
∃GUARANTEENASH for Boolean Games is NEXP-Hard

Egor Ianovski and Luke Ong
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford, UK

Abstract

Boolean games are an expressive and natural formalism
through which to investigate problems of strategic interaction
in multiagent systems. Although they have been widely stud-
ied, almost all previous work on Nash equilibria in Boolean
games has focused on the restricted setting of pure strategies.
This is a shortcoming as finite games are guaranteed to have
at least one equilibrium in mixed strategies, but many sim-
ple games fail to have pure strategy equilibria at all. We ad-
dress this by showing that a natural decision problem about
mixed equilibria: determining whether a Boolean game has
a mixed strategy equilibrium that guarantees every player a
given payoff, is NEXP-hard. Accordingly, the ε variety of
the problem is NEXP-complete. The proof can be adapted
to show coNEXP-hardness of a similar question: whether all
Nash equilibria of a Boolean game guarantee every player at
least the given payoff.

Introduction
A multiagent environment makes strategic considerations
inevitable. Any attempt to explain the behaviour of a sys-
tem consisting of self-interested agents cannot ignore the
fact that agents’ behaviour may be influenced or completely
determined by the behaviour of other agents in the system.
As the field of game theory concerns itself with precisely
these issues, its concepts find fertile ground in the study of
multiagent systems.

A shortcoming of game theoretical techniques is that
games, being combinatorial objects, are liable to get very
large very quickly. Any computational application of game
theory would need alternative representations to the normal
and extensive forms prominent in the economics literature.
One such representation, based on propositional logic, is the
Boolean game.

Boolean games were initially introduced as two player
games which have an algebra isomorphic to the Lindenbaum
algebra for propositional logic (Harrenstein et al. 2001).
Since then Boolean games have garnered interest from the
multiagent community as a simple yet expressive framework
to model strategic interaction. This has led to the study of
complexity issues involved in reasoning about these games.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While many questions have been answered, the issue of
mixed strategies remained open.

In this paper we address this lacuna and present
the first complexity result about mixed equilibria in
the Boolean games literature: the NEXP-hardness of
∃GUARANTEENASH, which asks whether a Boolean game
has an equilibrium where each player attains at least v[i]
utility, for some input vector v.

Related Work
Complexity results for Boolean games were first studied in
the two player case by Dunne and van der Hoek (2004) and
the n-player case by Bonzon et al. (2006), where among
other results the authors showed that determining the exis-
tence of a pure equilibrium is Σp

2-complete in the general
case, and can be easier should some restrictions be placed on
the goal formulae of the players. A later paper considered
to what extent the interdependency of players contributed
to complexity (Bonzon, Lagasquie-Schiex, and Lang 2009).
Further enquiry into tractable fragments of Boolean games
was carried out by Dunne and Wooldridge (2012).

Since their inception Boolean games have attracted the in-
terest of the multiagent community, which led to increased
interest about their cooperative side. The standard game
theoretic notion of core was studied in a Boolean setting
(Dunne et al. 2008; Bonzon, Lagasquie-Schiex, and Lang
2012), and a number of papers considered means of lin-
ing up player incentives with a central planner (Endriss et
al. 2011; Kraus and Wooldridge 2012; Levit et al. 2013).
in two recent papers (2013a; 2013b), Ågotnes et al. con-
sidered ways of combining Boolean games with the spiritu-
ally similar games in epistemic logic (Ågotnes et al. 2011;
Ågotnes and van Ditmarsch 2011).

All the work mentioned has been in the setting of pure
strategies only. Mixed strategies do arise in a cardinal ex-
tension to Boolean games dubbed weighted Boolean for-
mula games (Mavronicolas, Monien, and Wagner 2007) or
satisfiability games (Bilò 2007), but there the authors only
consider a very restricted fragment of these games, and its
relation to a subclass of the congestion games of Rosenthal
(1973).

A very similar framework to Boolean games is that of
Boolean circuit games (Schoenebeck and Vadhan 2012),
building on earlier work by Feigenbaum, Koller, and Shor

208

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

(1995). There players are equipped with a Boolean cir-
cuit with k input gates and m output gates. The input
gates are partitioned among the players, and a player’s strat-
egy is an assignment of values to the gates under his con-
trol. The output gates encode a binary representation of the
player’s utility on a given input. In this setting we do find
a treatment of mixed strategies, including the complexity of
∃GUARANTEENASH.

Note that a Boolean game can be seen as a very specific
type of Boolean circuit game: the players’ circuits are re-
stricted to NC1, and the number of output gates to one. Thus
easiness results for Boolean circuit games directly trans-
fer to Boolean games, and hardness results transfer in the
other direction. In particular, this means that the NEXP-
completeness of ∃GUARANTEENASH for Boolean circuit
games proved by Schoenebeck and Vadhan does not imply
the result of this paper.

Preliminaries
While there are many breeds of games in the literature, we
here restrict ourselves to what is perhaps the most widely
studied class:

Definition 1. A finite strategic game consists of n players,
each equipped with a finite set of pure strategies, Si, and a
utility function ui : S1 × · · · × Sn → R.

An n-tuple of strategies is called a strategy profile: thus a
utility function maps strategy profiles to the reals.

Example 1. In a game of matching pennies two players are
given a coin each and may choose to display that coin heads
or tails up. Player Two seeks to match the move of Player
One, while player one seeks to avoid that. Hence we have
u2(HH) = u2(TT) = 1, u1(HT) = u1(TH) = 1, and 0
otherwise.

Note that to represent a finite strategic game explicitly
(the normal form of the game) we would need to list the
players’ utility on every possible profile. This would require
on the order of n|Si|n entries, taking Si to mean the size
of the “typical” strategy set. Such a representation is both
exponential in the number of players and linear in the num-
ber of strategies - which in itself may be very large, e.g. in
chess.

Ideally we would wish to avoid such a representation.
If a game has some internal structure, it would be natu-
ral to ask if the game can be described in a more succinct
way. In the case where the game can be interpreted as play-
ers holding propositional preferences over Boolean variables
the Boolean game offers precisely that.

Definition 2. A Boolean game is a representation of a fi-
nite strategic game given by n disjoint sets of propositional
variables, Φi, and n formulae of propositional logic, γi.

The intended interpretation is that player i controls the
variables in Φi in an attempt to satisfy γi, which may depend
on variables not in player i’s control. Player i plays a truth
assignment to Φi, i.e. his set of pure strategies is 2Φi . A
profile of strategies, ν, is thus a model of proposition logic
and i’s utility function is ν 7→ 1 if ν � γi, and ν 7→ 0
otherwise.

Example 2. Matching pennies can be given a Boolean rep-
resentation by setting Φ1 = {p}, Φ2 = {q}, γ1 = ¬(p↔ q)
and γ2 = p↔ q.

The size of a Boolean game is thus on the order of
n(maxi(|Φi|) + maxi(|γi|)). In the best case γi is small
and the resulting representation is linear in the number of
players and logarithmic in the number of strategies, giving
greater succinctness on both fronts.

Having defined the game representation, we now turn to
reasoning about such games. The most common solution
concept is the Nash equilibrium, which we define below.
Definition 3. Given a strategy profile s, we use s−i(σ

′
i) to

mean the profile obtained by replacing the strategy of i in s
with σ′i. A best response for i to s is some σ′i that maximises
ui(s−i(σ

′
i)).

A strategy profile s = (σ1, . . . , σn) where every σi is a
best response to s is a Nash equilibrium.
Example 3. In a game of matching pennies, T is a best re-
sponse for Player One to HH , and H is a best response for
Player Two, so the profile HH is not in equilibrium. In fact,
the game has no equilibria in pure strategies.

The fact that games as simple as matching pennies may
fail to have a pure strategy equilibrium casts doubt on its
suitability as a solution concept. Fortunately, a natural ex-
tension of the framework rectifies the matter.
Definition 4. A mixed strategy for player i in a finite strate-
gic game is a probability distribution over Si.

The utility player i obtains from a profile of mixed strate-
gies S is

∑
p(S′)ui(S

′), where p(S′) is the probability as-
signed to the pure profile S′ by the mixed strategies in S.

If the idea of playing a probability distribution seems
strange, the reader may instead opt to view a mixed strat-
egy as a randomised decision procedure that leads to an out-
come in the set of pure strategies, Si. In a game of rock-
paper-scissors, a mixed strategy could consist of generating
a number in [0, 1] then playing rock if it falls between 0 and
0.4, paper if it falls between 0.4 and 0.9 and scissors if it is
above 0.9. The payoff of a mixed strategy is the expected
payoff - the sum of the possible outcomes weighted by their
probability.

It is in this context that Nash proved his seminal result:
Theorem 1 (Nash, 1951). Every finite strategic game has
an equilibrium in mixed strategies.

Example 4. The unique equilibrium of matching pennies
involves both players randomising over their sets of strate-
gies by assigning a weight of 0.5 to both H and T . In this
equilibrium both players attain a utility of 0.5.

In the above example the reader will observe that 0.5 is
also the utility Player One would attain by deviating to the
pure strategy H or the pure strategy T . This is always the
case - as the payoff of a mixed strategy is a weighted sum
of pure strategies, it cannot yield more utility than any of
its components individually. What this means for us is that
if it is possible for a player to deviate from a profile, then
it is possible to deviate with a pure strategy. If we want to
verify that a mixed profile is in equilibrium, we need only

209

check that no pure strategy for a player will lead to a better
outcome.

Since every game has an equilibrium, the algorithmic
question of asking whether an equilibrium exists is not rel-
evant. This motivates decision problems based on qualified
notions of equilibria, such as the one that concerns us in this
paper:

∃GUARANTEENASH: Given a Boolean game G and
a rational-valued vector v ∈ [0, 1]n, does G have an
equilibrium s such that ui(s) ≥ v[i] for each player i?

For representation purposes, as the entries of v are rationals
we will assume they are given as a pair of integers represent-
ing the numerator and denominator.

It is natural to also consider a problem closely related to
the dual:

∀GUARANTEENASH: Given a Boolean game G and a
rational-valued vector v ∈ [0, 1]n, does every equilib-
rium of G, s, satisfy ui(s) ≥ v[i] for each player i?

Main Result
Our reduction will be from the following NEXP-complete
problem:

NEXPTM: Given a non-deterministic Turing machine
M , an integer in binary K and a string w, does M ac-
cept w in at most K steps?

Proposition 1. NEXPTM is NEXP-complete.

Proof. For membership in NEXP, we need only simulate the
computation ofM on w forK steps. Each step can be simu-
lated in non-deterministic polynomial time, and the number
of steps is exponential in |K|.

For hardness, let N be a non-deterministic Turing ma-
chine with an exponential time clock f . Let M be a Turing
machine with an identical transition relation to N , but with
no internal clock. Clearly, N accepts w if and only if M
accepts w in at most f(w) steps. That is, (M,f(w), w)
is a positive instance of NEXPTM. Moreover, the triple
(M,f(w), w) is polynomial in the size of N and w: |M | ≤
|N |, |w| = |w| and as f(w) ∈ O(2p(|w|)), when written
in binary it is of size O(p(|w|)). This gives us the desired
reduction.

We can now prove the hardness of ∃GUARANTEENASH.
For questions of NEXP-membership, see the discussion be-
low.

Theorem 2. ∃GUARANTEENASH for Boolean games is
NEXP-hard.

Proof. We will give a reduction from NEXPTM. Given a
triple (M,K,w) we shall construct, in polynomial time, a
Boolean game G and a utility vector v, such that G has an
equilibrium where player i’s utility is at least v[i] if and only
if M accepts w in K steps or less.

For convenience, we augment M with a “do nothing”
transition: if M is at an accepting state, then we allow it
to move to the next computation step without moving the
head, changing state, or writing anything to the tape. It is

clear that augmenting M in such a fashion does not change
the language accepted by M , but it ensures that the machine
state is defined at all computation steps; we do not need to
worry about the case where the machine accepts in under K
steps, as if it does, it will still accept at step K.

Let k = |K|, and q be the number of states of M .
For intuition, a computation history of M on w could be

seen as a K × K table, or for simplicity 2k × 2k, padding
as needed. The ith row, jth column contains the contents of
the jth tape cell at the ith computation step, whether or not
the head is over that cell at that step and, if so, which state
the machine is in. As the size of the table is 2k by 2k, we
can index an entry by using two k-bit integers.

A way to visualise the proof is that in our game G, which
consists of six players, Player One is equipped with vari-
ables that allow him to describe a single entry of this ta-
ble. Player Four plays a partial matching pennies game
against Player One, thereby forcing Player One to play a
mixed strategy randomising over all entries of the table, and
thus specifying an entire computation history with his mixed
strategy. Player Two then verifies that the mixed strategy
provided by Player One contains a consistent description of
the head location at each computation step, and Player Three
checks that every two consecutive steps are linked by exactly
one transition rule. Players Five and Six play matching pen-
nies with Players Two and Three to force them to randomise
across all table entries.

To this end, let:

Φ1 = {Zero1,One1,Head1,Left1,Right1}
∪ {Timei1}1≤i≤k ∪ {Tape

i
1}1≤i≤k ∪ {State

i
1}1≤i≤q.

The intended meaning of Timei1 (respectively Tapei1) is
the value of the ith most significant bit of the integer de-
noting the index of the computation step (respectively tape
cell) in question, given the standard convention of interpret-
ing “true” as 1 and “false” as 0. A truth assignment by
Player One can therefore be read as: at the computation
step specified by Time1

1, . . . ,Timek1 the tape cell specified
by Tape1

1, . . . ,Tape
k
1 contains 0 if Zero1, 1 if One1 and is

blank if neither. The machine head is hovering over the cell
in question if Head1, and is located to the left or right of
that cell respectively if Left1 or Right1. If the head is over
the cell in question, the machine is in state i if Statei1 (if the
head is not over the cell, Statei1 is a junk variable that has
no meaning).

Player One’s goal formula is a conjunction of four subfor-
mulae:

γ1 = Init ∧ Final ∧ Cons1 ∧ ¬γ4.

Intuitively, Init means that if the player plays the first
computation step, his description of the machine must agree
with the initial configuration of M on w. Final means that
if the player plays the last (Kth) computation step, the ma-
chine must be in an accepting state. Cons1 states the de-
scription of the machine must be internally consistent. The
final conjunct is to force the player to randomise across all

210

computation steps and tape cells, to which we will return
later.

Init requires that at time zero the configuration of the ma-
chine is faithfully represented by Player One’s play. This
takes the form of an implication where the antecedent states
that we are at step zero:

Init = (
∧

1≤i≤k

¬Timei1)→ Consequent .

The consequent itself is a conjunction of three further sub-
formulae, for the head, the state and the tape.

Consequent = InitHead ∧ InitState ∧ InitTape.

The head requirement states that the head is at the leftmost
cell. That is, at cell zero Head1 is true, and at every other
cell Left1 is true:

InitHead =
(

(
∧

1≤i≤k

¬Tapei1)→ Head1

)
∧
(
¬(

∧
1≤i≤k

¬Tapei1)→ Left1

)
.

The state requirement is simply M ’s initial state:

InitState = Stateinitial1 .

The tape requirement is a conjunction of |w| + 1 impli-
cations. The first |w| implications state that if the tape cell
chosen is within the first |w| cells, then its contents must
agree with w. If we use i as shorthand for the conjunction
of tape variables expressing i, and w[i] for Zero1 or One1

depending on the ith bit of w, this has the following form:

InitTape =
∧

0≤i<|w|

(i→ w[i]) ∧ BlankCells.

Note that this formula is linear in |w|, so the construction
so far was polynomial.

The last formula in InitTape states that all other cells are
blank.

BlankCells = ¬(
∨

0≤i<|w|

i)→ (¬Zero1 ∧ ¬One1).

Final states that at computation step K, the machine ac-
cepts. If we useK as shorthand for the appropriate conjunc-
tion of time variables, we get the following implication:

Final = K → Stateaccepting1 .

Cons1 requires that the player’s description of a given
computation step and cell is internally consistent. This
means the cell cannot have both 0 and 1 on it, the head must
be either over the cell or to one direction and the machine
must be in exactly one state. It is worth noting that this says
nothing about whether Player One’s descriptions of different
steps and cells are consistent with each other: this is the task
of Players Two and Three.

For Cons1, we introduce a generalised XOR symbol,
which we denote OneOf , with the interpretation that
OneOf (ϕ1, . . . , ϕn) is true if and only if exactly one ϕi

is. Such a symbol could be replaced by a propositional logic
formula polynomial in the size of ϕ1, . . . , ϕn - simply take
the disjunction of all n admissible possibilities. This gives
us the desired formula:

Cons1 = ¬(Zero1 ∧One1)

∧OneOf (Head1,Left1,Right1)

∧OneOf (Statei1).

By Statei1 we mean State1
1, . . . ,State

q
1.

To finish the description of γ1, we turn to Player Four.
Player Four is playing a partial matching pennies game with
Player One over the time and tape variables. We thus equip
her with the following:

Φ4 = {Timei4}1≤i≤k ∪ {Tape
i
4}1≤i≤k.

The objective is to guess the same computation step and cell
index as player one:

γ4 =
(∧

1≤i≤k

(Timei1 ↔ Timei4)
)

∧
(∧

1≤i≤k

(Tapei1 ↔ Tapei4)
)
.

Since the payoffs of Player One and Four depend only on
each other, we can already describe how they will behave in
any equilibrium. Player One has the power to satisfy Init ,
Final and Cons1 unilaterally, so all that remains is ¬γ4. To
maximise the chances of this happening, Player One’s best
bet is to play every step/cell with probability 1/22k - this
will ensure that Player Four will guess the same step with
probability 1/22k, whereas if Player One were to play any
(i, j) with a greater probability than 1/22k, then Player Four
could play (i, j) with probability 1 and thus guess Player
One’s choice more often.

As such in any equilibrium play Player One will describe
entry (i, j) of the computation table with probability 1/22k.

Player Two’s purpose is to verify the consistency of Player
One’s description of the head. This involves verifying that
at a given computation step the Head1 variable is true in
exactly one cell, Left1 is true in every cell to the right and
Right1 is true in every cell to the left.

Now of course, she cannot verify the entire row in one
go - there are 2k cells to check. Instead a pure strategy for
her will check only a pair of consecutive cells. Player Five
will then force her to randomise over all pairs of consecutive
cells - and if Player One’s description is inconsistent, there
must be a witnessing pair.

Player Two controls the following variables:

Φ2 =

{Head2, sHead2,Left2, sLeft2,Right2, sRight2}
∪ {Tapei2}1≤i≤k ∪ {sTape

i
2}1≤i≤k ∪ {Timei2}1≤i≤k.

The lowercase “s” can be read as “successor”. The in-
tended meaning of these variables is that Tape1

2, . . . ,Tape
k
2

name a cell and sTape1
2, . . . , sTape

k
2 the cell directly to the

right of it. The other variables state the location of the head

211

in relation to these two cells at the computation step speci-
fied by the time variables.

Player Two’s goal formula is a conjunction of four sub-
formulae:

γ2 = MatchOne2 ∧ Cons2 ∧ Succ2 ∧ ¬γ5.

Intuitively, MatchOne2 states that Player Two ought to
play the same head configuration as dictated by Player One.
Cons2 requires that this configuration be internally consis-
tent. Succ2 is to ensure that the two cells chosen are indeed
consecutive.

Before we state MatchOne2 we ought to first ask what
we mean by saying that players one and two play the same
head configuration. As in any given (pure) strategy profile,
either player will be describing a single computation step
and at most two cells; if it turns out that they are speak-
ing about different step/cell configurations we should not be
concerned about whatever claims they make - we have no
way to prove they are not in agreement, so we may as well
assume that they are. Only in the instance where they hap-
pen to refer to the same step/cell should we expect accord.
Since Player Two is referring to two cells in any play, we re-
quire that if either of the cells she references coincides with
that referenced by Player One, they must agree.

The desired formula is thus of the following form:

MatchOne2 =

AgreeTime →
(

(AgreeCell → AgreeHead)

∧ (sAgreeCell → sAgreeHead)
)
.

The subformulae are as follows:

AgreeTime =
∧

1≤i≤k

(Timei1 ↔ Timei2).

AgreeCell =
∧

1≤i≤k

(Tapei1 ↔ Tapei2).

sAgreeCell =
∧

1≤i≤k

(Tapei1 ↔ sTapei2).

AgreeHead = (Head1 ↔ Head2)

∧ (Left1 ↔ Left2)

∧ (Right1 ↔ Right2).

sAgreeHead = (Head1 ↔ sHead2)

∧ (Left1 ↔ sLeft2)

∧ (Right1 ↔ sRight2).

Internal consistency amounts simply to the conjunction of
the valid combinations of claims about the head:

Cons2 = (Right2 ∧ sRight2) ∨ (Right2 ∧ sHead2)

∨ (Head2 ∧ sLeft2) ∨ (Left2 ∧ sLeft2)

Succ2 states that the two tape locations are, in fact, con-
secutive. We will prove a lemma to show that this is con-
cisely expressible in propositional logic.

Lemma 1. Let Succ(p1, . . . , pn; q1, . . . , qn) be a formula
that is true if and only if the binary integer encoded by

q1, . . . , qn is the successor of the binary integer encoded by
p1, . . . , pn. As a convention, 2n − 1 has no successor.

Succ(p1, . . . , pn; q1, . . . , qn) can be replaced by a
propositional formula of size polynomial in p1, . . . , pn and
q1, . . . , qn.

Proof. We take advantage of the fact that to increment a bi-
nary integer we only need to modify the rightmost consecu-
tive block of 1s, and there are only n such possible blocks.

Since we have a boundary condition to consider, we re-
quire that the first integer is not 2n − 1:

Succ(p1, . . . , pn; q1, . . . , qn) = ¬(
∧

1≤i≤n

pi) ∧ Succ′.

Succ′ is then:(
¬p1 →

(
q1 ∧

n∧
i=2

(pi ↔ qi)
))

∧
(

(p1 ∧ ¬p2)→
(
¬q1 ∧ q2 ∧

n∧
i=3

(pi ↔ qi)
))

∧
(

(p1 ∧ p2 ∧ ¬p3)→
(
¬q1 ∧ ¬q2 ∧ q3 ∧

n∧
i=4

(pi ↔ qi)
))

...

∧
(

(¬pn ∧
n−1∧
i=1

pi)→
(
(
n−1∧
i=1

¬qi) ∧ qi+1

))
.

This is quadratic in the number of variables, giving us the
desired result.

Succ2 can then be stated simply:

Succ2 = Succ(Tapei2; sTapei2).

Finally, Player Five is trying to guess Player Two’s choice
of cell and computation step.

Φ5 = {Timei5}1≤i≤k ∪ {Tape
i
5}1≤i≤k.

γ5 =
k∧

i=1

(Tapei2 ↔ Tapei5) ∧
k∧

i=1

(Timei2 ↔ Timei5).

Player Three’s purpose is to verify that the tape contents
in successive computation steps respect the transition rules
of M . Like Player Two, he does this for a small, local part
of the table, and is forced to randomise over the whole table
by Player Six. To do this he specifies a total of six cells and
two computation steps: consecutive triples in consecutive
steps. Then he verifies that the tape contents, head position

212

and machine state are in agreement with some rule of M .

Φ3 = {pHead3,Head3, sHead3,npHead3,nHead3,

nsHead3, pZero3,Zero3, sZero3,npZero3,

nZero3,nsZero3, pOne3,One3, sOne3,

npOne3,nOne3,nsOne3}
∪{pStatei3}1≤i≤q ∪ {State

i
3}1≤i≤q

∪{sStatei3}1≤i≤q ∪ {npState
i
3}1≤i≤q

∪{nStatei3}1≤i≤q ∪ {nsState
i
3}1≤i≤q

∪{pTapei3}1≤i≤k ∪ {Tape
i
3}1≤i≤k

∪{sTapei3}1≤i≤k ∪ npTapei3}1≤i≤k
∪{nTapei3}1≤i≤k ∪ {nsTape

i
3}1≤i≤k

∪{Timei3}1≤i≤k ∪ {nTimei3}1≤i≤k.

The “p” can be read as “predecessor”, referring to the cell to
the left, and “n” as “next computation step”. The intended
meaning is simply the state and tape contents in each of the
six cells, as well as whether the head is over that cell.

Player Three’s goal formula is a conjunction of five sub-
formulae:

γ3 = MatchOne3 ∧ Triple ∧ Succ3 ∧ Rules ∧ ¬γ6.

MatchOne3 states that if any of the step/cell pairs named
by Player Three coincide with the one named by Player One,
Player Three must agree with Player One. Triple requires
that the three cells named in either computation step should
be a consecutive triple, and the triple at either step must be
the same. Succ3 requires the two computation steps named
to be consecutive. Rules is to verify that the configuration
thus described is consistent with a rule of M .
MatchOne3 is a conjunction of a total of six state-

ments, depending on which step/cell pair coincides with
that played by Player One. We will only give one such
statement below, in the case that Player One named the
same step as Time1

3, . . . ,Timek3 and the same cell as
pTape1

3, . . . , pTape
k
3 . The other five statements are obtained

in the obvious manner.

(k∧
i=1

(Timei1 ↔ Timei3) ∧
k∧

i=1

(Tapei1 ↔ pTapei3)
)
→(

(Zero1 ↔ pZero3) ∧ (One1 ↔ pOne3)

∧ (Head1 ↔ pHead3) ∧
q∧

i=1

(Statei1 ↔ pStatei3)
)
.

Triple states that the tape cells selected are consecutive
triples, and that the same triple is chosen in both steps. It is
worth noting that given our previous definition of successor,
if Player Three is to satisfy this conjunct then the middle cell

cannot be 0 or 2k − 1.

Triple = Succ(pTapei3;Tapei3)

∧ Succ(Tapei3; sTapei3)

∧ Succ(npTapei3;nTapei3)

∧ Succ(nTapei3;nsTapei3)

∧
∧

1≤i≤k

(Tapei3 ↔ nTapei3).

Succ3 requires that the computation steps be consecutive:

Succ3 = Succ(Timei3;nTimei3).

Rules is a conjunction of four formulae: three of the for-
mulae are conjunctions containing an implication for each
(r, s) ∈ Q×{0, 1,⊥}, representing the machine’s behaviour
if it reads s in state r and the head is over the left, centre or
right cell respectively. The fourth term is NoHead , to handle
the case where the head is not over any cell in the triple:

Rules = Left ∧ Centre ∧ Right ∧NoHead .

We will examine Left and NoHead , understanding that
Centre and Right are handled in similar fashion.

Left =
(∧

(r,s)∈Q×{0,1,⊥}

(
(pStater3 ∧ s)→

OneOf (Rule[(r, s)→ (r′, s′, D)])
))
.

The s in the antecedent is meant to be replaced by pZero3,
pOne3, or ¬(pZero3∨pOne3) as appropriate. The intuition
of the Rules term is that should the machine read s in state
r it should pick exactly one of the rules available to it, and
if the head is not present then the tape contents should not
change.

The subformula to deal with a specific rule can be broken
up as follows:

Rule[(r, s)→ (r′, s′, D)] = L ∧B.

L describes the behaviour of the machine if the left cell is
not the leftmost cell on the tape, B deals with the boundary
case where it is.

We will give an example of how Rule[(q3, 0) →
(q4, 1, left)] would be handled. That is, the rule that says
that if the machine reads a 0 in state q3 it may write a 1, tran-
sition to state q4 and move the head left. All rules except “do
nothing” can be handled similarly, and “do nothing” would
merely assert that if the machine reads an accepting state,
then nothing changes.

The L part triggers if the head is over the leftmost cell in
the triple, and the leftmost cell is not cell 0. It then ensures
that in the next computation step the leftmost cell contains 1
and the other cells are unchanged. Since the head leaves the

213

monitored triples we need no terms to account for it.

L =
(
¬(

∧
1≤i≤k

¬pTapei3) ∧ pHead3

)
→

(
npOne3 ∧ (Zero3 ↔ nZero3)

∧ (sZero3 ↔ nsZero3) ∧ (One3 ↔ nOne3)

∧ (sOne3 ↔ nsOne3)
)
.

In the boundary case the head is over the leftmost cell of the
tape, so when it attempts to move left it instead stands still.

B =
(

(
∧

1≤i≤k

¬pTapei3) ∧ pHead3

)
→

(
npState4

3 ∧ npOne3 ∧ npHead3

(Zero3 ↔ nZero3) ∧ (sZero3 ↔ nsZero3)

∧ (One3 ↔ nOne3) ∧ (sOne3 ↔ nsOne3)
)
.

Finally, the NoHead term asserts in the absence of a head
the tape contents do not change.

NoHead = (¬pHead3 ∧ ¬Head3 ∧ ¬sHead3)→(
(pOne3 ↔ npOne3) ∧ (nZero3 ↔ npZero3)

∧ (One3 ↔ nOne3) ∧ (Zero3 ↔ nZero3)

∧ (sOne3 ↔ nsOne3) ∧ (sZero3 ↔ nsZero3)
)
.

This brings us to the last player, who is trying to guess the
first step and central cell chosen by Player Three:

Φ6 = {Timei6}1≤i≤k ∪ {Tape
i
6}1≤i≤k.

γ6 =
k∧

i=1

(Tapei3 ↔ Tapei6) ∧
k∧

i=1

(Timei3 ↔ Timei6).

The construction so far has been polynomial. We now
claim that M having an accepting run on w in at most K
steps is equivalent to the constructed game having a Nash
equilibrium where Players One, Two and Three have the fol-
lowing guaranteed payoffs:

v[1] =
22k − 1

22k
.

v[2] =
2k(2k − 1)− 1

2k(2k − 1)
.

v[3] =
(2k − 2)(2k − 1)− 1

(2k − 2)(2k − 1)
.

Strictly speaking, only the payoffs of Two and Three are nec-
essary - Player One will be able to attain v[1] utility even if
M does not accept w. However, we include One’s utility
above as it will help us to reason about the profile being in
equilibrium.

First, suppose M has an accepting run on w in at most K
steps. Consider the profile where Player One randomises
over all step/cell combinations with equal weight, and at

each step/cell combination plays his variables in accordance
to the accepting run. Player Four also randomises over all
step/cell combinations with equal weight. Player Two ran-
domises over all computation steps and the first 2k − 1
cells. Her other variables she plays in accordance to the run.
Player Five likewise randomises over all steps and the first
2k − 1 cells. Player Three randomises over the first 2k − 1
steps and the 2k − 2 cells between the first and last. His
other variables he plays in accordance to the run. Player Six
randomises over the same 2k − 1 steps and the 2k − 2 cells.

In such a profile, Players One, Two and Three will satisfy
their goals unless their step/cell combination is guessed by
their opponent. Given our setup, this will happen with prob-
abilities 1/22k, 1/2k(2k−1) and 1/(2k−2)(2k−1) respec-
tively, giving us the payoffs v[1], v[2] and v[3]. It remains
to see that this profile is in equilibrium. Recall that this is
equivalent to checking that no player has a pure strategy that
will grant them more utility than what they are earning al-
ready.

Let us first consider Players Four through Six. Any pure
strategy by Player Four is a step/cell pair, and hence, given
the play of Player One, has a 1/22k chance of satisfying γ4.
Player Four is thus indifferent between the current situation
and any deviation. For Player Five any pure strategy using
the first 2k − 1 cells will have a 1/2k(2k − 1) chance of
satisfying γ5, and any other pure strategy 0. Player Five thus
likewise has no incentive to deviate. In the same fashion, any
pure strategy for Player Six will satisfy γ6 with probability
1/(2k − 2)(2k − 1) or 0, so she is also indifferent.

In the case of Player One, observe that no matter what
pure strategy he picks, there is a 1/22k chance of Player
Four guessing the cell/step component and thus making γ1

false. It follows that any such strategy will yield at most a
v[1] chance of satisfying γ1. For Player Two, if she picks a
pure strategy using the first 2k − 1 cells there will likewise
be a 1/2k(2k−1) chance of her step/cell combination being
guessed. If she picks a pure strategy using the last cell, she
will be unable to satisfy the Succ2 component of γ2, yielding
a utility of 0. For Player Three, any pure strategy using the
2k − 1 steps and the 2k − 2 cells randomised over by six
will have a 1/(2k−2)(2k−1) chance of being guessed, and
any other choice of pure strategy will violate either Triple
or Succ3. This establishes that the described profile is in
equilibrium.

Next, suppose that no accepting run exists. We claim that
in any equilibrium Player One will still obtain a utility of
v[1], but either Player Two or three will be unable to se-
cure a payoff of v[2], v[3]. For the first part, note that for
any choice of step/cell by Player One, the remaining vari-
ables can be set to satisfy Init , Final and Cons1 unilater-
ally. It is sufficient to simply respect the initial configuration
of the machine at step zero, play an accepting state at step
K, and any internally consistent description elsewhere. Any
strategy that does not satisfy Init , Final and Cons1 is thus
dominated and can be excluded from consideration. All that
remains is the choice of cell/step and it is easy to see that the
only equilibrium play would involve giving every pair equal
weight.

Player One’s play will thus describe a sequence of 2k con-

214

figurations of M , with the initial configuration at step zero
and an accepting state at step K. However, as M has no ac-
cepting run on w in K steps, this sequence cannot represent
a valid computation and a violation must occur somewhere.

If this violation involves the assertion of the presence of
more than one head or the Left1, Right1 variables incor-
rectly specifying the location of the head, we claim that
Player Two cannot obtain a utility of v[2].

Observe that in this case there must exist two consecutive
cells at some time step where Player One plays one of the
following combinations:

Cell i Cell i+ 1
Left1 Right1
Left1 Head1

Head1 Head1

Right1 Left1
Head1 Right1

In this case, should Player Two play a strategy involving cell
i, since she is committed to playing a legal head assignment
she will have to disagree with Player One on either cell i
or cell i + 1. This means she will suffer a 1/22k chance of
having MatchOne falsified if Player One plays the cell in
question. As there is still at least a 1/2k(2k − 1) chance
of having the cell/step combination guessed by Player Five,
this means the maximum utility Player Two can obtain in
this case is v[2]− 1/22k + 1/22k2k(2k − 1). (The last term
is to avoid double counting the case where both Player One
and Player Five name the same cell/step combination.)

Of course, Player Two may opt in this case not to play any
strategies involving cell i. This will however mean that she
is randomising over at most (2k − 2) cells, and Player Five
will randomise accordingly, meaning the highest utility she
can obtain is 2k(2k−2)−1

2k(2k−2)
.

Suppose now that Player One does not make such a vio-
lation. The remaining possibilities for an incorrect run are:

1. The head makes an illegal transition.
2. The tape contents undergo an illegal change.
3. The state undergoes an illegal change.

Let us deal with case 1. Suppose between step t and t+ 1
the head, which is at cell i at t, performs an illegal transi-
tion. This could mean moving more than one cell in a di-
rection, moving off the edge of the tape, staying still in a
non-accepting state or moving one cell left or right without
a justifying transition rule. Observe that neither of these pos-
sibilities is consistent with the Rules requirement. As such,
should Player Three pick step t and cell i, he will have to dis-
agree with Player One on the movement of the head, thereby
running a risk of falsifying his formula should Player One
play t and i. This will prevent Player Three from obtaining
v3 utility for the same reasoning as with Player Two.

In case 2, there would exist steps t and t + 1, and a cell
i the contents of which would change without a justifying
rule. This, too, would violate Rules . For case 3, we note
that by the machine state we mean the state variable that
occurs in the same cell as the head: the value of the other

state variables is of no account. As such, Rules again would
be violated as it requires the correct state to be propagated
to cell hosting the head. This completes the proof.

We can adapt this proof to show that ∀GUARANTEENASH
is coNEXP-hard. Note that this does not follow immedi-
ately: ∀GUARANTEENASH is not simply the complement
of ∃GUARANTEENASH. Letting s range over equilibrium
profiles, ∀GUARANTEENASH is the question whether:

∀s .∀i . ui(s) ≥ v[i]

the complement of ∀GUARANTEENASH is then:

∃s .∃i . ui(s) < v[i].

To show that ∀GUARANTEENASH is coNEXP-hard we need
only show that the latter problem is NEXP-hard.

Corollary 1. ∀GUARANTEENASH is coNEXP-hard.

Proof. We argue that the proof of Theorem 2 can be adapted
to show this. Note that the utilities of Players One, Four,
Five and Six did not play a rôle in the proof. Those of Four,
Five and Six were omitted entirely, whereas Player One has
been seen to achieve v[1] utility in every equilibrium. What
remains are Two and Three, and we will argue that those
players could be collapsed into a single player.

Introduce a new player into the game constructed in the
proof of Theorem 2, Player Seven, with γ7 = γ2 ∧ γ3 and
Φ7 = ∅. We argue that the Turing machine M accepts w in
at most K steps if and only if there exists an s for which:

u7(s) ≥ 1− (2k − 2)(2k − 1) + 2k(2k − 1)− 1

2k(2k − 1)(2k − 2)(2k − 1)
.

This can be seen by replicating the argument in the proof:
in the presence of an accepting run, the only way Player
Seven can lose utility is if Player Five or Six guesses the
same cell/step, which happens with probabilities 1

2k(2k−1)

and 1
(2k−2)(2k−1)

respectively. Adding a term for double
counting and simplifying yields the quantity above.

If we call that quantity v[7], we have established that
u7(s) ≥ v[7] if and only if M accepts w in at most K steps.
If we set the other entries of v to 1 to make sure they do
not interfere, we demonstrate that the following question is
NEXP-hard:

∃s .∃i . ui(s) ≥ v[i].

For the next step, add Player Eight with γ8 = ¬γ7 and
Φ8 = ∅. As u8 = 1 − u7 the following question is NEXP-
hard as well, letting v[8] = 1− v[7] and the other entries of
v be 0:

∃s .∃i . ui(s) ≤ v[i].

It remains to show that the inequality can be made strict.
First, observe that we can increase Player Seven’s score,

and hence decrease Player Eight’s, by an arbitrarily small ε
of a certain form: let γ′7 = γ7 ∨ Pennies where Pennies
is a matching pennies game over a new set of variables
Φ′7 against some new player. This will give Player Seven
1/2|Φ

′
7| additional utility, minus a double counting term.

215

All that remains is to show that we can identify a “suffi-
ciently small” ε. By this we mean an ε satisfying the follow-
ing:

∃s . u8(s)− ε < v[8] ⇐⇒ ∃s . u8(s) ≤ v[8].

To see that this is possible, recall that if M does not ac-
cept w in K steps, then Player One necessarily specifies an
incorrect computation history of the machine. As we have
seen in the proof of Theorem 2, such a violation decreases
the maximum attainable score of Player Two or Three by a
fixed amount. It is thus possible to calculate the maximum
attainable utility of Player Seven in the presence of such a
violation, which will give us the bounds within which ε may
reside.

This completes the proof.

Discussion
The preceding proof raises two related questions. To begin
with, one may ask whether six players are necessary. The
answer is no, as we have hinted in the proof of the corol-
lary. The reader may convince themselves that one may re-
duce the number to three in a straightforward fashion by col-
lapsing Players Two and Three, and Four, Five and Six onto
each other, in a similar fashion to the proof of the corollary.
We used six players to simplify the exposition of the proof.
Whether it is further possible to reduce the number to two
is a different matter - and an interesting one, as we will see
shortly

Second: whether there is a membership result to go with
the hardness. Strictly speaking, there is not. As there exist
games where every equilibrium requires irrational weights
on the strategies chosen (Nash 1951; Bilò and Mavronicolas
2012) we cannot rely on the intuitive approach of guessing
a strategy profile and checking whether it is in equilibrium.

One way this problem is addressed in the literature is to
restrict attention to two player games, where a rational equi-
librium is guaranteed to exist (Cottle and Dantzig 1968),
which brings us back to the first question. The second way
is to consider the notion of an ε-equilibrium: a profile of
strategies where no player can gain more than ε utility by de-
viating. This problem, ε-∃GUARANTEENASH, clearly does
belong to NEXP, and the reader can convince themselves
that by inserting a sufficiently small ε into the proof above
we can establish that it is NEXP-complete.

Conclusion
We have shown that the problem of determining whether
a Boolean game has a Nash equilibrium which guarantees
each player a certain payoff is NEXP-hard. This is the
first complexity result about mixed equilibria in the Boolean
games framework, and demonstrates that in this instance
Boolean games are as difficult as the more general class of
Boolean circuit games.

The complexity of many other natural problems remains
open, most significantly that of NASH: the task of com-
puting a mixed equilibrium. However, given the difficulty
in obtaining this result for normal form games (Daskalakis,
Goldberg, and Papadimitriou 2006) one could posit that it

is unlikely that this can be achieved with the current tools
of complexity theory. It would be interesting to see whether
there is an exponential time analogue of PPAD that could
lead to a solution to this problem.

Acknowledgements
Egor Ianovski is supported by a scholarship, and Luke Ong
is partially supported by a grant, from the Oxford-Man In-
stitute of Quantitative Finance.

References
Ågotnes, T.; van Benthem, J.; van Ditmarsch, H. P.; and
Minica, S. 2011. Question-answer games. Journal of Ap-
plied Non-Classical Logics 21(3-4):265–288.
Ågotnes, T.; Harrenstein, P.; van der Hoek, W.; and
Wooldridge, M. 2013a. Boolean games with epistemic
goals. In LORI, 1–14.
Ågotnes, T.; Harrenstein, P.; van der Hoek, W.; and
Wooldridge, M. 2013b. Verifiable equilibria in boolean
games. In IJCAI.
Bilò, V., and Mavronicolas, M. 2012. The complexity of
decision problems about Nash equilibria in win-lose games.
In Serna, M., ed., Algorithmic Game Theory, Lecture Notes
in Computer Science. Springer Berlin Heidelberg. 37–48.
Bilò, V. 2007. On satisfiability games and the power of
congestion games. In Kao, M.-Y., and Li, X.-Y., eds., Al-
gorithmic Aspects in Information and Management, volume
4508 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 231–240.
Bonzon, E.; Lagasquie-Schiex, M.-C.; Lang, J.; and Zanut-
tini, B. 2006. Boolean games revisited. In ECAI, 265–269.
Bonzon, E.; Lagasquie-Schiex, M.-C.; and Lang, J. 2009.
Dependencies between players in Boolean games. Int. J.
Approx. Reasoning 50(6):899–914.
Bonzon, E.; Lagasquie-Schiex, M.-C.; and Lang, J. 2012.
Effectivity functions and efficient coalitions in Boolean
games. Synthese 187(1):73–103.
Cottle, R. W., and Dantzig, G. B. 1968. Complementary
pivot theory of mathematical programming. Linear Algebra
and Its Applications 1:103–125.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2006. The complexity of computing a Nash equilibrium. In
Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, STOC ’06, 71–78. New York, NY,
USA: ACM.
Dunne, P. E., and van der Hoek, W. 2004. Representation
and complexity in Boolean games. In Alferes, J. J., and
Leite, J. a., eds., Logics in Artificial Intelligence, volume
3229 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 347–359.
Dunne, P. E., and Wooldridge, M. 2012. Towards tractable
Boolean games. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems
- Volume 2, AAMAS ’12, 939–946. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

216

Dunne, P. E.; van der Hoek, W.; Kraus, S.; and Wooldridge,
M. 2008. Cooperative Boolean games. In AAMAS’08, 1015–
1022.
Endriss, U.; Kraus, S.; Lang, J.; and Wooldridge, M. 2011.
Designing incentives for Boolean games. In The 10th Inter-
national Conference on Autonomous Agents and Multiagent
Systems - Volume 1, AAMAS ’11, 79–86.
Feigenbaum, J.; Koller, D.; and Shor, P. 1995. A game-
theoretic classification of interactive complexity classes (ex-
tended abstract). In Proceedings of the tenth annual IEEE
conference on computational complexity, 227–237.
Harrenstein, P.; van der Hoek, W.; Meyer, J.-J.; and Wit-
teveen, C. 2001. Boolean games. In Proceedings of the 8th
conference on Theoretical aspects of rationality and knowl-
edge, TARK ’01, 287–298. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.
Kraus, S., and Wooldridge, M. 2012. Delegating decisions
in strategic settings. In ECAI 2012, 468–473.
Levit, V.; Grinshpoun, T.; Meisels, A.; and Bazzan, A. L. C.
2013. Taxation search in boolean games. In AAMAS, 183–
190.
Mavronicolas, M.; Monien, B.; and Wagner, K. W. 2007.
Weighted Boolean formula games. In Deng, X., and Gra-
ham, F., eds., Internet and Network Economics, volume
4858 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 469–481.
Nash, J. 1951. Non-cooperative games. Annals of Mathe-
matics 54(2):286–295.
Ågotnes, T., and van Ditmarsch, H. 2011. What will they
say?public announcement games. Synthese 179(1):57–85.
Rosenthal, R. 1973. A class of games possessing pure-
strategy Nash equilibria. International Journal of Game
Theory 2(1):65–67.
Schoenebeck, G. R., and Vadhan, S. 2012. The compu-
tational complexity of Nash equilibria in concisely repre-
sented games. ACM Trans. Comput. Theory 4(2):4:1–4:50.

217

