
A Temporal Logic of Strategic Knowledge

Xiaowei Huang and Ron van der Meyden
The University of New South Wales

Abstract
The paper presents an extension of temporal epistemic logic
that adds “strategic” agents in a way that allows standard epis-
temic operators to capture what agents could deduce from
knowledge of the strategies of some subset of the set of
agents. A number of examples are presented to demonstrate
the broad applicability of the framework, including reasoning
about implementations of knowledge-based programs, game
theoretic solution concepts and notions from computer secu-
rity. It is shown that notions from several variants of alternat-
ing temporal epistemic logic can be expressed. The frame-
work is shown to have a decidable model checking problem.

Introduction
The design and study of distributed and multi-agent systems
typically has to deal with agents who have a choice of ac-
tion to perform, and have individual and possibly conflict-
ing goals. This leads agents to act strategically, attempting to
select their actions over time so as to guarantee these goals
even in the face of other agents’ behaviour. The choice of
actions generally needs to be done on the basis of imperfect
information concerning the state of the system.

These concerns have motivated the development of a
variety of modal logics that aim to capture the essential
notions of such settings. One of the earliest, dating from
the 1980’s was multi-agent epistemic logic (Halpern and
Moses 1990; Parikh and Ramanujam 1985), which intro-
duces modal operators that deal with imperfect information
by providing a way to state what agents know. Combining
such constructs with temporal logic (Pnueli 1977) constructs
gives temporal-epistemic logics, which support reasoning
about how agents’ knowledge changes over time. Temporal-
epistemic logic is an area about which a significant amount
is now understood (Fagin et al. 1995).

Logics dealing with reasoning about strategies, which
started to be developed in the same period (Parikh 1983),
had a slower initial start, but have in recent years be-
come the focus of intense study (Pauly 2002; Horty. 2001;
Alur, Henzinger, and Kupferman 2002). Many subtle issues
that arise concerning what agents know in settings where
multiple agents act strategically. In the process of under-
standing these issues, there has been a proliferation of modal

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

logics. In particular, for dealing with epistemic reasoning in
strategic settings, there are multiple proposals, with different
semantic and syntactic bases, for how to capture reasoning
about the availability to groups of agents of strategies for
achieving particular goals (Jonker 2003; Schobbens 2004;
van Otterloo and Jonker 2005; Jamroga 2003; Jamroga and
Ågotnes 2007).

We argue in this paper that this proliferation is unneces-
sary, and that an appropriate application of temporal epis-
temic logic, with a minor innovation, already has the power
to deal with many issues of concern when dealing with epis-
temic reasoning in strategic settings.

In particular, whereas logics in this area frequently leave
strategies implicit in the semantic modelling, we propose
to work in an instance of a standard semantic framework
for temporal epistemic logic, but with strategies explicitly
represented in the semantic model. In fact, we are not the
first to have applied this instance of the standard temporal-
epistemic model (Halpern and O’Neill 2008). Our main in-
novation is small but, we claim, powerful: we introduce new
agent names that refer to the strategies being used by the
main players, and allow these new agent names to be in-
cluded in (otherwise standard) operators for group knowl-
edge.

We argue that this gives a logical approach with broad
applicability. In particular, it can express many of the sub-
tly different notions that have been the subject of propos-
als for alternating temporal epistemic logics. We demon-
strate this by results that show how such logics can be trans-
lated into our setting. We also present a number of other ex-
amples including reasoning about possible implementations
of knowledge-based programs, game theoretic solution con-
cepts, and issues of concern in computer security. Moreover,
as we show, our approach retains from alternating temporal
epistemic logic the desirable property that model checking
is decidable, in the case of an imperfect recall semantics for
knowledge. We show that it is in fact PSPACE-complete, no
more than the complexity of model checking the temporal
logic LTL, on which we build, although we have a much
richer expressiveness.

The structure of the paper is as follows. We first recall
some standard definitions from temporal epistemic logic.
We then present a semantic model (also standard) for the
environments in which agents choose their actions. Build-

418

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

ing on this model, we show how to construct a model for
temporal epistemic logic that builds in information about
strategic behaviour, but which introduces the new “strategy”
agents. The following sections deal with applications of this
model. We show successively that it can express reasoning
about implementations of knowledge-based programs, many
notions that have been proposed in the area of alternating
temporal epistemic logic, game theoretic solution concepts,
and problems from computer security. Next, we show that
the framework has a decidable model checking problem. We
conclude with a discussion of related literature.

Temporal Epistemic Logic
Suppose that we are working with a system in which there is
a finite set Ags of agent names. Let Prop be a set of atomic
propositions. The language CTL∗K(Ags, Prop) has the syn-
tax:

φ ≡ p | ¬φ | φ1 ∨ φ2 | Aφ | ©φ | φ1Uφ2 | DGφ | CGφ

where p ∈ Prop and G ⊆ Ags. Intuitively, the formula DGφ
expresses that agents in G have distributed knowledge of φ,
i.e., they could deduce φ if they pooled their information,
and CGφ says that φ is common knowledge to group G. The
formulas ©φ and φ1Uφ2 express the linear time temporal
logic notions “φ at the next moment of time” and “φ1 until
φ2”, respectively. The operator A refers to branching tempo-
ral structure: Aφ says that the formula φ holds for all possible
evolutions from the present situation. Other operators can be
obtained in the usual way, e.g., φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2),
^φ = (trueUφ), �φ = ¬^¬φ, etc. For an agent i ∈ Ags write
Kiφ for D{i}φ, this expresses that agent i knows the fact φ.
The notion of everyone in group G knowing φ can then be
expressed as EGφ =

∧
i∈G Kiφ. Using this, common knowl-

edge CGφ can be understood as the conjunction of Ek
Gφ for

all k ≥ 0.
Semantics of the language is given in interpreted systems,

which are tuples I = 〈R, π〉, where R is a set, called the set
of runs, and π : R × N → P(Prop) is a propositional in-
terpretation. It is required that there exist for each i ∈ Ags,
a nonempty set Li of local states of agent i, such that R is
a subset of the set of functions r : N → Πi∈AgsLi. Intu-
itively, this says that a run maps each moment of time to
a global state, which gives a local state for each agent i. The
usual presentation (Fagin et al. 1995), also includes a com-
ponent in the global state for the state of the environment.
We will handle this by including the special agent e ∈ Ags,
representing the environment, when required. For n ≤ m
write r[n . . .m] for the sequence r(n)r(n + 1) . . . r(m). Ele-
ments of R × N are called the points of I. For each agent
i ∈ Ags, we write ri(m) for the i-component of r(m), and de-
fine an equivalence relation on points by (r,m) ∼i (r′,m′) if
ri(m) = r′i (m

′). For G ⊆ Ags, we define the equivalence re-
lation ∼G on points by (r,m) ∼G (r′,m′) if (r,m) ∼i (r′,m′)
for all i ∈ G. Note that ∼∅ is then the universal relation on
R×N, intuitively representing an agent who knows nothing,
and ∼Ags is an agent with complete information about the
global state. In particular, it follows for runs r, r′ ∈ R that if
(r,m) ∼Ags (r′,m) for all m ∈ N, then r = r′.

The semantics of the language CTL∗K is given by a rela-
tion I, (r,m) |= φ, representing that formula φ holds at point
(r,m) of the interpreted system I. This defined inductively
on the structure of the formula φ, as follows:

• I, (r,m) |= p if p ∈ π(r,m);

• I, (r,m) |= ¬φ if not I, (r,m) |= φ;

• I, (r,m) |= φ ∧ ψ if I, (r,m) |= φ and I, (r,m) |= ψ;

• I, (r,m) |= Aφ if I, (r′,m) |= φ for all r′ ∈ R with
r[0 . . .m] = r′[0 . . .m];

• I, (r,m) |=©φ if I, (r,m + 1) |= φ;

• I, (r,m) |= φUψ if there exists m′ ≥ m such that
I, (r,m′) |= ψ and I, (r, k) |= φ for all k with m ≤ k < m′.

• I, (r,m) |= DGφ if I, (r′,m′) |= φ for all points (r′,m′)
with (r,m) ∼G (r′m′);

• I, (r,m) |= CGφ if I, (r′,m′) |= φ for all points (r′,m′)
with (r,m) ∼C

G (r′m′), where ∼C
G= (∪i∈G ∼i)∗.

We write I |= φ to mean that I, (r, 0) |= φ for all runs of I.

Strategic Environments
In order to deal with agents that operate in an environment
by strategically choosing their actions, we introduce a type
of transition system that models the available actions and
their effects on the state. An environment for agents Ags is a
tuple E = 〈S , I,Acts,→, {Oi}i∈Ags, π〉, where

1. S is a set of states,

2. I is a subset of S , representing the initial states,

3. Acts = Πi∈AgsActsi is a set of joint actions, where each
Actsi is a nonempty set of actions that may be performed
by agent i,

4. →⊆ S × Acts × S is a transition relation, labelled by joint
actions,

5. for each i ∈ Ags, component Oi : S → Li is an observa-
tion function,

6. π : S → P(Prop) is a propositional assignment.

Since later constructions add agent e, it is assumed here that
e < Ags. An environment is said to be finite if all its compo-
nents, i.e., S ,Ags,Actsi, Li and Prop are finite. Intuitively, a
joint action a ∈ Acts represents a choice of action ai ∈ Actsi
for each agent i ∈ Ags, performed simultaneously, and the
transition relation resolves this into an effect on the state.
We assume that→ is serial in the sense that for all s ∈ S and
a ∈ Acts there exists t ∈ S such that (s, a, t) ∈→.

A strategy for agent i ∈ Ags in such an environment E is
a function α : S → P(Actsi) \ {∅}, selecting a set of actions
of the agent at each state.1 We call these the actions enabled
at the state. A strategy is deterministic if α(s) is a singleton
for all s.

A strategy for a group G ⊆ Ags is a tuple αG = 〈αi〉i∈G
such that αi is a strategy for agent i, for each i ∈ G. A group

1More generally, one can take a strategy to be a function of the
history. We focus in this paper on strategies that depend only on the
final state.

419

strategy is deterministic if αi(s) is a singleton for all states
s and all i ∈ G. A strategy αi for agent i is uniform if for
all states s, t, if Oi(s) = Oi(t), then αi(s) = αi(t). A strategy
αG = 〈αi〉i∈G for a group G is locally uniform (deterministic)
if αi is uniform (respectively, deterministic) for each agent
i ∈ G.2

Given an environment E, we write Σ(E) for the set of all
joint strategies for the group Ags of all agents, Σdet(E) for
the set of deterministic strategies, Σunif (E) for the set of all
locally uniform joint strategies, and Σunif ,det(E) for the set of
all deterministic locally uniform joint strategies.

We now introduce a notation for referring to an agent’s
strategy, that enables us to treat the strategy as itself an agent.
Given an agent i, we write σ(i) for a new agent that repre-
sents agent i’s strategy. For a set G ⊆ Ags of agents, we
define σ(G) = {σ(i) | i ∈ G}. We note that agent σ(i) will
typically not be associated with any actions, it is intended
primarily for use in epistemic operators in the semantics
of an interpreted system constructed to allow reference to
what can be deduced were agents to reason using informa-
tion about each other’s strategies.

Given an environment E = 〈S , I,Acts,→, {Oi}i∈Ags, π〉 for
agents Ags, where Oi : S → Li for each i ∈ Ags, and a set
Σ ⊆ Πi∈AgsΣi of joint strategies for the group Ags, we define
the strategy space interpreted system I(E,Σ) = (R, π′) for
agents Ags ∪ σ(Ags) ∪ {e}. The system I(E,Σ) has global
states G = S × Πi∈AgsLi × Πi∈AgsΣi. Intuitively, each global
state consists of a state of the environment E, a local state for
each agent i in E, and a strategy for each agent i. We index
the components of this cartesian product by e, the elements
of Ags and the elements of σ(Ags), respectively. We take the
set of runs R of I(E,Σ) to be the set of all runs r : N → G
satisfying the following constraints, for all m ∈ N and i ∈
Ags:

1. re(0) ∈ I and 〈rσ(i)(0)〉i∈Ags ∈ Σ,

2. ri(m) = Oi(re(m)),

3. (re(m), a, re(m + 1)) ∈→ for some joint action a ∈ Acts
such that for all j ∈ Ags we have a j ∈ α j(r j(m)), where
α j = rσ(j)(m), and

4. rσ(i)(m + 1) = rσ(i)(m).

The first constraint, intuitively, says that runs start at an ini-
tial state of E, and the initial strategy profile at time 0 is
one of the profiles in Σ. The second constraint states that
the agent i’s local state at time m is the observation that
agent i makes of the state of the environment at time m. The
third constraint says that evolution of the state of the envi-
ronment is determined at each moment of time by agents
choosing an action by applying their strategy at that time
to their local state at that time. The joint action resulting
from these individual choices is then resolved into a transi-
tion on the state of the environment using the transition re-

2We prefer the term “locally uniform” to just “uniform” in the
case of groups, since we could say a strategy α for group G is glob-
ally uniform if for all states s, t, if Oi(s) = Oi(t) for all i ∈ G, then
αi(s) = αi(t) for all i ∈ G. While we do not pursue this in the
present paper, this notion would be interesting in settings where
agents share information to collude on their choice of move.

lation from E. The fourth constraint says that agents’ strate-
gies are fixed during the course of a run. Intuitively, each
agent picks a strategy, and then sticks to it. The interpreta-
tion π′ of I(E,Σ) is determined from the interpretation π of
E by taking π′(r,m) = π(re(m)) for all points (r,m).

Our epistemic strategy logic is now just an instantiation of
the extended temporal epistemic logic in the strategy space
generated by an environment. That is, we start with an en-
vironment E and an associated set of strategies Σ, and then
work with the language CTL∗K(Ags ∪ σ(Ags) ∪ {e}, Prop)
in the interpreted system I(E,Σ). We call this instance of
the language CTL∗K(Ags, Prop), or just CTL∗K when the
parameters are implicit.

The key point is that the system I(E,Σ) represents the
possible temporal evolutions under all possible choices of
joint strategies from Σ by the agents, and provides a way
to refer, using distributed knowledge operators DG where
G contains the new strategic agents σ(i), to what agents
would know, should they take into account not just their
own observations, but also information about other agent’s
strategies. For example, the distributed knowledge operator
D{i,σ(i)} captures the knowledge that agent i has, taking into
account the strategy that it is running. D{i,σ(i),σ(j)} captures
what agent i would know, taking into account its own strat-
egy and the strategy being used by agent j. Various applica-
tions of the usefulness of this expressiveness are given in the
following sections.

In general, we will be most interested in the case where
Σ = Σunif (E) is the set of all locally uniform strategies in E,
so we use the abbreviation Iunif (E) for I(E,Σunif (E)), and
similarly for the other strategy sets that we defined above.

We remark that the agent e has perfect information about
the state of the environment, including the agent’s observa-
tion, so D{e}∪Gφ, for G ⊆ Ags is equivalent to D{e}φ. Thus,
the operator D{e}∪σ(G) captures what can be deduced from
knowledge of the state of the environment and the strategies
of agents in G.

Reasoning about Knowledge-Based Programs
Knowledge-based programs (Fagin et al. 1997) are a form
of specification of a multi-agent system in the form of a pro-
gram structure that specifies how an agent’s actions are re-
lated to its knowledge. They have been shown to be a use-
ful abstraction for several areas of application, including the
development of optimal protocols for distributed systems
(Fagin et al. 1997), robot motion planning (Brafman et al.
1997), and game theoretic reasoning (Halpern and Moses
2007).

Knowledge-based programs cannot be directly executed,
since there is a circularity in their semantics: which actions
are performed depends on what the agents know, which in
turn depends on which actions the agents perform. The cir-
cularity is not vicious, and can be resolved by means of a
fixed point semantics, but it means that knowledge-based
programs may have multiple distinct implementations (or
none), and the problem of reasoning about these implemen-
tations is quite subtle. In this section, we show that our
framework can capture reasoning about the set of possible
knowledge-based program implementations.

420

We consider joint knowledge-based programs P (as de-
fined by (Fagin et al. 1997)) where for each agent i we have
a knowledge-based program

Pi = do φi
1 → ai

1 [] . . . [] φi
ni
→ ai

ni
od

where each φi
j is a formula of CTL∗K(Ags, Prop) of the form

Kiψ, and each ai appears just once.3 Intuitively, this program
says to repeat forever the following operation: nondetermin-
istically execute one of the actions ai

j such that the corre-
sponding guard φi

j is true.
We present a formulation of semantics for knowledge-

based programs that refactors the definitions of (Fagin et al.
1997), following the approach of (van der Meyden 1996)
which uses the notion of environment defined above rather
than the original notion of context. A potential implementa-
tion of a knowledge-based program P in an environment E is
a joint strategy α in E. Given a potential implementation α in
E, we can construct the interpreted system I(E, {α}), which
captures the possible runs of E when the agents choose
their actions according to the single possible joint strategy
α. Given this interpreted system, we can now interpret the
epistemic guards in P. Say that a state s of E is α-reachable
if there is a point (r,m) of I(E, {α}) with re(m) = s. We
note that for a formula Kiφ, and a point (r,m) of I(E, {α}),
the statement I(E, {α}), (r,m) |= Kiφ depends only on the
state re(m) of the environment at (r,m). For an α-reachable
state s of E, it therefore makes sense to define satisfaction
of Kiφ at s rather than at a point, by I(E, {α}), s |= Kiφ if
I(E, {α}), (r,m) |= Kiφ for all (r,m) with re(m) = s. We de-
fine α to be an implementation of P in E if for all α-reachable
states s of E and agents i, we have

αi(s) = {ai
j | 1 ≤ j ≤ ni, I(E, {α}), s |= Kiφ

i
j} .

Intuitively, the right hand side of this equation is the set of
actions that are enabled at s by Pi when the tests for knowl-
edge are interpreted using the system obtained by running
the strategy α itself. The condition states that the strategy is
an implementation if it enables precisely this set of actions
at every reachable state.

We now show that our framework for strategic reasoning
can express the same content as a knowledge-based program
by means of a formula, and that this enables the framework
to be used for reasoning about knowledge-based program
implementations.

We need one constraint on the environment. Say that an
environment E is action-recording if for each a ∈ Actsi there
exists an atomic proposition didi(a) such that for s ∈ I we
have didi(a) < π(s) and for all states s, t and joint actions
a such that (s, a, t) ∈→, we have didi(b) ∈ π(t) iff b = ai,
for all agents i. It is easily seen that any environment can be

3The guards in (Fagin et al. 1997) are allowed to be boolean
combinations of formulas Kiψ and propositions p local to the agent:
since for such propositions p ⇔ Ki p, and the operator Ki satis-
fies positive and negative introspection, our form for the guards
is equally general. They do not require that ai appears just once,
but the program can always be put into this form by aggregating
clauses for ai into one and taking the disjunction of the guards.

made action-recording, just by adding a component to the
states that records the latest joint action.

We can now express knowledge-based program imple-
mentations as follows. For a formula ψ, write ψ$ for the re-
sult of substituting for each occurrence of an operator DG
in ψ the operator DG∪σ(Ags). Intuitively, this substitution says
that the operator DG in ψ is to be interpreted as if it is known
that the current joint strategy is being played. To understand
the motivation for this, note that in I(E, {α}) it is common
knowledge that the joint strategy α is being played. Let

imp(P) = Dσ(Ags)(
∧

i∈Ags, j=1...ni

((φi
j)

$ ⇔ EXdidi(ai
j))).

Intuitively, this formula says that the current joint strategy
gives an implementation of the knowledge-based program
P. More precisely, we have the following:

Proposition 1 Suppose that P is a knowledge-based pro-
gram that does not make use of common knowledge oper-
ators. Let α be a locally uniform joint strategy in E and let
r be a run of Iunif (E), in which the agents are running joint
strategy α, i.e., where rσ(i)(0) = αi for all i ∈ Ags. Let m ∈ N.
Then the strategy α is an implementation of knowledge-
based program P in E iff Iunif (E), (r,m) |= imp(P).

Note that here we check imp(P) in the system Iunif (E)
that contains all joint strategies, not just a single strategy α,
as in the definition of implementation for a knowledge-based
program. The point of this is that a priori, we do not have an
implementation at hand.

In particular, as a consequence of this result, it follows
that several properties of knowledge-based programs (that
do not make use of common knowledge operators) can be
expressed in the system Iunif (E):

1. The statement that there exists an implementation of P in
E can be expressed by

Iunif (E) |= ¬D∅¬imp(P)

2. The statement that all implementations of P in E guar-
antee that formula φ holds at all times can be expressed
by

Iunif (E) |= D∅(imp(P)⇒ Dσ(Ags)φ
$))

We remark that as a consequence of these encodings and
the fact that the model checking problem described below is
in PSPACE, we obtain that testing for the existence of an im-
plementation of a knowledge-based program is in PSPACE,
as is the problem of determining whether all implementa-
tions satisfy some formula. For testing existence, this result
was known (Fagin et al. 1997), but the result on verifica-
tion has not previously been noted (though it could also have
been shown using the techniques in (Fagin et al. 1997).)

We remark that the reason for excluding common knowl-
edge CGφ from the conditions in the knowledge-based
program in Proposition 1 is that this would require us
to express a greatest fixedpoint X of the equation X ≡∧

i∈G D{i}∪σ(Ags)(X ∧ φ), which is not the same as CG∪σ(Ags)φ.
One appropriate way to handle this in our framework would
be to work with a mu-calculus extension. We do not pursue
this here.

421

Connections to variants of ATEL
Alternating temporal logic (ATL) (Alur, Henzinger, and
Kupferman 2002) is a generalization of the branching time
temporal logic CTL that can express the capability of agent
strategies to bring about temporal effects. Essentially, each
branching construct Aφ is generalized to an alternating con-
struct 〈〈G〉〉φ for a group G of agents, where φ is a “pre-
fix temporal” formula such as Xφ′, Fφ′, Gφ′ or φ1Uφ2, as
would be used to construct a CTL operator. Intuitively, 〈〈G〉〉φ
says that the group G has a strategy for ensuring that φ holds,
irrespective of what the other agents do.

Alternating temporal epistemic logic (ATEL), adds epis-
temic operators to ATL (van der Hoek and Wooldridge
2002). As a number of subtleties arise in the formulation of
such logics, several variants of ATEL have since been devel-
oped. In this section, we consider a number of such variants
and argue that our framework is able to express the main
strategic concepts from these variants. We begin by recalling
ATEL as defined in (van der Hoek and Wooldridge 2002).
Various modellings of the environments in which agents op-
erate have been used in the literature; we base our modelling
on the notion of environment introduced above.

The syntax of ATEL is given as follows:

φ ≡ p | ¬φ | φ1∨φ2 | 〈〈G〉〉©φ | 〈〈G〉〉�φ | 〈〈G〉〉(φ1Uφ2) | Kiφ |CGφ

where p ∈ Prop, i ∈ Ags and G ⊆ Ags. The intuitive mean-
ing of the constructs is as in CTL∗K above, with additionally
〈〈G〉〉φ having the intuitive reading that group G has a strat-
egy for assuring that φ holds. The semantics is given by a
relation E, s |=Σ φ, where E = 〈S , I,Acts,→, {Oi}i∈Ags, π〉 is
an environment, s ∈ S is a state of E, and φ is a formula. For
reasons discussed below, we parameterize the definition on
a set Σ of strategies for groups of agents in the environment
E. For the definition, we need the notion of a path in E: this
is a function ρ : N→ S such that for all k ∈ N there exists a
joint action a with (ρ(k), a, ρ(k + 1)) ∈→. A path ρ is from a
state s if ρ(0) = s. A path ρ is consistent with a strategy α for
a group G if for all k ∈ N there exists a joint action a such
that (ρ(k), a, ρ(k + 1)) ∈→ and ai ∈ αi(ρ(k)) for all i ∈ G.

The relation E, s |=Σ φ is defined inductively on the struc-
ture of the formula φ:

• E, s |=Σ p if p ∈ π(s);

• E, s |=Σ ¬φ if not E, s |=Σ φ;

• E, s |=Σ φ ∧ ψ if E, s |=Σ φ and E, s |=Σ ψ;

• E, s |=Σ 〈〈G〉〉©φ if there exists a strategy αG ∈ Σ for group
G such that for all paths ρ from s that are consistent with
αG, we have E, ρ(1) |=Σ φ;

• E, s |=Σ 〈〈G〉〉�φ if there exists a strategy αG ∈ Σ for group
G such that for all paths ρ from s that are consistent with
αG, we have E, ρ(k) |=Σ φ for all k ∈ N;

• E, s |=Σ 〈〈G〉〉(φUψ) if there exists a strategy αG ∈ Σ for
group G such that for all paths ρ from s that are consistent
with αG, there exists m ≥ 0 such that E, ρ(m) |=Σ ψ, and
for all k < m, we have E, ρ(k) |=Σ φ.

• E, s |=Σ Kiφ if E, t |=Σ φ for for all t ∈ S with t ∼i s;

• E, s |=Σ CGφ if E, t |=Σ φ for for all t ∈ S with (s, t) ∈
(∪i∈G ∼i)∗;

The specific version of ATEL defined in (van der
Hoek and Wooldridge 2002) is obtained from the above
definitions by taking Σ = Σdet = {σG | G ⊆

Ags, σG a deterministic G-strategy in E}. That is, follow-
ing the definitions for ATL, this version works with arbi-
trary deterministic group strategies, in which an agent se-
lects its action as if it has full information of the state. This
aspect of the definition has been critiqued by Jonker (Jonker
2003) and (in the case of ATL without epistemic operators)
by Schobbens (Schobbens 2004), who argue that this choice
is not in the spirit of the epistemic extension, in which ob-
servations are intended precisely to represent that agents do
not have full information of the state. They propose that the
definition instead be based on the set Σdet,unif = {σG | G ⊆
Ags, σG a locally uniform deterministic G-strategy in E}.
This ensures that in choosing an action, agents are able to
use only the information available in their observations.

We concur that the use of locally uniform strategies is the
more appropriate choice, but in either event, we now argue
that our approach using strategy space is able to express
everything that can be expressed in ATEL. Consider the
following translation from ATEL to CTL∗K(Prop,Ags+ ∪

σ(Ags) ∪ {e}). For a formula φ, we write φ∗ for the transla-
tion of φ, defined inductively on the construction of φ by the
following rules

p∗ = p (¬φ)∗ = ¬φ∗ (φ1 ∧ φ2)∗ = φ∗1 ∧ φ
∗
2

(Kiφ)∗ = Kiφ
∗ (CGφ)∗ = CGφ

∗

(〈〈G〉〉©φ)∗ = ¬Ke¬D{e}∪σ(G)©φ
∗

(〈〈G〉〉�φ)∗ = ¬Ke¬D{e}∪σ(G)�φ
∗

(〈〈G〉〉φ1Uφ2)∗ = ¬Ke¬D{e}∪σ(G)(φ∗1Uφ∗2)

Given a strategy α = 〈αi〉i∈G for a group of agents G in
an environment E, define the completion of the strategy to
be the joint strategy comp(α) = 〈α′i〉i∈G with α′i = αi for
i ∈ G and with αi(s) = Actsi for all i ∈ Ags \ G and s ∈ S .
Intuitively, this operation completes the group strategy to a
joint strategy for all agents, by adding the random strategy
for all agents not in G. Given a set of strategies Σ for groups
of agents, we define comp(Σ) = {comp(α) | α ∈ Σ}. Say
that a set Σ of group strategies is restrictable if for every
α ∈ Σ for group of agents G and every group G′ ⊆ G, the
restriction αG′ of α to agents in G′ is also in Σ. Say that Σ
is extendable if for every strategy for a group G′ ⊆ G, there
exists a strategy α′ ∈ Σ for group G whose restriction α′G′ to
G′ is equal to α. For example, the set of all group strategies,
and the set of all locally uniform group strategies, are both
restrictable and extendable.

For an environment E, write E[S/I] for the environment
obtained by making all states in E be initial, i.e., replacing
the set of initial states I of E by the set of all states S of E.
(This is a technical transformation that we require because E
may have temporally unreachable states that would not oc-
cur in an interpreted system constructed from E, but that can
be accessed via an equivalence relation ∼i in the semantics
of ATEL.) We can then show the following.

422

Theorem 1 For every environment E, nonempty set of
group strategies Σ that is restrictable and extendable,
for every state s of E and ATEL formula φ, we
have E, s |=Σ φ iff for all (equivalently, some) points
(r,m) of I(E[S/I], comp(Σ)) with re(m) = s we have
I(E[S/I], comp(Σ)), (r,m) |= φ∗.

Similar translation results can be given for other alternat-
ing temporal epistemic logics from the literature. We sketch
a few of these translations here.

Jamroga and van der Hoek (Jamroga and van der Hoek
2004) note that ATEL admits situations consisting of an en-
vironment E and a state s where E, s |= Ki〈〈i〉〉φ, i.e., in every
state consistent with agent i’s knowledge, some strategy for
agent i is guaranteed to satisfy φ, but still there is no strat-
egy for agent i that agent i knows will work to achieve φ.
They formulate a construct 〈〈G〉〉•

K(H)φ that says, effectively,
that there is a strategy for a group G that another group H
knows (for notion of group knowledgeK , which could be E
for everyone knows, D for distributed knowledge, or C for
common knowledge) to achieve goal φ. More precisely,

E, s |= 〈〈G〉〉•
K(H)φ if there exists a uniform strategy α for

group G such that for all states t with s ∼KH t, we have that
all paths ρ from t that are consistent with α satisfy φ.

Here ∼KH is the appropriate epistemic indistinguishability
relation on states of E. The particular case 〈〈G〉〉•E(G)φ is
also proposed as the semantics for the ATL construct 〈〈G〉〉φ
in (Schobbens 2004; Jonker 2003; Jamroga and Ågotnes
2007).

The construct 〈〈G〉〉•D(H)φ can be represented in our lan-
guage as

¬De¬DH∪σ(G)φ .

Intuitively, here the first modal operator ¬De¬ switches the
strategy of all the agents while maintaining the state s,
thereby selecting a strategy α for group G in particular, and
the next operator D{H,σ(G)} verifies that the group H knows
that the strategy G being used by group G guarantees φ. Sim-
ilarly, 〈〈G〉〉•E(H)φ can be represented as

¬De¬
∧
i∈H

D{i}∪σ(G)φ .

This gives a reduction of these complex operators of (Jam-
roga and van der Hoek 2004) to a set of standard epistemic
operators.4 (An alternate approach to decomposing the oper-
ators 〈〈G〉〉•

K(H) is proposed in (Jamroga and Ågotnes 2007).
By comparison with our standard semantics, this proposal
uses “constructive knowledge” operators which require a
nonstandard semantics in which formulas are evaluated at
sets of states rather than at individual states.)

(W. van der Hoek, Jamroga, and Wooldridge 2005) in-
troduce constants that refer to strategies, and adds to ATL
a new (counterfactual) modality Ci(c, φ), with the intended
reading “if it were the case that agent i committed to the
strategy denoted by c, then φ”. The formula φ here is not
permitted to contain further references to agent i strategies.

4As with knowledge-based programs above, to handle common
knowledge, it seems we require an extension to mu-calculus.

To interpret the formula Ci(c, φ) in an environment E, the
environment is first updated to a new environment E′ by re-
moving all transitions that are inconsistent with agent i run-
ning the strategy referred to by c, and then the formula φ
is evaluated in E′. After introducing propositional constants
pi,c that say that agent i is running the strategy referred to
by c, the formula Ci(c, φ) could be expressed in our frame-
work as D{e}∪σ(Ags\{i})(pi,c ⇒ φ+σ(i)) where in the translation
φ+σ(i) of φ we ensure that there is no further deviation from
the strategy of agent i by adding σ(i) to the group of every
knowledge operator occurring later in the translation.

(W. van der Hoek, Jamroga, and Wooldridge 2005) do not
include epistemic operators. Were they to be added in the
obvious way, the effect would be to make the meaning of the
knowledge operator (with respect to the agent’s knowledge
concerning the strategies in play) dependent on the context
in the formula. In particular, in (K jφ) ∧ Ci(c,K jψ), the first
occurrence of K j would refer to an agent j who does not
know that i is playing c, whereas the second K j would ef-
fectively refer to our K{ j,σ(i)}, i.e., j’s knowledge taking into
account that i is playing c. Our framework is more expres-
sive in that we can continue to use the former meaning even
in the second context.

Solution Concepts
It has been shown for a number of logics for strategic rea-
soning that they are expressive enough to state a variety of
game theoretic solution concepts, e.g., (W. van der Hoek,
Jamroga, and Wooldridge 2005; Chatterjee, Henzinger, and
Piterman 2010) show that Nash Equilibrium is expressible.
We now sketch the main ideas required to show that our
framework also has this expressive power. We assume two
players Ags = {0, 1} in a normal form game, and assume
that these agents play a deterministic strategy. The results in
this section can be easily generalized to multiple players and
extensive form games.

Given a game Gwe construct an environment EG that rep-
resents the game. Each player has a set of actions that corre-
spond to the moves that the player can make. We assume that
EG is constructed to model the game so that play happens in
the first step from a unique initial state, and that subsequent
transitions do not change the state.

Let ui for i ∈ {0, 1} be a variable denoting the utility
gained by player i when play is finished. Let Vi be the set
of possible values for ui. We write −i to denote the adver-
sary of player i. We use formula

Ui(v) =©(ui = v)

to express that value v is player i’s utility once play finishes.

Nash equilibrium (NE) is a solution concept that states no
player can gain by unilaterally changing their strategy. We
may write

BRi(v) = Ui(v) ∧ Kσ(−i)

∧
v′∈Vi

(Ui(v′)⇒ v′ ≤ v)

to express that, given the current adversary strategy, the
value v attained by player i’s current strategy is the best pos-
sible utility attainable by player i, i.e., the present strategy of

423

player i is a best response to the adversary. Thus

BRi =
∨
v∈Vi

BRi(v)

says that player i is playing a best-response to the adver-
sary’s strategy. The following statement then expresses the
existence of a Nash equilibrium for the game G:

Iunif ,det(EG) |= ¬D∅¬(BR0 ∧ BR1) .
That is, in a Nash equilibrium, each player is playing a best
response to the other’s strategy.

Perfect cooperative equilibrium (PCE) is a solution
concept intended to overcome deficiencies of Nash equi-
librium for explaining cooperative behaviour (Halpern and
Rong 2010). It says that each player does at least as well
as she would if the other player were best-responding. The
following formula

BUi(v) = D∅(
∧
v′∈Vi

((BR−i ∧ Ui(v′))⇒ v′ ≤ v))

states that v is as good as any utility that i can obtain if the
adversary always best-responds to whatever i plays. Thus,

BUi =
∨
v∈Vi

(Ui(v) ∧ BUi(v))

says that i is currently getting a utility as good the best util-
ity that i can obtain if the adversary is a best-responder. Now,
the following formula expresses the existence of perfect co-
operative equilibrium for the game G:

Iunif ,det(EG) |= ¬D∅¬(BU0 ∧ BU1)

That is, in a PCE, no player has an incentive to change
their strategy, on the assumption that the adversary will best-
respond to any change.

Computer Security Example: Erasure policies
Formal definitions of computer security frequently involve
reference to the strategies available to the players, and to
agent’s reasoning based on these strategies. In this section
we sketch an example that illustrates how our framework
might be applied in this context.

Consider the scenario depicted in the following diagram:

CUSTOMER

PAYMENT
PROCESSOR

MERCHANT

BANKATTACKER

A customer C can purchase items at a web merchant M. Pay-
ment is handled by a trusted payment processor P (this could
be a service or device), which interacts with the customer,
merchant, and a bank B to securely process the payment. (To

keep the example simple, we suppose that the customer and
merchant use the same bank). One of the guarantees pro-
vided by the payment processor is to protect the customer
from attacks on the customer’s credit card by the merchant:
the specification for the protocol that runs the transaction
requires that the merchant should not obtain the customer’s
credit card number. In fact, the specification for the payment
processor is that after the transaction has been successfully
completed, the payment processor should erase the credit
card data, to ensure that even the payment processor’s state
does not contain information about the customer’s credit
card number. The purpose of this constraint is to protect the
customer against subsequent attacks by an attacker A, who
may be able to use vulnerabilities in the payment processor’s
software to obtain access to the payment processor’s state.

We sketch how one might use our framework to express
the specification. To capture reasoning about all possible
behaviours of the agents, and what they can deduce from
knowledge of those behaviours, we work in Iunif (E) for
a suitably defined environment E. To simplify matters, we
take Ags = {C,M, P, A}. We exclude the strategy of the bank
from consideration: this amounts to assuming that the bank
has no actions and is trusted to run a fixed protocol. We sim-
ilarly assume that the payment processor P has no actions,
but in order to talk about what information is encoded in the
payment processor’s local state, we do allow that this agent
has observations. The customer C may have actions such
as entering the credit card number in a web form, pressing
a button to submit the form to the payment processor, and
pressing a button to approve or cancel the transaction. The
customer observes variable cc, which records the credit card
number drawn from a set CCN, and boolean variable done
which records whether the transaction is complete (which
could mean either committed or aborted).

We assume that the attacker A has some set of exploit ac-
tions, as well as some innocuous actions (e.g., setting a lo-
cal variable or performing skip). The effect of the exploit
actions is to exploit a vulnerability in the payment proces-
sor’s software and copy parts of the local state of the pay-
ment processor to variables that are observable by the at-
tacker. We include in the environment state a boolean vari-
able exploited, which records whether the attacker has ex-
ecuted an exploit action at some time in the past. The mer-
chant M may have actions such as sending cost information
to the payment processor and acknowledging a receipt certi-
fying that payment has been approved by the bank (we sup-
pose this receipt is transmitted from the bank to the merchant
via the payment processor).

We may then capture the statement that the system is po-
tentially vulnerable to an attack that exploits an erasure flaw
in the implementation of the payment processor, by the fol-
lowing formula:

¬D∅¬(done ∧
∨

x∈CCN

KP(cc , x)))

This says that there exist behaviours of the agents, which
can (at least on some points in some runs) leave the payment
processor in a state where the customer has received confir-
mation that the transaction is done, but in which the payment

424

processor’s local state somehow still encodes some informa-
tion about the customer’s credit card number. This encod-
ing could be direct (e.g., by having a variable customer cc
that still stores the credit card number) or indirect (e.g.
by the local state including both a symmetric encryption
key K and an encrypted version of the credit card number,
enc customer cc, with value EncryptK(cc) that was used
for secure transmission to the bank). Note that for a breach
of security, it is only required that the information suffices to
rule out some credit card number (so that, e.g., knowing the
first digit of the number would constitute a vulnerability)

The vulnerability captured by this formula is only poten-
tial, because it does not necessarily follow that the attacker
is able to obtain the credit card information. Whether this is
possible can be checked using the formula

¬D∅¬(done ∧ ¬exploited ∧ EF
∨

x∈CCN

D{A,σ(A)}(cc , x)))

which says that it is possible for the attacker to obtain infor-
mation about the credit card number even after the transac-
tion is done. (To focus on erasure flaws, we deliberately wish
to exclude here the possibility that the attack occurs during
the processing of the transaction.) Note that here we assume
that the attacker knows their own strategy when making de-
ductions from the information obtained in the attack. This is
necessary, because the attacker can typically write its own
local variables, so it needs to be able to distinguish between
a value it wrote itself and a value it copied from the payment
processor.

However, even this formula may not be sufficiently strong.
Suppose that the payment processor implements erasure by
writing a random value to its variable customer cc. Then,
even if the attacker obtains a copy of this value, and it hap-
pens to be equal to the customer’s actual credit card number,
the attacker would not have any knowledge about the credit
card number, since, as far as the attacker knows, it could be
looking at a randomly assigned number. However, there may
still be vulnerabilities in the system. Suppose that the im-
plementation of the payment processor operates so that the
customer’s credit card data is not erased by randomization
until the merchant has acknowledged the receipt of payment
from the bank, but to avoid annoying the customer with a
hanging transaction, the customer is advised that the trans-
action is approved (setting done true) if the merchant does
not respond within a certain time limit. It is still the case that
on observing the copied value of customer cc, the attacker
would not be able to deduce that this is the customer’s credit
card number, since it might be the result of erasure in the
case that the merchant responded promptly. However, if the
attacker knows that the merchant has not acknowledged the
receipt, the attacker can then deduce that the value is not
due to erasure. One way in which the attacker might know
that the merchant has not acknowledged receipt is that the
attacker is in collusion with the merchant, who has agreed to
omit sending the required acknowledgement messages.

This type of attack can be captured by replacing the
term D{A,σ(A)}(cc , x) by D{A,σ(A),σ(M)}(cc , x), capturing
that the attacker reasons using knowledge of both its own
strategy as well as the strategy of the merchant, or even

D{A,σ(A),σ(M),M}(cc , x) for a collusion in which the mer-
chant shares information observed. Similarly, to focus on
erasure flaws in the implementation of the payment gateway,
independently of the attackers capability, we would replace
the term KP(cc , x) above by D{P,σ(M)}(cc , x).

We remark that in the case of the attacker’s knowledge, it
would be appropriate to work with a perfect recall seman-
tics of knowledge, but when using knowledge operators to
express information in the payment gateway’s state for pur-
poses of reasoning about erasure policy, the more appropri-
ate semantics of knowledge is imperfect recall.

This example illustrates some of the subtleties that arise
in the setting of reasoning about security and the way that
our framework helps to represent them. Erasure policies
have previously been studied in the computer security lit-
erature, beginning with (Chong and Myers 2005), though
generally without consideration of strategic behaviour by
the adversary. However, many other notions in the security
literature do involve reasoning about strategies and agent’s
knowledge based on strategies, including nondeducibility on
strategies (Wittbold and Johnson 1990) and robust declassi-
fication (Zdancewic and Myers 2001). We leave the further
exploration of such notions using our approach for future
work.

Model Checking
We now consider the problem of model checking in strategy
space. Recall that, given an interpreted system I, we write
I |= φwhenI, (r, 0) |= φ for all runs r ofI. Since interpreted
systems are infinite, we need a finite representation for a de-
cision problem, for this we use a finite state environment E
together with an associated set of strategies Σ, and consider
the problem of determining whether I(E(E,Σ)) |= φ. Typi-
cally, Σ would be a set such as the set Σunif (E) of all uniform
strategies for E.

For generality, we abstract Σ further, to a paramaterized
class such that for each environment E, the set Σ(E) is a set
strategies for E. We say that the parameterized class Σ(E)
is PTIME-presented, if it is presented by means of an al-
gorithm that runs in time polynomial in the size of E and
verifies if a given strategy α is in Σ(E). (We assume that
strategies α are given as a list of tuples (s, a) ∈ S ×Acts such
that a ∈ α(s).) For example, the class Σ(E) of all strategies
for E can be PTIME-presented, as can Σunif (E), Σdet(E) and
Σunif ,det(E).

A naive model checking algorithm would construct an ex-
tended transition system over the state space S × Σ(E) and
then apply standard model checking techniques for temporal
epistemic logic. Note that a joint strategy for an environment
E can be represented in space |S | × |Acts|, where S is the set
of states of E and Acts the set of joint actions. Thus, such
an extended transition system generally has exponentially
many states as a function of the size of E. This means that
the naive procedure would require not less than exponential
time. In fact it, is possible to do better than this (assuming
that PSPACE is better than EXPTIME). We show the fol-
lowing:

Theorem 2 Let Σ(E) be a PTIME presented class of strate-

425

gies for environments E. The complexity of deciding, given
an environment E, and a CTL∗K formula φ for agents {e} ∪
Ags(E) ∪ σ(Ags(E)), whether I(E,Σ(E)) |= φ, is PSPACE-
complete.

It is interesting to note that, although we have significantly
more expressive power than the temporal logic LTL on
which we build, we achieve this without an increase in com-
plexity: model checking LTL is already PSPACE-complete
(Sistla and Clarke 1985). We note that this result also
strongly suggests that we do have a strictly stronger expres-
sive power than ATEL, since the complexity of model check-
ing ATEL, assuming uniform strategies, is PNP-complete.
The class PNP consists of problems solvable by PTIME
computations with access to an NP oracle). For ATEL,
model checking can be done with a polynomial time (with
respect to the size of formula) computation with access to an
oracle that is in NP with respect to both the number of states
and the number of joint actions. In particular, (Schobbens
2004) proves this upper bound and (Jamroga and Dix 2006)
proves a matching lower bound.

Conclusions
We refer the reader to the sections above for references and
comparison to related work on each of the topics that we
cover. Beside these references, the following are also worth
mentioning.

Strategy Logic (Chatterjee, Henzinger, and Piterman
2010) is a (non-epistemic) generalization of ATL for perfect
information strategies in which strategies may be explicitly
named and quantified. Our logic has implicit quantification
over strategies using the strategic agents in the epistemic
operators. Our logic could be further generalized to make
the reference to strategies explicit, but we note that strat-
egy logic has a non-elementary model checking problem,
so this could come at the cost of a large increase in com-
plexity. Work on identification of more efficient variants of
quantified strategy logic includes (Mogavero, Murano, and
Vardi 2010), who formulate a variant with a 2-EXPTIME-
complete model checking problem.

(van Eijck 2013) introduces a variant of propositional dy-
namic logic (PDL) for describing strategy profiles in nor-
mal form games subject to preference relations, but does not
cover temporal aspects as we have in this paper. Another ap-
proach based on PDL is given in (Ramanujam and Simon
2008), which describes strategies by means of formulas.

(Schnoor 2010) defines a very rich generalization of
ATEL for probabilistic environments, that includes variables
that refer to strategy choices, and in which the strategic op-
erators refer to these variables, so that statements of the form
“when coalition A runs the strategy determined by variable
S1, and coalition B runs the strategy determined by S2, then
probability that φ holds is at least δ” can be expressed. Here
a strategy choice uniformly maps each state, coalition and
formula to a uniform strategy for the coalition. The strate-
gic variables may be quantified, but only in the prefix of the
formula. Because of the complexity of this framework, we
leave a more detailed comparison for later work, but we note
that the epistemic operators in this approach are interpreted

with respect to a fixed strategy choice, compared to our ap-
proach in which the epistemic operators work over the entire
strategy space.

Our focus on this paper has been on an observational, or
imperfect recall, semantics for knowledge. Other semantics
for knowledge are also worth consideration, but left for fu-
ture work. We note one issue in relation to the connection to
ATEL that we have established, should we consider a per-
fect recall version of our logic. ATEL operators effectively
allow reference to situations in which agents switch their
strategy after some actions have already been taken, whereas
in our model an agent’s strategy is fixed for the entire run.
When switching to a new strategy, there is the possibility
that the given state is not reachable under this new strategy.
We have handled this issue in our translation by assuming
that all states are initial, so that the run can be reinitialized
if necessary to make the desired state reachable. This is con-
sistent with an imperfect recall interpretation of ATEL, but it
is not clear that this approach is available on a perfect recall
interpretation. We leave a resolution of this issue to future
work.

In several places in the present paper (Proposition 1 and
Theorem 1), we have made a technical restriction to formu-
las not involving the common knowledge operator in order
to establish a result about the expressive power of our logic,
and remarked that an extension of the logic appears to be
required for these results to encompass common knowledge
operators. In a subsequent work (Huang and van der Mey-
den 2014), we have developed an extension that has the re-
quired expressiveness, by introducing a capacity for quanti-
fying over strategies.

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-Time Temporal Logic. Journal of the ACM
49(5):672–713.
Brafman, R. I.; Latombe, J.-C.; Moses, Y.; and Shoham, Y.
1997. Applications of a Logic of Knowledge to Motion
Planning under Uncertainty. JACM 44(5).
Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010.
Strategy logic. Inf. Comput. 208(6):677–693.
Chong, S., and Myers, A. C. 2005. Language-based in-
formation erasure. In IEEE Computer Security Foundations
Workshop, 241–254.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning About Knowledge. The MIT Press.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y.
1997. Knowledge-based programs. Distributed Computing
10(4):199–225.
Halpern, J. Y., and Moses, Y. 1990. Knowledge and
Common Knowledge in a Distributed Environment. JACM
37(3):549–587.
Halpern, J. Y., and Moses, Y. 2007. Characterizing Solution
Concepts in Games Using Knowledge-Based Programs. In
the 20nd International Joint Conference on Artificial Intelli-
gence (IJCAI2007), 1300–1307.

426

Halpern, J. Y., and O’Neill, K. R. 2008. Secrecy in Multi-
agent Systems. ACM Transactions on Information and Sys-
tem Security 12(1).
Halpern, J. Y., and Rong, N. 2010. Cooperative Equilib-
rium (Extended Abstract). In 9th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS’10).
Horty., J. F. 2001. Agency and deontic logic. Oxford Uni-
versity Press.
Huang, X., and van der Meyden, R. 2014. An epistemic
strategy logic. In 2nd Int. Workshop on Strategic Reasoning,
EPTCS. to appear.
Jamroga, W., and Ågotnes, T. 2007. Constructive knowl-
edge: what agents can achieve under imperfect information.
Journal of Applied Non-Classical Logics 17(4):423–475.
Jamroga, W., and Dix, J. 2006. Model checking abilities
under incomplete information is indeed delta2-complete. In
the 4th European Workshop on Multi-Agent Systems (EU-
MAS’06).
Jamroga, W., and van der Hoek, W. 2004. Agents that Know
How to Play . Fundamenta Informaticae 62:1–35.
Jamroga, W. 2003. Some Remarks on Alternating Temporal
Epistemic Logic. In Proceedings of Formal Approaches to
Multi-Agent Systems (FAMAS 2003).
Jonker, G. 2003. Feasible strategies in alternating-time tem-
poral. Master’s thesis, University of Utrech, The Nether-
lands.
Mogavero, F.; Murano, A.; and Vardi, M. Y. 2010. Reason-
ing about strategies. In FSTTCS, 133–144.
Parikh, R., and Ramanujam, R. 1985. Distributed Processes
and the Logic of Knowledge. In Logics of Programs 1985,
256–268.
Parikh, R. 1983. Propositional game logic. In IEEE Symp.
on Foundations of Computer Science, 195–200.
Pauly, M. 2002. A modal logic for coalitional power in
games. Journal of Logic and Computation 12(1):149–166.
Pnueli, A. 1977. The Temporal Logic of Programs. In Symp.
on Foundations of Computer Science, 46–57.
Ramanujam, R., and Simon, S. E. 2008. Dynamic logic on
games with structured strategies. In KR, 49–58.
Schnoor, H. 2010. Explicit strategies and quantification
for atl with incomplete information and probabilistic games.
Technical Report 1008, Institut für Informatik, Christian-
Albrechts Universität zu Kiel.
Schobbens, P.-Y. 2004. Alternating-time logic with imper-
fect recall. Electronic Notes in Theoretical Computer Sci-
ence 85(2):82–93.
Sistla, A. P., and Clarke, E. M. 1985. The complexity of
propositional linear temporal logics. J. ACM 32(3):733–749.
van der Hoek, W., and Wooldridge, M. 2002. Tractable mul-
tiagent planning for epistemic goals. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02), 1167–1174.
van der Meyden, R. 1996. Knowledge Based Programs: On
the Complexity of Perfect Recall in Finite Environments. In

6th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK 1996), 31–49.
van Eijck, J. 2013. PDL as a multi-agent strat-
egy logic. In Proc. Conf. on Theoretical Aspects
of Reasoning about Knowledge. published in CoRR,
http://arxiv.org/abs/1310.6437.
van Otterloo, S., and Jonker, G. 2005. On Epistemic Tem-
poral Strategic Logic. Electronic Notes in Theoretical Com-
puter Science (ENTCS) 126:77–92.
W. van der Hoek; Jamroga, W.; and Wooldridge, M. 2005. A
logic for strategic reasoning. In Proceedings of the fourth in-
ternational joint conference on Autonomous agents and mul-
tiagent systems (AAMAS’05), 157–164.
Wittbold, J. T., and Johnson, D. M. 1990. Information flow
in nondeterministic systems. In Proc. IEEE Symp. on Secu-
rity and Privacy, 144–161.
Zdancewic, S., and Myers, A. C. 2001. Robust declassifi-
cation. In IEEE Computer Security Foundations Workshop,
15.

427

