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Abstract

We tackle a long-standing open research problem and prove
the decidability of query answering under the stable model se-
mantics for guarded existential rules, where rule bodies may
contain negated atoms, and provide complexity results. The
results extend to guarded Datalog± with negation, and thus
provide a natural and decidable stable model semantics to de-
scription logics such as ELHI and DL-LiteR.

1 Introduction
1.1 Existential Rules, Datalog±, and DLs
Existential rules have attracted much recent interest for
knowledge representation and reasoning (see (Calı̀ et al.
2010) for an overview). An example for an existential rule is

EmpProj(x,y), BaseLevel(x)→ ∃z IsManagedBy(x,z), (1)

which states that every base-level employee working in a
project must be managed by somebody. Such rules are also
well-known as tuple-generating dependencies (TGDs), see
(Beeri and Vardi 1984). In the Datalog± languages (Calı̀,
Gottlob, and Kifer 2013; Calı̀, Gottlob, and Lukasiewicz
2012), TGDs are complemented by a few other types
of rules, notably by negative constraints (NCs), such as
Ceo(x), BaseLevel(x)→ ⊥ , where ⊥ stands for false.1

Query answering based on rule sets is the following de-
cision problem: For a database D, a set of rules Σ, and a
Boolean query Q, decide whether D ∪Σ |= Q. The queries
considered in this paper are unions of Boolean conjunctive
queries (UBCQs). Query answering with TGDs is unde-
cidable (Beeri and Vardi 1981), even in the case of fixed
sets Σ of TGDs (Calı̀, Gottlob, and Kifer 2013) and sin-
gleton sets of TGDs (Baget, Leclère, and Mugnier 2010).
Therefore, to obtain decidability, restrictions need to be im-
posed on TGDs. Semantic conditions that lead to decidabil-
ity were described in (Baget, Leclère, and Mugnier 2010;
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1Often also equality-generating dependencies (EGDs) are used,
which may express key constraints (keys) or functional dependen-
cies. Here, we do not consider EGDs. But, as will be explained in
the full paper, all results of this paper carry over to the case where
rule sets are complemented with a restricted class of EGDs, called
non-conflicting EGDs (Calı̀, Gottlob, and Lukasiewicz 2012).

Baget et al. 2009; 2011; Thomazo 2011; Calı̀, Gottlob, and
Pieris 2012; Gottlob, Manna, and Pieris 2013). Related syn-
tactic conditions led to the Datalog± family (Calı̀, Gott-
lob, and Lukasiewicz 2012). A class of major relevance are
guarded TGDs (GTGDs). A TGD is guarded if its body con-
tains an atom, called guard, that covers all body variables.
NCs may be safely used together with guarded TGDs; their
bodies are not required to contain a guard atom.

A nice and important aspect of guarded rules is that
they generalize well-known description logics (DLs). All
the DLs of the DL-Lite family in (Calvanese et al. 2007;
Poggi et al. 2008) and the DL ELHI (Baader, Brandt, and
Lutz 2005) can be embedded into guarded Datalog± (Calı̀,
Gottlob, and Lukasiewicz 2012). In particular, this holds for
DL-LiteR, the theoretical basis of the QL profile of the Web
ontology language OWL 2. To appreciate how easily DL ax-
ioms can be transformed into Datalog±, note that rule (1)
can be written as ∃EmpProjuBaseLevel v ∃IsManagedBy.

1.2 The Main Problem: Stable Negation
The main goal of this paper is to add non-monotonic nega-
tion under the stable model semantics (SMS) (Gelfond and
Lifschitz 1988) (see also (Subrahmanian 1999; Dantsin et
al. 2001) for an overview of the semantic and computational
properties of the SMS) to guarded rules (possibly with NCs)
where body atoms may be negated. This is considered a hot
open research problem, and has, to our knowledge, not been
solved previously. Rules that may contain negated atoms of
the form notR(x) in their bodies, are called normal TGDs
(NTGDs). Guarded such rules are guarded NTGDs (GNT-
GDs). The standard way of defining the SMS for them is in-
herited from the well-known stable model semantics of nor-
mal logic programming with function symbols (Gelfond and
Lifschitz 1988). In fact, we can replace existentially quanti-
fied variables in program heads by Skolem terms.
Example 1 Let Da = {Person(mary)} be a database and
let Σa be the following rule set expressing that each person
has at least one parent, and that each person belongs to either
an odd generation or to an even generation, and that odd and
even alternate between one generation and the next.

Person(x) → ∃ y Parent(x,y),
Parent(x,y) → Person(y),

Person(x), not Even(x) → Odd(x),
Person(x), not Odd(x) → Even(x),
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Parent(x,y),Odd(x) → Even(y),
Parent(x,y), Even(x) → Odd(y).

After skolemization, the first rule becomes:
Person(x)→ Parent(x,f(x)),

where f is a Skolem function. This program has exactly two
stable models, each consisting of an infinite chain rooted
in the constant mary, one containing (among others) the
facts Odd(mary), Even(f(mary)), Odd(f(f(mary))), and so
on, the other containing the fact Even(mary), Odd(f(mary)),
Even(f(f(mary))). Let Qa be the conjunctive query ∃x, y, z
(Parent(x,y), Parent(y,z), Odd(x), Odd(z)), and let Q′a be the
query ∃x, y (Parent(x,y), Odd(x), Odd(y)). Then, under the
SMS, (Da ∪ Σa) |= Qa but (Da ∪ Σa) 6|= Q′a .

Note that further examples are given in Section 7. It is
easy to exhibit rule sets Σ that generate infinitely many infi-
nite stable models, as illustrated by the following example.
Example 2 Let Db =Da = {Person(mary)}, and let Σb
be obtained by taking just the first four rules of the rule
set Σa of Example 1. Then, there is an uncountably in-
finite number of stable models of Db ∪ Σb, one for each
possibility of having for each Skolem term f i(mary) either
Even(f i(mary)) or Odd(f i(mary)), where 1 6 i 6 ∞. For
the query Qa of Example 1, note that (Db ∪ Σb) 6|= Qa.

It seems that the interplay of nonmonotonic negation with
these two types of infinity made it hard to understand how
the SMS for GNTGDs could be brought under control. The
main questions that we pose and tackle are thus: Is query
answering under the stable model semantics for GNTGDs
decidable? If so, what is the complexity of this problem and
what kind of algorithms are appropriate for it?

1.3 Results
An insightful initial observation while addressing the above
decidability problem was that if a guarded rule set with
negated atoms admits a stable model, then it admits a tree-
shaped one. In fact, each such stable model is a model
of some Gelfond-Lifschitz transform of the ground version
ground(Σ) of the original rule set. For the latter (which are
guarded positive existential rule sets), we know that there
are universal tree-shaped models (Calı̀, Gottlob, and Kifer
2013) that arise via the well-known chase procedure (Maier,
Mendelzon, and Sagiv 1979; Beeri and Vardi 1984). We
could thus encode query answering under the SMS for ex-
istential Datalog± in monadic second-order logic (MSO),
making stable models correspond to binary trees. Decid-
ability of this problem then follows from Rabin’s Theorem
(1969), by which satisfiability of MSO is decidable over the
class of binary trees. This is very briefly described in Sec-
tion 3.3 and fully proven in the extended paper (Gottlob et
al. 2014). Related ideas for deciding other guarded logics or
DLs via MSO can be found in (Eiter and Simkus 2010) and
in (Motik, Horrocks, and Sattler 2009). We thus have shown:

Theorem. There is an algorithm that, given a database
D, a finite set Σ of GNTGDs, and a BCQ Q, decides
whether Q is true in all stable models for D and Σ.

Unfortunately, the MSO formula constructed for proving
the above result does not give us a tight complexity upper
bound for query evaluation with GNTGDs. To arrive at a
matching bound, we pursued the following different ideas.
Recall that finding a stable model essentially involves first
guessing a model and then checking that this model is indeed
the least fixpoint of the Gelfond-Lifschitz transform ΣM of
the original rule set Σ relative to the guessed model M .
Given that query answering under the classical first-order
(FO) semantics for guarded disjunctive TGDs (GDTGDs)
has been recently defined and studied (Alviano et al. 2012;
Gottlob et al. 2012b; Bourhis, Morak, and Pieris 2013), why
not simulating the stable model semantics of GNTGDs by
GDTGDs under the FO semantics? For the guessing phase,
this turned out to be possible, as guessing the truth or false-
hood of an atom can be encoded as a classical disjunction.
But the checking phase requires computing the complement
of ΣM . This is an inherently nonmonotonic task not feasi-
ble in FO. But only one level of nonmotonic inference is
needed. It would thus be sufficient to extend DGTDs under
FO semantics by stratified negation, yielding the formal-
ism of stratified sets of guarded disjunctive normal TGDs
(GDNTGDs). In this setting, atom entailment within each
stratum is the classical monotonic FO-entailment, but each
stratum may access the lower strata nonmonotonically via
the not operator, i.e., for each atom a of the Herbrand base,
each stratum may assume that not a is true if the predicate of
a belongs to a lower stratum, but a cannot be derived there.

We thus aimed at proving the decidability and deter-
mining the complexity of query answering with stratified
GDNTGDs. This turned out to be much harder a chal-
lenge than the same problem for GTGDs (Calı̀, Gottlob, and
Lukasiewicz 2012) or stratified GNTGDs. With GTGDs (or
stratified GNTGDs), there is only a single, possibly infinite
canonical model, and each query UBCQ Q is true in this
model iff it is true in a finite part of this model. This finite
part consists, for each stratum, of the atoms generated by the
chase in that stratum that do not exceed a certain derivation
depth. Unfortunately, this is no longer true for models gen-
erated by GDTGDs, and thus for stratified GDNTGDs. For
a fixed rule set Σ and a fixed queryQ, and any arbitrary pos-
itive integer d, in general, there may exist “tardive” models
M such that M |= Q but Md 6|= Q, where Md contains all
atoms of M whose chase derivation depth is at most d. Not
too surprisingly, tardive models may also arise with rules
sets Σ of original formalism, namely, GNTGDs under the
SMS. To illustrate this, consider the setting of Example 2,
and let Q be the query ∃xEven(x). Let d be an arbitrary pos-
itive integer. There are stable models M such that, for all
1 6 i 6 d, Odd(f i(mary)) and Even(fd+1). For such mod-
elsM , it does not suffice to consider the initial partMd con-
taining all facts of M of chase derivation depth 6 d, for Q
would be false in this initial part, while true in M .

Fortunately, we can cope with tardive models for a query
Q due to the following observation. Whenever for a strati-
fied GDNTGD set Σ and a query Q, a tardive model exists
in which the query is not answered within a certain (doubly
exponential) derivation depth, then there must exist another
model in which Q is generally false, and thus Q must be
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overall answered false, because Q is false in some model.
It is thus still possible to reconduct query answering to a
finitary setting. This insight led us to develop alternating al-
gorithms for query answering under stratified sets of GDNT-
DGs, which give rise to the following results, where |=strat
is entailment under the described stratified semantics:

Theorem. Let R be a relational schema, D a database
for R, Σ a stratified set of GDNTGDs on R, and Q a
union of CQs overR. Deciding D∪Σ |=strat Q has the
following complexity:

1. 2-EXPTIME-complete in general;
2. EXPTIME-complete in case the maximum arityw of

the relation symbols inR is fixed;
3. coNP-complete in case |R|, w, and the number of

atoms in Q are fixed.

In Section 6, we present the desired polynomial-time
translation from GNTGDs under the SMS to GDNTGDs un-
der FO semantics with stratified negation. This solves the
main problem attacked in this paper. From this translation,
and from easily obtained lower bounds, for query-answering
for GNTGDs, we get exactly the same complexity bounds as
those in the above theorem. This solves our main complexity
problem. Moreover, all the above decidability and complex-
ity results also hold in case negative constraints are added to
the rule sets. (This is trivial: To simulate NCs, it suffices to
add the body of each NC as a disjunct to the UCQ.)

In Section 7, we finally apply our results to DLs. We im-
mediately obtain a stable model semantics for these DLs,
as well as decidability results and complexity upper bounds.
In particular, this provides a stable model semantics for the
well-known DLs ELHI and DL-LiteR.

In the sequel, we use the letters “G”, “D”, and “N” in
front of TGDs to abbreviate that the TGDs are “guarded”,
“disjunctive”, and “normal”, respectively. Other properties
of TGDs are written out in textual form whenever necessary.
Note that proofs of all results are given in the extended ver-
sion of this paper (Gottlob et al. 2014).

1.4 Related Work on Rules with Negation
We now discuss a number of previous approaches to extend
guarded TGDs with negation.
Stratified Negation. Stratified negation for guarded Data-
log±, and thus automatically for a number of important DLs
was introduced in (Calı̀, Gottlob, and Lukasiewicz 2012)
and further extended to the more expressive formalism of
weakly guarded Datalog± in (Arenas, Gottlob, and Pieris
2014). These papers show that stratified negation is very
well-behaved in the sense that its addition does not endanger
decidability, and actually does not augment the complexity
of reasoning and query answering. But this semantics does
not apply to the (unstratified) rules in Examples 1 and 2.
Well-Founded Negation. Negation under the well-founded
semantics (WFS) for guarded Datalog± and covered DLs
was studied in (Hernich et al. 2013; Gottlob et al. 2012a)
for two variants of the WFS. The version of (Hernich et al.
2013) studies the so-called standard WFS, which extends
the well-known WFS for logic programming with function

symbols, where it is assumed (as here) that different Skolem
terms are not unifiable, which means that the unique name
assumption (UNA) is applied to Skolem terms. The second
variant, called equality-friendly WFS (Gottlob et al. 2012a)
does not use the UNA. Note that both variants would be
unsatisfactory for Examples 1 and 2, as they would simply
leave the predicates Odd and Even undefined.
Stable Model Negation. In (Magka, Krötzsch, and Hor-
rocks 2013), new acyclicity and stratification conditions are
presented for existential rules with negation in rule bodies,
which identify classes of rule sets that have finite and/or
unique stable models, and constraints are added on the input
facts to further extend these classes. Our work here, in con-
trast, is not restricted to finite and/or unique stable models,
and thus much more general. The only syntactic restriction
necessary here is guardedness (or the weaker weakly guard-
edness). The FDNC programs in (Eiter and Simkus 2010)
combine nonmonotonic negation and rules, allowing also the
use of function symbols. Decidability is obtained by restrict-
ing the structure of rules to one of seven predefined forms.
Hybrid Approaches. Less closely related approaches are
loosely and tightly coupled dl-programs (Eiter et al. 2008;
Lukasiewicz 2010), as well as the hybrid MKNF knowledge
bases (Motik and Rosati 2010). More precisely, the former
loosely and tightly, respectively, combine a description logic
knowledge base L and a logic program P . Rule bodies in P
may contain queries to L, which may also contain facts as
additional input to L, in the loosely coupled case, while con-
cepts and roles from L are used as predicates in P in the
tightly coupled case. Decidability is based on the finiteness
of stable models. The hybrid MKNF knowledge bases al-
low for querying a description logic knowledge base L via
the operators K and not. Decidability is obtained via the
so-called DL-safety condition, which makes the rules appli-
cable only to explicitly known individuals. In our approach
here, in contrast, stable models may be infinite, and no re-
strictive DL-safety of rules is assumed.

In summary, none of the above approaches allows one
to use the stable model semantics for the general class of
guarded normal TGDs.

2 Preliminaries
We now briefly recall some basics on Datalog± (Calı̀,
Gottlob, and Kifer 2013; Calı̀, Gottlob, and Lukasiewicz
2012), namely, on relational databases, (Boolean) con-
junctive queries ((B)CQs), tuple-generating dependencies
(TGDs), and negative constraints. For equality-generating
dependencies (EGDs), in particular, non-conflicting keys,
we refer to (Calı̀, Gottlob, and Lukasiewicz 2012).
Databases and Queries. We assume (i) an infinite universe
of (data) constants ∆ (which constitute the “normal” do-
main of a database), (ii) an infinite set of (labeled) nulls
∆N (used as “fresh” Skolem terms, which are placehold-
ers for unknown values), and (iii) an infinite set of vari-
ables V (used in queries and constraints). We denote by X
sequences of variables X1, . . . , Xk with k > 0. We as-
sume a relational schema R, which is a finite set of re-
lation names (or predicate symbols, or simply predicates).
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A position P [i] identifies the i-th argument of a predicate P .
A term t is a constant or variable. An atomic formula (or
atom) a has the form P (t1, ..., tn), where P is an n-ary
predicate, and t1, ..., tn are terms. A conjunction of atoms
is often identified with the set of all its atoms.

A database (instance) D for a relational schema R is
a (possibly infinite) set of atoms with predicates from R
and arguments from ∆. We denote by dom(D) the set of
all elements of ∆ that occur in D. A conjunctive query
(CQ) over R has the form Q(X) = ∃Y Φ(X,Y), where
Φ(X,Y) is a conjunction of atoms with the variables X
and Y (and eventually constants). Note that Φ(X,Y) may
also contain equalities but no inequalities. A Boolean CQ
(BCQ) over R is a CQ of the form Q(). We often write
a BCQ as the set of all its atoms, having constants and
variables as arguments, and omitting the quantifiers. An-
swers to CQs and BCQs are defined via homomorphisms,
which are mappings µ : ∆ ∪ V → ∆ ∪ V such that (i)
c ∈ ∆ implies µ(c) = c, and (ii) µ is naturally extended
to atoms, sets of atoms, and conjunctions of atoms. The
set of all answers to a CQ Q(X) =∃Y Φ(X,Y) over a
database D, denoted Q(D), is the set of all tuples t over
∆ for which there exists a homomorphism µ : X∪Y→∆
such that µ(Φ(X,Y))⊆D and µ(X) = t. The answer to
a BCQ Q() =∃Y Φ(Y) over a database D is Yes, de-
noted D |=Q, iff Q(D) 6=∅, i.e., there is a homomorphism
µ : Y→∆ ∪∆N such that µ(Φ(Y))⊆D.

Tuple-Generating Dependencies (TGDs). Tuple-genera-
ting dependencies (TGDs) describe constraints on databases
in the form of generalized Datalog rules with existentially
quantified conjunctions of atoms in rule heads; their syntax
and semantics are as follows. Given a relational schema R,
a tuple-generating dependency (TGD) σ is a first-order for-
mula ∀X∀Y Φ(X,Y)→∃ZΨ(X,Z), where Φ(X,Y) and
Ψ(X, Z) are conjunctions of atoms over R, called the body
and the head of σ, denoted body(σ) and head(σ), respec-
tively. Such σ is satisfied in a databaseD forR iff, whenever
there is a homomorphism h that maps the atoms of Φ(X,Y)
to atoms of D, then h is extendable to a homomorphism h′

that maps the atoms of Ψ(X,Z) to atoms of D. As TGDs
can be reduced to TGDs with only single atoms in their
heads, in the sequel, every TGD has w.l.o.g. a single atom
in its head. A TGD σ is guarded iff it contains an atom in its
body that contains all universally quantified variables of σ.
The leftmost such atom is the guard of σ.

Query answering under TGDs, i.e., the evaluation of CQs
and BCQs on databases under a set of TGDs is defined as
follows. For a database D forR, and a set of TGDs Σ onR,
the set of models of D and Σ, denoted mods(D,Σ), is the
set of all (possibly infinite) databases B such that (i) D⊆B
(ii) every σ ∈Σ is satisfied in B. The set of answers for a
CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all
tuples a such that a ∈ Q(B) for all B ∈mods(D,Σ). The
answer for a BCQQ toD and Σ is Yes, denotedD∪Σ |=Q,
iff ans(Q,D,Σ) 6=∅.

Negative Constraints. Another crucial ingredient of Data-
log± for ontological modeling are negative constraints (or
simply constraints), which are first-order formulas of the

form ∀X Φ(X)→⊥, where Φ(X) is a conjunction of atoms
(not necessarily guarded), called its body.

We usually omit the universal quantifiers and implicitly
assume all sets of dependencies/constraints to be finite here.

3 Stable Models for Normal Datalog±

In this section, we recall normal TGDs and BCQs (Calı̀, Got-
tlob, and Lukasiewicz 2012), as well as stable models of nor-
mal (logic) programs (Gelfond and Lifschitz 1988), and we
define the stable model semantics of guarded normal TGDs.

3.1 Normal TGDs and BCQs
Normal TGDs may also contain (default-)negated atoms in
their bodies: Given a relational schema R, a normal TGD
(NTGD) σ has the form ∀X∀Y Φ(X,Y)→∃ZΨ(X,Z),
where Φ(X,Y) is a conjunction of atoms and negated atoms
overR, and Ψ(X,Z) is a conjunction of atoms overR. It is
also abbreviated as Φ(X,Y)→ ∃ZΨ(X,Z). We denote by
head(σ) the atom in the head of σ, and by body+(σ) and
body−(σ) the sets of all positive and negative (“¬”-free)
atoms in the body of σ, respectively. We say σ is guarded
iff it contains a positive body atom, denoted guard(σ), that
contains all universally quantified variables of σ. W.l.o.g.,
every NTGD has a single atom in its head, and constants in
the body of guarded σ occur only in guards. We say σ is
linear iff σ is guarded and has exactly one positive atom in
its body. As for the semantics, an NTGD σ is satisfied in
a database D for R iff, whenever there exists a homomor-
phism h for all the variables and constants in the body of σ
that maps (i) all atoms of body+(σ) to atoms ofD and (ii) no
atom of body−(σ) to atoms of D, then there exists an exten-
sion h′ of h that maps all atoms of head(σ) to atoms of D.

We next add negation to BCQs. A normal Boolean con-
junctive query (NBCQ) Q is an existentially closed conjunc-
tion of atoms and negated atoms of the form

∃X p1(X) ∧ · · · ∧ pm(X) ∧ ¬pm+1(X) ∧ · · · ∧ ¬pm+n(X),

where m> 1, n> 0, and the variables of the pi’s are among
X. Let Q+ = {p1(X), . . . , pm(X)} and Q−= {pm+1(X),
. . . , pm+n(X)}. That is, Q+ (resp., Q−) is the set of all
positive (resp., negative) (“¬”-free) atoms ofQ. We sayQ is
safe iff every variable in a negative atom in Q also occurs in
a positive atom in Q. We say Q is covered iff for every neg-
ative atom α in Q, there is a positive atom β in Q such that
every argument in α occurs in β. Note that the coveredness
ofQ implies also the safeness ofQ, but not vice versa. In the
sequel, w.l.o.g., NBCQs contain no constants. Note that dis-
junctive normal non-Boolean CQs over finite databases can
be reduced to constant-free NBCQs, by first reducing them
to NBCQs with constants, and then moving their constants
into the TGDs by introducing new predicate symbols.

3.2 Stable Models of Normal Programs
A normal rule (or simply rule) r is of the form

α← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α, β1, . . . , βn+m are atoms and k,m, n> 0. We call
α the head of r, denoted head(r), while the conjunction
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β1, . . . , βn,not βn+1, . . . ,not βn+m is its body. We de-
fine body(r) = body+(r) ∪ body−(r), where body+(r) =
{β1, . . . , βn} and body−(r) = {βn+1, . . . , βn+m}. We say r
is positive iff m= 0. We say r is a fact iff m=n= 0.
A normal (resp., positive) program P is a finite set of nor-
mal (resp., positive) rules.

Let P be a normal program. We denote by HU P and
HBP the Herbrand universe and the Herbrand base for
P , respectively. A ground instance of a rule r∈P is ob-
tained from r by replacing each variable in r by an element
from HU P . We denote by ground(r) (resp., ground(P ))
the set of all ground instances of r (resp., rules in P ). An
interpretation I for P is a subset of HBP . Such I is a
model of a ground rule r iff α ∈ I whenever B+(r)⊆ I and
B−(r)∩ I =∅. We say I is a model of a normal program P
iff I is a model of every r ∈ ground(P ).

The Gelfond-Lifschitz reduct of a normal program P rel-
ative to I ⊆HBP , denoted P I , is the (possibly infinite)
ground positive program obtained from ground(P ) by

1. deleting every rule r such that B−(r)∩ I 6=∅, and
2. deleting the negative body from each remaining rule.
Since P I is positive, it has a unique minimal model. A stable
model of a normal program P is an interpretation I ⊆HBP

such that I is the minimal model of P I . Note that every sta-
ble model of P is also a minimal model of P .

3.3 Stable Models for Guarded Normal TGDs
Let Σ be a finite set of guarded NTGDs, and let D
be a database over the same schema as Σ. Given an
NTGD σ= Φ(X,Y)→∃ZΨ(X,Z), the functional trans-
formation of σ, denoted σf , is the normal rule Φ(X,
Y)→Ψ(X, fσ(X,Y)), where fσ is a vector of function
symbols fσ,Z for σ, one for every variable Z in Z. Given
a set Σ of NTGDs, the functional transformation of Σ, de-
noted Σf , is obtained from Σ by replacing each TGD σ in Σ
by σf . Note that the functional transformation of a finite set
of guarded TGDs is a positive program.
Definition 1 Let Σ be a finite set of guarded NTGDs, and let
D be a database over the same schema as Σ. Then, a stable
model for D and Σ is a stable model of the normal program
P = D ∪ Σf , having D as a collection of ground facts.

Non-constant terms (i.e., those involving function sym-
bols) that occur in stable models for D and Σ are hence-
forth considered as nulls. Let Σ+ be the finite set of TGDs
obtained from Σ by dropping all negative literals from the
rules’ bodies. Recall the definition of the guarded chase
forest for D and Σ+ from (Calı̀, Gottlob, and Kifer 2013;
Calı̀, Gottlob, and Lukasiewicz 2012). The upper guarded
chase forest for D and Σ, denoted g-chase(D,Σ), is the
guarded chase forest for D and Σ+. The following lemma
shows that the set of atoms occurring in g-chase(D,Σ) pro-
vides an overapproximation for any stable model for D and
Σ. From this, we infer below that query answering under
guarded normal Datalog± with the stable models semantics
is decidable. For the proof, we refer to (Gottlob et al. 2014).
Lemma 2 Let Σ be a finite set of guarded NTGDs, and letD
be a database over the same schema as Σ. If S is a stable

model for D and Σ, then all atoms of S occur as the label of
some node in g-chase(D,Σ).

Decidability of query answering relative to the stable
model semantics can be obtained as a consequence of Ra-
bin’s Theorem (1969) via an encoding into monadic second-
order logic over the infinitem-ary tree (for suitablem ∈ N).

Theorem 3 There is an algorithm that, given a databaseD,
a finite set Σ of guarded NTGDs, and a covered UNBCQ Q,
decides whether Q is true in all stable models for D and Σ.

Proof (Sketch). Given D, Σ, and Q, compute an MSO sen-
tence ϕD,Σ,Q such that Q is true in all stable models for D
and Σ iff T |= ϕD,Σ,Q. The basic idea for constructing the
MSO sentence is to label a subset of the nodes of the full
m-ary tree T with a type (α,N) consisting of an atom α and
a set N of atoms whose arguments occur in α, and then to
verify that the subtree T ′ of T induced by all labelled nodes
corresponds to a stable model. Due to space limitations, and
because we obtain stricter complexity bounds for query an-
swering in the coming sections, we omit the details of the
MSO-translation, and refer the reader to the extended ver-
sion of this paper (Gottlob et al. 2014).

4 Disjunctive Rules with Stratified Negation
Disjunctive Normal TGDs and BCQs. Given a relational
schema R, a disjunctive normal TGD (DNTGD) σ has the
form ∀X∀Y Φ(X,Y)→∃ZΨ(X,Z), where Φ(X,Y) is
a conjunction of atoms and negated atoms over R, and
Ψ(X,Z) is a disjunction of atoms over R. We denote by
head(σ) the set of atoms in the head of σ. All other notions
like body+(σ), body−(σ), guardedness, and guard(σ) are
defined as for NTGDs. A DNTGD σ is satisfied in a data-
base D for R iff, whenever there exists a homomorphism h
for all the variables and constants in the body of σ that maps
(i) all atoms of body+(σ) to atoms of D and (ii) no atom of
body−(σ) to atoms of D, then there exists an extension h′
of h that maps some atoms of head(σ) to atoms of D.

A union of normal Boolean conjunctive queries (UNBCQ)
Q is a disjunction of k > 0 NBCQs Qi. It is safe (resp., cov-
ered) iff all its NBCQs Qi are safe (resp., covered).

We assume the reader to be familiar with the chase pro-
cedure. The disjunctive normal chase is an extension of
the chase. It differs to the chase in that an application
of a DNTGD σ to a database D via a homomorphism
h : body+(σ) → D (that maps atoms β ∈ body−(σ) to
non-atoms in D) generates more than one possible succes-
sor database—one database D ∪ {h(ψ)} for each disjunct
ψ ∈ head(σ). The set of all databases obtained using this
version of the chase is denoted by chase(D,Σ). Note that
DNTGDs may be applied several times with the same ho-
momorphism, to introduce several of the head atoms.
Canonical Model Semantics. A stratification of a set Σ
of disjunctive normal TGDs on R is a mapping µ : R →
{0, 1, . . . , k} such that for all σ ∈ Σ:

• for all positive literals R(ū) in the body of σ, and for all
atoms R′(ū′) in the head of σ, we have µ(R) 6 µ(R′);
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• for all negative literals ¬R(ū) in the body of σ, and for all
atoms R′(ū′) in the head of σ, we have µ(R) < µ(R′).

We call k the length of µ. For each i ∈ {0, 1, . . . , k}, let Σi
be the set of all σ ∈Σ such that i is the minimum of µ(R),
where R ranges over all the predicates in the head of σ. We
say that Σ is stratified if there is a stratification of Σ.

Definition 4 Let R be a relational schema, D a database
for R, Σ a set of DNTGDs on R, and Q a UNBCQ over R.
Suppose that Σ has a stratification of length k. Define:

• S0(D,Σ) := {D};
• Si+1(D,Σ) :=

⋃
S∈Si(D,Σ) chase

S(S,Σi), if i 6 k;

• S(D,Σ) := Sk+1(D,Σ).

We write D ∪ Σ |=strat Q iff S |= Q for all S ∈ S(D,Σ).

5 Query Answering under Disjunctive Rules
with Stratified Negation

This section presents our results on answering queries over
disjunctive guarded Datalog± programs with stratified nega-
tion. Our main result is:

Theorem 5 Let R be a relational schema, D a database
forR, Σ a stratified set of guarded DNTGDs onR, and Q a
covered UNBCQ over R. Deciding D ∪ Σ |=strat Q has the
following complexity:

1. 2-EXPTIME-complete in general;
2. EXPTIME-complete in case the maximum arity w of the

relation symbols inR is fixed;
3. coNP-complete in case |R|, w, and the number of atoms

in Q are fixed.

Thus, extending guarded Datalog± by the feature of dis-
junction and stratified negation—even allowing negative lit-
erals in the query—does not change the complexity of query
answering in the general and in the bounded arity case,
while it increases the data complexity. The data complexity
is coNP already for the extension of guarded Datalog± by
disjunction (Bourhis, Morak, and Pieris 2013), which proves
coNP-hardness in Theorem 5. The other hardness results
of Theorem 5 follow from answering BCQs under guarded
TGDs being 2-EXPTIME-hard in general and EXPTIME-
hard for bounded arities (Calı̀, Gottlob, and Kifer 2013).

For the upper bounds, we devise an algorithm to answer
UNBCQs over stratified sets of guarded DNTGDs. The al-
gorithm extends the QCHECK algorithm in (Calı̀, Gottlob,
and Kifer 2013), but requires significantly new ideas. Our
exposition follows the one of QCHECK in that paper in that
we first explain how to decide entailment or non-entailment
of atoms, and then describe the general algorithm.

5.1 Checking Entailment of Ground Atoms
One of the first steps of our algorithm is to decide if certain
ground atoms are true in some “stratified model” or false
in all “stratified models” S ∈ S(D,Σ). Here, an atom α
is ground (relative to a database D, which, however, will
always be clear from the context) iff dom(α) ⊆ dom(D).

Proposition 6 below states that (non-)entailment of
ground atoms can be checked within the desired complex-
ity bounds. For stating and proving it, we need the follow-
ing definitions. For atoms α, let dom(α) := dom({α}).
The databases D1 and D2 are consistent iff, for all α with
dom(α) ⊆ dom(D1) ∩ dom(D2), we have that α ∈ D1

iff α ∈ D2. We say that D2 embeds D1 iff D1 ⊆ D2,
and D1 and D2 are consistent. Let S∗(D,Σ) be the set of
all S ∈ S(D,Σ) that embed D.

Proposition 6 Let R be a relational schema, D a database
for R, Σ a stratified set of guarded DNTGDs on R, and
α a ground atom over R. Deciding whether some model in
S∗(D,Σ) contains α, or if none of the models in S∗(D,Σ)
contains α is in:
• 2-EXPTIME in general;
• EXPTIME in case the maximum arity w of a predicate in
R is bounded;

• PTIME in case w and |R| are bounded.

Proof (Sketch). We extend the ACHECK algorithm from
(Calı̀, Gottlob, and Kifer 2013). ACHECK checks if an atom
(atomic BCQ, in general) α is entailed by a database D and
a set Σ of guarded TGDs. To do this, it guesses a sequence
α1, . . . , αn of atoms such that α1 ∈ D, αn = α, and each
αi, i > 1, can be obtained by a TGD σi in Σ whose guard is
matched to αi−1. To ensure that the side atoms β of each σi
(i.e., the non-guard atoms in the body of σi required to “fire”
σi) can be derived as well, it launches side computations that
check (similarly as for α) if there is a similar path for β etc.

Our algorithm, called ACHECK∨,strat, generalizes this ap-
proach. The main difficulty is that under a stratified set Σ of
guarded DNTGDs, there is not a single model (namely, the
chase model) to explore, but many models S ∈ S∗(D,Σ).
However, every such model can be constructed on the fly by
applying the DNTGDs in Σ, which is enough to search for
a model that contains α, or—by duality—to check that no
model contains α. To be a bit more precise, each disjunct in
the head of a DNTGD represents a possible way of extend-
ing the part of a model derived so far. Thus, when faced with
a disjunction in the head of a DNTGD, it suffices to guess
the disjunct β that leads to a model S containing α (and the
set of all atoms in such an S with dom(γ) ⊆ dom(β)); this
guess is verified by appropriate subcomputations. Negative
literals in the bodies of DNTGDs pose no problem, since
negation is stratified in Σ. We only have to ensure that the
stratification is respected when applying the DNTGDs. For
details, see the extended paper (Gottlob et al. 2014).

As in (Calı̀, Gottlob, and Kifer 2013), it is possible to re-
duce the space required to represent the configurations of
ACHECK∨,strat to |R| ·2O(w) · log |D|, where w is the maxi-
mum arity of a predicate inR, via canonization. As alternat-
ing logarithmic (resp., polynomial, exponential) space corre-
sponds to polynomial (resp., exponential, doubly exponen-
tial) time, this yields the complexity bounds.

5.2 Main Algorithm
We now complete the proof of Theorem 5 by proving the
corresponding upper bounds.
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Proposition 7 Let R be a relational schema, D a database
forR, Σ a stratified set of guarded DNTGDs onR, and Q a
covered UNBCQ over R. Deciding D ∪ Σ |=strat Q can be
done within the upper bounds indicated in Theorem 5.

Proof (Sketch). First, w.l.o.g., Q is a union of BCQs. In-
deed, if ¬β = ¬R(x1, . . . , xk) occurs in Q, and α is the
positive literal in Q covering β, then ¬β can be simulated
by α ∧ ¬β → R̄(x1, . . . , xk), where R̄ is a fresh predicate.
This increases the length of a stratification of Σ only by one.
In Q, we replace ¬β by the atom R̄(x1, . . . , xk).

To obtain the complexity bounds, we extend the
QCHECK algorithm in (Calı̀, Gottlob, and Kifer 2013).
Handling stratified DNTGDs requires significantly new
ideas, though. The original QCHECK algorithm checks if a
BCQ is entailed by a database and a set of (weakly) guarded
TGDs. It starts by computing the extension D̂ of D with all
ground atoms entailed by D and the TGDs. Next, it guesses
a squid decomposition δ of Q. Intuitively, a squid decompo-
sition of Q describes how Q may be mapped to a model S
in S(D,Σ). For our purposes, a squid decomposition of Q
may be defined as a tuple (Q+, h,H, T, V ), where:

• Q+ is a cover of Q (a BCQ that contains all atoms of Q
and at most |Q| other atoms);

• h : var(Q+)→ var(Q+),
• H ⊆Q+ and T :=Q+ \H are the head and tentacles,
• and T is acyclic (i.e., T has a join tree).

It can be shown (Calı̀, Gottlob, and Kifer 2013) that Q
is true in the chase model iff there is a squid decomposi-
tion whose head can be mapped to the ground part of the
database, and whose tentacles can be mapped to the non-
ground part. Thus, the QCHECK algorithm also guesses a
homomorphism µ from the head of δ to D̂. In the rest of the
computation, it checks that µ can be extended to a homo-
morphism from the tentacles to the result of the chase with
D and the TGDs. In our case, we do not have a single “chase
model”, but many such models S ∈ S(D,Σ) into which we
have to mapQ. In particular, there are many extensions D̂ of
D with ground atoms such that some S ∈ S(D,Σ) embeds
D̂. Our algorithm thus starts by universally branching over
all such extensions D̂ of D with ground atoms, and checks
that there is a model S ∈ S(D,Σ) that embeds D̂. The latter
can be done within the desired complexity bounds by using
the algorithm as guaranteed by Proposition 6. In a parallel
subcomputation, the algorithm then checks that Q is true in
all models S ∈ S∗(D̂,Σ). Clearly, this algorithm decides
D ∪ Σ |=strat Q (i.e., if Q is true in all S ∈ S(D,Σ)).

It remains to explain how truth of Q in all S ∈ S∗(D̂,Σ)
can be decided within the desired complexity bounds. To
this end, we extend the TCHECK algorithm in (Calı̀, Got-
tlob, and Kifer 2013). We highlight only the main changes
to TCHECK; (Gottlob et al. 2014) contains a more detailed
description. For details regarding TCHECK, see the proof
of Theorem 5.9 in (Calı̀, Gottlob, and Kifer 2013).

The idea of TCHECK is as follows. Given a squid de-
composition δ (for which we have found a homomorphism

h from its head to the ground part of the chase in the ini-
tialization phase of QCHECK), a maximal subtree t of the
tentacles of δ, the root v of t, and the assignment h restricted
to the exported variables of v (i.e., those variables that oc-
cur in v but also outside the subtree below v), TCHECK
tries to extend the assignment to a homomorphism from
the subtree rooted at v to the chase model by deriving an
atom where v can be matched to, then deriving the atoms
where the children of v can be matched to, and so on. In
our case, each model S ∈ S(D̂,Σ) might satisfy Q via
a different embedding or squid decomposition of Q. Thus,
rather than maintaining information about the progress of
extending the initial homomorphism to a single subtree of
a squid decomposition’s tentacles throughout the computa-
tion, we store information about all possible squid decom-
positions of Q, and the parts of the squid decompositions
that still need to be matched (i.e., have not been mapped
into the part of the model constructed so far). Once we are
in a state where one squid decomposition is complete (i.e.,
no part of it is left to be checked), we accept. Thus, if all
computation branches accept, we have successfully checked
that each S ∈ S∗(D̂,Σ) satisfies Q.

6 Simulating Normal Datalog± under Stable
Models with Stratified Disjunctive Rules

The following theorem shows that NBCQ answering over a
database and a finite set of guarded NTGDs under the stable
model semantics can be translated in polynomial time into
NBCQ answering over the same database and a finite set of
guarded DNTGDs with stratified negation.

Theorem 8 Let D be a database for some schema R, let Σ
be a finite set of guarded NTGDs over R, and let Q be an
NBCQ over R. Then, Σ and Q can be translated in polyno-
mial time into a stratified finite set of guarded DNTGDs Σ′

and an NBCQ Q′ such that Q is true in all stable models of
D and Σ iff Q′ is true in all canonical models of D and Σ′.

Proof. We define the stratified finite set of guarded DNT-
GDs Σ′ = Σ′1∪Σ′2∪Σ′3∪Σ′4 and the NBCQ Q′ as follows:
•Σ′1 generates the potential atoms that may occur in a stable
model for D and Σ. To this end, it “executes” the program
P+ = (D ∪ Σf )+. For each R ∈ R, let R∗ be a fresh
predicate of the same arity as R. Then, Σ′1 consists of all
TGDs that are obtained from an NTGD in Σ by dropping all
negative literals from its body, and replacing each predicate
R by R∗. Furthermore, for each k-ary predicate R∈R, the
set Σ′1 contains the TGDR(x1, . . . , xk)→ R∗(x1, . . . , xk).
• Σ′2 “guesses” a partition of the set of all atoms derivable
from P+ into two parts. For each predicate R∈R, let R+

and R− be fresh predicates of the same arity as R. The idea
is thatR+ andR−-atoms are those belonging to the first and
second part of the partition, respectively. To “guess” the par-
tition, for each k-ary predicate R∈R, we add the following
disjunctive TGD and negative constraint to Σ′2:

R∗(x1, . . . , xk)→ R+(x1, . . . , xk) ∨R−(x1, . . . , xk),

R+(x1, . . . , xk) ∧R−(x1, . . . , xk)→ ⊥.
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• Σ′3 generates all consequences of the program PS , where
S is the set of all the R+-atoms (with R+ renamed to R).
More precisely, for each predicate R ∈ R, let R̂ be a predi-
cate of the same arity as R. Consider an NTGD in Σ:

R1(x1)∧ · · · ∧Rk(xk)∧¬S1(y1)∧ · · · ∧¬S`(y`)→ ∃zT (u).

• Then, Σ′3 contains the following NTGD:

R̂1(x1) ∧ · · · ∧ R̂k(xk) ∧ S−1 (y1) ∧ · · · ∧ S−` (y`)→ ∃z T̂ (u).

Furthermore, for each k-ary predicateR∈R, the set Σ′3 con-
tains the TGD R(x1, . . . , xk)→ R̂(x1, . . . , xk).
• Σ′4 verifies that the consequences of PS (represented by
all the R̂-atoms) coincide with the set S (represented by all
the R+-atoms). To this end, for each k-ary predicate R∈R,
it contains the following negative constraints:

R̂(x1, . . . , xk) ∧R−(x1, . . . , xk)→ ⊥ (“R̂ ⊆ R+”)

R+(x1, . . . , xk) ∧ ¬R̂(x1, . . . , xk)→ ⊥ (“R+ ⊆ R̂”).

• Finally, Q′ is obtained from Q by replacing every posi-
tive (resp., negative) literal R(x) (resp., ¬R(x)) by R+(x)
(resp., ¬R+(x)).

We now show that Q is false in some stable model for D
and Σ iff Q′ is false in some canonical model for D and Σ′.
We here consider only the case that Q is a BCQ; the line of
argumentation can easily be generalized to NBCQs.

“⇒” Let S be a stable model for D and Σ such that S 6|= Q.
Let T be the least fixpoint of P+. Define:

S′ = {R∗(a) | R(a) ∈ T} ∪ {R+(a) | R(a) ∈ S}
∪ {R−(a) | R(a) ∈ T \ S} ∪ {R̂(a) | R(a) ∈ S} .

It is then not difficult to verify that S′ is a model ofD and Σ′

under stratified semantics, and S′ 6|= Q′ (since {a | R(a) ∈
S} = {a | R+(a) ∈ S′}).
“⇐” Let S′ be a model for D and Σ′ obtained using the
chase (for disjunctive TGDs with stratified negation) such
that S′ 6|= Q′. For a predicate R and a database D, let
D(R) be the set of all the tuples a with R(a) ∈ D. Then,
T := {R(a) |a ∈ S′(R∗)} is the unique minimal model for
P+, and {S′(R+), S′(R−)} forms a partition of S′(R∗).
Moreover, the NTGDs in Σ′4 enforce S′(R̂) ∩ S′(R−) = ∅
and S′(R+) ⊆ S′(R̂). Since S′(R̂) ⊆ S′(R∗) (only a subset
of the rules which generateR∗ are triggered), and S′(R−) =

S′(R∗) \ S′(R+), we thus have S′(R̂) = S′(R+). By the
construction of the rules Σ′3, it follows that S:={R(a) | a ∈
S′(R+)} is a stable model for D and Σ. Moreover, since
S′ 6|= Q′, and S(R) = S′(R+), we have S 6|= Q.

The following example illustrates the above translation.
Example 3 Consider the database D= {P (a)} and the fol-
lowing finite set of NTGDs Σ:

P (x) ∧ ¬R(x)→ Q(x), P (x) ∧ ¬Q(x)→ R(x).

Then, Σ′ consists of the following DNTGDs (note that some
of the rules (likeR∗(x)→ R∗(x)) are omitted, because they
would add nothing to Σ′ under D):

P (x)→ P ∗(x), P ∗(x)→ Q∗(x), P ∗(x)→ R∗(x),

P ∗(x)→ P+(x) ∨ P−(x), P+(x) ∧ P−(x)→ ⊥,
Q∗(x)→ Q+(x) ∨Q−(x), Q+(x) ∧Q−(x)→ ⊥,
R∗(x)→ R+(x) ∨R−(x), R+(x) ∧R−(x)→ ⊥,

P (x)→ P̂ (x),

P̂ (x) ∧R−(x)→ Q̂(x), P̂ (x) ∧Q−(x)→ R̂(x),

P̂ (x) ∧ P−(x)→ ⊥, P+(x) ∧ ¬P̂ (x)→ ⊥,

Q̂(x) ∧Q−(x)→ ⊥, Q+(x) ∧ ¬Q̂(x)→ ⊥,

R̂(x) ∧R−(x)→ ⊥, R+(x) ∧ ¬R̂(x)→ ⊥.

To obtain a proper stratified program, we could replace fal-
sum (⊥) in the head of P+(x) ∧ ¬P̂ (x) → ⊥ and the cor-
responding rules for Q and R by an atom F (x) over a fresh
predicate F , and put F (x) as a disjunct to our query. Then,
F would be in the upper stratum, and all other predicates
would be in the lower stratum.

The following complexity results for UNBCQ answering
in guarded normal Datalog± under the stable model seman-
tics are an immediate corollary of Theorems 8 and 5.

Corollary 9 Let R be a relational schema, D a database
for R, Σ a finite set of guarded NTGDs on R, and Q a cov-
ered UNBCQ over R. Then, deciding whether Q is true in
all stable models of D and Σ has the following complexity:

1. 2-EXPTIME-complete in general;
2. EXPTIME-complete in case the maximum arity w of the

relation symbols inR is fixed;
3. coNP-complete in case |R|, w, and the number of atoms

in Q are fixed.

7 Stable Model Semantics for DLs
We now discuss how our decidability results for the stable
model semantics can directly be applied to obtain extensions
of DLs with non-monotonic negation. The proposed logics
are essentially the same as in (Gottlob et al. 2012a), but the
crucial difference is that non-monotonic negation is now in-
terpreted via the stable model semantics. This can lead to
better query answers, as Example 5 below demonstrates.

We extend DL-LiteR (which is underlying the OWL 2
QL profile) and DL-LiteR,u (Calvanese et al. 2007; Poggi et
al. 2008), and ELHI (Baader, Brandt, and Lutz 2005) with
nonmonotonic negation under the stable model semantics.

Definition 10 Recall that a DL-LiteR,u knowledge base
consists of a pair (T ,A), where the TBox T is a finite set of
concept and role inclusion axioms U1 u · · · u Un v V , and
the ABox A is a finite set of concept and role membership
axioms C(a) and R(a, b), respectively. A DL-LiteR,u,not

knowledge base (T ,A) consists of a finite set of inclusion
axioms T and a finite set of membership axioms A, where:
• Any DL-LiteR,u inclusion axiom is a DL-LiteR,u,not in-

clusion axiom.
• IfU1u· · ·uUn v V andU ′1u· · ·uU ′m v V with n,m > 0

are both either concept or role inclusion axioms in DL-
LiteR,u, and V is positive (i.e., not of the form V = ¬V ′),
then U1 u · · · u Un u notU ′1 u · · · u notU ′m v V is
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a DL-LiteR,u,not concept or role inclusion axiom, respec-
tively. Here, the Ui’s and U ′i ’s contain no conjunction, and
notU ′i denotes the negation as failure (as opposed to the
classical negation “¬” in DL-Lite).

• For any concept A, any role R, and any individuals a, b,
the expressions A(a) and R(a, b) are concept and role
membership axioms, respectively.

A DL-LiteR,u,not knowledge base (T ,A) is a DL-LiteR,not

knowledge base iff all inclusion axioms in T contain pre-
cisely one positive atom on the left-hand side.

Finally, we define ELHInot as the extension of ELHI
that allows formulas of the form notC for atomic concepts
C =A and for conceptsC =∃R.B to occur in top-level con-
junctions on the left-hand side of concept inclusions and for-
mulas notR and notR− for any role R on the left hand side
of role inclusions (in addition to at least one positive concept
or one positive role, respectively, to ensure guardedness).

The semantics of DL-LiteR,not (resp., DL-LiteR,u,not)
is defined by translating a given DL-LiteR,not (resp., DL-
LiteR,u,not) knowledge base KB into a normal guarded
Datalog± program PKB and by computing the stable model
semantics of PKB . More details on the translation into nor-
mal Datalog± can be found in (Gottlob et al. 2012a). Sim-
ilarly it is straightforward to translate ELHInot knowledge
bases into normal guarded Datalog±-programs in order to
obtain a stable semantics for ELHInot.

The following example demonstrates how Example 1
from the introduction can be formalized in ELHInot.
Example 4

Person u notEven v Odd
Person u notOdd v Even

Person u Even v ∃hasParent.Odd
Person uOdd v ∃hasParent.Even.

If we consider the ABox {Person(mary)}, we obtain two
(infinite) stable models for the knowledge base that look
very similar to the models obtained in Example 1, the two
models correspond to the case in which Odd(mary) and to
the case in which Even(mary) holds.

In the next example, the stable model semantics leads to
better query answers than the well-founded semantics.
Example 5

Hotel u Perfect v ∃Beach u ∃Pool
FiveStar v Hotel

FiveStar u not∃Pool v ∃Beach
FiveStar u not∃Beach v ∃Pool

∃Beach v ∃SwimOpp
∃Pool v ∃SwimOpp

Hotel u ∃SwimOpp v Excellent.

Given the ABox {FiveStar(ritz)}, the well-founded seman-
tics for the knowledge base would only contain the atoms
{FiveStar(ritz),Hotel(ritz)}. In contrast to that, all stable
models of the same knowledge base contain in addition the
atoms ∃SwimOpp(ritz) and Excellent(ritz). This correctly
reflects the fact that, while we are unable to know whether
a given five star hotel has a swimming pool or a beach, we
can be sure that one of these facts is true.

The decidability results for query answering relative to the
stable model semantics can directly be applied to DLs.

Theorem 11 Let L be DL-LiteR,not, DL-LiteR,u,not or
ELHInot. Then, given a knowledge base K = (T ,A) and
a covered UNBCQ2 Q, deciding whetherQ is true under the
stable model semantics of K is in EXPTIME (resp., coNP)
in the combined (resp., data) complexity. For ELHInot the
combined complexity is EXPTIME-complete. In all cases,
the data complexity is coNP-complete.

Proof (Sketch). The upper bounds for the complexity are an
immediate consequence of Corollary 9. The lower bound for
combined complexity of query answering over a ELHInot

knowledge base is a consequence of the EXPTIME lower
bound for subsumption checking in ELI (Baader, Brandt,
and Lutz 2008, Theorem 3), as a subsumption C v D can
be checked by answering the query C u notD. The lower
bound for the data complexity follows from a reduction of
the UNSAT-problem; see (Gottlob et al. 2014).

8 Summary and Outlook
This paper has provided the first fully general stable model
semantics for guarded existential rules with negation. We
proved that query answering is decidable under this seman-
tics, and we determined the complexity of this problem for
various settings. On the way to these results, we defined dis-
junctive rule sets under FO semantics augmented by strati-
fied negation, and also studied the complexity of query an-
swering based on this formalism, which is of interest in its
own right. Finally, we showed how our results can be used
for adorning well-known DLs with stable model negation.

For space reasons, many aspects and possible extensions
of our work had to remain undiscussed and will be given
more attention in the full paper. One feature that we already
mentioned are EGDs. Another issue is the unique name as-
sumption (UNA). Our approach for defining the SMS fol-
lows the standard semantics for logic programming with
function symbols, where different Skolem terms are consid-
ered to be different elements that cannot be unified. In a pre-
cise sense, this means that our semantics applies the UNA
not only to database constants, but also to invented null val-
ues, i.e., Skolem terms. As long as negation is not used, this
does not matter. But with negation, this may become an is-
sue in some cases. Reconsider Example 1 and let Σc = Σa∪
{Person(x), not Parent(x,x)→ ok}. Under our current seman-
tics, {Person(mary)} ∪ Σc |= ok. However, if one does not
apply the UNA, then ok would not be derivable, because
there would exist models in which, e.g., mary = f(mary). We
are able to define a version of the stable model semantics
without the UNA, too, and we call this the equality-friendly
SMS, in analogy to (Gottlob et al. 2012a). This semantics is
defined in a totally analogous way to the one defined here,
except that instead of using stratified GDNTGDs, we use
guarded fixpoint logic. As will be shown in the full paper,
decidability and the same complexity results hold.

2See (Gottlob et al. 2014) for a definition.

266



Ongoing work includes in particular the SMS for disjunc-
tive guarded TGDs with negation (GDNTGDs). The seman-
tics for this is, again, directly inherited from the correspond-
ing SMS for disjunctive logic programming with function
symbols. As this can be encoded into MSO in a similar way
as the normal stable semantics, query answering is decid-
able. By a similar encoding into MSO, we have also obtained
decidability for the SMS for disjunctive weakly guarded
and weakly frontier-guarded TGDs with negation. We are
currently still exploring the precise complexity of all these
problems. We also plan to extend suitable versions of the in-
teresting MKNF approach (Motik and Rosati 2010) by our
techniques, so to achieve larger decidable classes.
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