Recall) Let
stc = (rtc1, . . . , rtcn) be a sequential test case. Ev-
ery rated test case rtci stores its expected solutions
expi,rs ⊂ S × R at the sequence i of the test case stc.
Accordingly, we define der i,rs ⊂ S × R to be the derived
solutions in sequence i. Then, we compute the chained
and rated recall for DERrs = (der1,rs , . . . , dern,rs) and
EXPrs = (exp1,rs , . . . , expn,rs) as follows:

recallrs,c(DERrs,EXPrs) =

=
∑

i=1...n wr(i) · recallrs(der i,rs , expi,rs)∑
i=1...n wr(i)

, (14)

where wr(i) ∈ [0, 1] for all i ∈ 1, . . . , n defines the weight
of the intermediate solutions in sequence i. The measure
recallrs was already introduced in Definition 11.

In the context of the chained and rated recall we are able to
specify a distinct weighting function wr in order to define a
different weighting scheme compared to the weighting of the
computed precisions. However, often the same weighting
function is used for wp and wr .

Testing Visualization with DDTrees

The previous sections introduced measures for an in-depth
analysis of a test case. In practice, a suite of cases is used
for the validation of a knowledge base. With the growing

size of the suite the application of visualization methods be-
come important in order to simplify the analysis of the re-
sults. One possible way is the adaptation of the Unit-Testing
metaphor that uses a colored bar indicating the overall out-
come. While running the suite of test cases the color of the
bar remains green until an error in a test case occurs. In
consequence, a red bar shows that at least one failure has
been reported in a test case, see for example (Baumeister,
Seipel, and Puppe 2009) for a detailed discussion on unit
testing of knowledge bases. Although the metaphor allows
for a quick and intuitive analysis of the overall result it lacks
when errors occur and a deeper analysis becomes important.
In the past it has been proposed to visualize the test suite as
a tree (Baumeister, Menge, and Puppe 2008). In this paper
we revive this approach since it allows to interactively an-
alyze and evaluate the validation results. For a knowledge
system with an interview logic it also supports the intuitive
analysis of the dialog behavior, thus verifying the interview
knowledge.

Introduction to DDTrees

DDTree stands for derivation/dialog tree since it uses a tree
structure to visualize the derivation as well as the dialog be-
haviour of the system. In summary, a DDTree arranges the
test cases of a test suite in a (poly-)tree. Every test case is
represented by a path from the root to a leaf of the tree. A
node of such a path contains the following information:

1. The previously asked question (for simpler reference).

2. The currently derived solutions ranked according their
status.

3. The currently asked question; indeed the node represents
the currently active input.

Every arc starting from a node and its currently active in-
put i ∈ I is labeled with a possible/allowed answer v ∈
dom(i) of the input i. Thus, a node i and an outgoing arc
with label v defines a possible finding i = v contained in the
test case. Therefore, a test case with its intermediate results
and its interview behavior is retrieved by navigating from
the root of the tree to one leaf. The leaf usually contains
only the previously asked input and the final solutions of the
particular case.

An example DDTree is shown in Figure 1. For instance,
input Question 1 is initially asked; for finding Question
1=yes the system derives the solutions Solution 2 and So-
lution 3 with 10 points, thereafter Question 4 is asked. If
this input is answered with yes then Solution 2 is rated with
1009 points, whereas Solution 3 remains at 10 points. In
this example the points directly correspond to the rating of
the solutions.

Larger DDTrees can be partitioned into smaller trees by
extracting the subtrees under the root into single trees that
are in turn validated.

DDTree as a Suite of Sequential Test Cases. It is impor-
tant to notice that each path of the DDTree staring from the
root to a leaf corresponds to a sequential test case introduced
in Definition 5, where each node of such a path represents a

381

Initfrage = yes

Question 1

Question 1 = yes

Solution 3 10

Solution 2 10

Question 4

yes

Question 1 = no

Solution 3 10

Solution 2 10

Solution 1 10

Question 3

no

Question 4 = yes

Solution 2 1009

Solution 3 10

yes

Question 4 = no

Solution 1 1004

Solution 3 10

Solution 2 10

no

Question 3 = normal

Solution 1 1009

Solution 2 15

Solution 3 10

normal

Question 3 = high

Solution 2 1009

Solution 1 15

Solution 3 10

high

Question 3 = low

Solution 1 15

Solution 2 12

Solution 3 10

Question 2

low

Question 2 = green

Solution 2 1011

Solution 1 15

Solution 3 10

Question 2 = red

Solution 1 1014

Solution 2 17

Solution 3 10

Question 2 = blue

Solution 3 1009

Solution 1 15

Solution 2 12

green red blue

Figure 1: An example DDTree: Each test case is represented by a path from the root to a leaf of the tree. Erroneous cases are
labeled with red arcs.

rated test case rtci =
(
[f1], {rs1, . . . , rsq}

)
with the previ-

ously answered question as the finding f1 and the currently
derived solutions as {rs1, . . . , rsq}. Since the DDTree can
be interpreted as a test suite of sequential test cases it be-
comes possible to apply the refined testing measures defined
above.

Application of the DDTree. The technique considers
two important issues of the validation task: the indica-
tion/inspection of erroneous cases (i.e., with precision/recall
less than 1) and the validation of new cases that emerged
from the modification/extension of the knowledge base. In
summary, a tree is generated from the suite of test cases.
Correct cases and their arcs, respectively, are greyed-out,
whereas the arcs of erroneous cases are highlighted in red
color. Yet un-inspected cases are not highlighted at all and
printed normally. In this way, the developer can grasp the
following tasks in a simple and intuitive manner:

1. Acknowledge correct cases: the developer easily identi-
fies the correct cases since their arcs are greyed-out. The
DDNet approach gives an immediate feedback of the sys-
tem’s validity. The more grey the tree is drawn the more
valid it appears to the developer.

2. Verify new cases: the developer inspects the new cases
(not highlighted) and marks them, if correct. Otherwise,
the knowledge base needs to be refined appropriately.

3. Analyze incorrect cases: the developer needs to inspect
incorrect cases that are highlighted in red color from the
beginning of the incorrect behavior. The preceding and
correct beginning of the case is not marked in red color.
Thus, the sub-sequence of the erroneous case is simple
to grasp. Since the adjacent and similar cases are also
depicted in the tree, the context of the erroneous case is
easy to understand.

For the identification of the erroneous parts of the tree (i.e.,
faulty sequences of a test case) we use the chained precision
and recall measures as defined in Definitions 12 and 13.

Validation Process

The process of using DDTrees for evaluation is as follows:

1. Initialization: Create an initially empty collection of pre-
viously reviewed cases PRC = ∅.

2. Case Generation (optional): If a sufficient test suite is
not available, we propose to generate the total cover of
test cases for a given knowledge base. Note that this step
can imply the combinatorial enumeration of all possible
finding values, and is therefore not applicable in general.
However, it is quite appropriate in smaller domains and
knowledge bases using a decision tree representation that
restricts the meaningful combinations of findings.
Alternatively, general methods for test case generation
can be applied, e.g., (Gupta and Biegel 1990; Gonzalez
and Dankel 1993; Knauf, Gonzalez, and Abel 2002).

3. Visualization: The test case suite is rendered using
a rooted tree graph drawing algorithm, for example
see (Sugiyama 2002). The arcs of new cases are high-
lighted in the tree, if they were not recorded beforehand.
These cases need to be manually inspected by the devel-
oper. The sequences of the correct and previously re-
viewed cases c ∈ PRC ∩ RC are greyed-out. The re-
maining cases were recorded previously but now show a
different derivation at some point in the case. Starting
from this point the cases are highlighted in red color in or-
der to call attention to the incorrect behavior of the system
in the context of this cases. The color of the arc is com-
puted according to the rated/chained precision and recall
measures that were defined in the previous section. For

382

example the right branch of the DDTree shown in Fig-
ure 1 is rendered in red color.

4. Manual review of the DDTree: Here, only previously
unreviewed cases c /∈ RC need to be reviewed. Every
unreviewed case, i.e., every path from the root to a leaf, is
manually inspected by a domain specialist (not necessar-
ily the developer of the knowledge base). For this step we
recommend to print out the entire graph on a poster in or-
der to obtain a better overview of the interview workflow.
The classic review on a printed poster offers a couple of
benefits especially for domain specialists not familiar with
a concrete validation software. For example, already tra-
versed and reviewed paths can be easily highlighted with
a text marker, comments can be written on the poster, etc.

5. Storing the test suite: If all reviewed cases are inspected
successfully and are marked as correct by the domain spe-
cialist, then these cases are also stored in the test suite of
”previously reviewed cases” PRC .

6. Knowledge modification: After changing the knowledge
base, the previous steps are iterated starting with step 2.
All previously reviewed cases – that have not changed in
this iteration – are highlighted in the tree. Thus, the do-
main specialist intuitively identifies the new or changed
paths in the tree that have to be reviewed in this iteration.

Erroneous cases are highlighted in the visualization in or-
ange color from the part of their erroneous behavior. The
visualization of such a case directly corresponds to the ex-
tended precision and recall measures defined above.

As an advantage of this visualization the domain special-
ist can easily “see” the context of the current case he/she
is inspecting, e.g., what will happen if the question is an-
swered differently, and which solutions are still possible at
this stage, etc. Furthermore, no computer skills are required;
the specialist can concentrate on the domain knowledge and
does not have to struggle with the keyboard/mouse.

Case Study

The presented work was successfully applied in the context
of the development and evolution of the medical knowledge
system Digitalys CareMate, that is sold as a second-opinion
system in medical rescue service. Currently the knowledge
base of the system comprises about 200 findings indicating
the derivation of 120 solutions. About 1500 rules were de-
veloped to implement the interview strategy as well as the
rated derivation of the solutions. An extended version of
the knowledge formalization pattern heuristic decision tree
(Puppe 2000) was used to implement the system.

After a first review phase in March 2008, a final review
meeting of the release candidate of the system was real-
ized in July 2008 (lasting three days). The metaphor of the
DDTree was perceived to be very intuitive by the domain
specialist. Further, the use of printed posters for inspecting
the (large) sub-trees helped significantly during the evalu-
ation phase. Since no computer was required the (almost
unexperienced) domain specialist could start immediately to
work with text marker and pen. The intuitive “user inter-
face” was also beneficial for erroneous areas of the tree. For

example, when identifying errors the specialist could simply
write/draw some text/corrections on the paper, e.g., linking
a question to another sub-tree by drawing the edge manually
on the poster, making comments etc.

Discussion
For the development of intelligent systems empirical testing
denotes one of the most popular evaluation methods today.
In its classic form, the empirical test evaluates a collection of
test cases using the measures precision and recall. However,
these measures only cover the overall outcome of the case.
We have motivated that the simple boolean evaluation func-
tion is not always appropriate for real world applications,
especially when erroneous cases should be inspected and
refined in an interactive manner. We introduced extended
measures for precision and recall, and we described a vi-
sualization technique that is capable for an interactive anal-
ysis and validation. The presented work was successfully
applied in a case study implementing the evaluation of the
real-world medical system Digitalys CareMate. In the fu-
ture we are planning to discuss the presented work in the
context of other sophisticated tree-like knowledge represen-
tations such as XTT (Nalepa and Ligeza 2005).

References
Baumeister, J.; Menge, M.; and Puppe, F. 2008. Visualiza-
tion techniques for the evaluation of knowledge systems. In
FLAIRS’08: Proceedings of the 21th International Florida
Artificial Intelligence Research Society Conference, 329–
334. AAAI Press.
Baumeister, J.; Seipel, D.; and Puppe, F. 2009. Agile devel-
opment of rule systems (in press). In Giurca; Gasevic; and
Taveter., eds., Handbook of Research on Emerging Rule-
Based Languages and Technologies: Open Solutions and
Approaches. IGI Publishing.
Gonzalez, A. J., and Dankel, D. D. 1993. The Engineer-
ing of Knowledge–Based Systems – Theory and Practice.
Prentice Hall.
Gupta, U. G., and Biegel, J. 1990. A rule–based intelligent
test case generator. In Proceedings of the AAAI–90 Work-
shop on Knowledge–Based System Verification, Validation
and Testing. AAAI Press.
Knauf, R.; Gonzalez, A. J.; and Abel, T. 2002. A frame-
work for validation of rule-based systems. IEEE Transac-
tions of Systems, Man and Cybernetics - Part B: Cybernet-
ics 32(3):281–295.
Makhoul, J.; Kubala, F.; Schwartz, R.; and Weischedel, R.
1999. Performance measures for information extraction. In
Proceedings of DARPA Broadcast News Workshop, 249–
252.
Nalepa, G. J., and Ligeza, A. 2005. A graphical tabular
model for rule-based logic programming and verification.
Systems Science 31(2):89–95.
Puppe, F. 2000. Knowledge formalization patterns. In
Proceedings of PKAW 2000.
Sugiyama, K. 2002. Graph Drawing and Applications for
Software and Knowledge Engineers. World Scientific.

383

