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Abstract

The Region Connection Calculus (RCC) is a well-known cal-
culus for representing part-whole and topological relations. It
plays an important role in qualitative spatial reasoning, ge-
ographical information science, and ontology. The computa-
tional complexity of reasoning with RCC has been investi-
gated in depth in the literature. Most of these works focus
on the consistency of RCC constraint networks. In this paper,
we consider the important problem of redundant RCC con-
straints. For a set Γ of RCC constraints, we say a constraint
(xRy) in Γ is redundant if it can be entailed by the rest of
Γ. A prime subnetwork of Γ is a subset of Γ which contains
no redundant constraints but has the same solution set as Γ.
It is natural to ask how to compute a prime subnetwork, and
when it is unique. In this paper, we show that this problem
is in general intractable, but becomes tractable if Γ is over
a tractable subclass of RCC. If S is a tractable subclass in
which weak composition distributes over non-empty intersec-
tions, then we can show that Γ has a unique prime network,
which is obtained by removing all redundant constraints from
Γ. As a byproduct, we identify a sufficient condition for a
path-consistent network being minimal.

1 Introduction
Qualitative spatial reasoning (QSR) is a common subfield
of artificial intelligence and geographical information sci-
ence, and has applications in GIS, cognitive robotics, high-
level understanding of video data etc. The Region Connec-
tion Calculus (RCC) (Randell, Cui, and Cohn 1992) is per-
haps the most well-known calculus for representing quali-
tative spatial information. Based on a binary connectedness
relation, it defines a class of binary topological relations be-
tween regions in a connected topological space (e.g., the real
plane). The RCC is an expressive formalism for representing
topological information, and the computational complexity
of reasoning with RCC has been investigated in depth in the
literature. Most of these works focus on the consistency or
satisfiablility of RCC constraint networks.

In this paper, we consider the important problem of re-
dundant RCC constraints. Given a set Γ of RCC constraints,
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we say a constraint (xRy) in Γ is redundant if it can be
entailed by the rest of Γ, i.e., removing (xRy) from Γ will
not change the solution set of Γ. It is natural to ask when
a network is redundant and how to get an irredundant sub-
set without changing the solution set. We call a subset of
Γ a prime subnetwork of Γ if it contains no redundant con-
straints but has the same solution set as Γ.

We show that it is in general co-NP hard to determine if a
constraint is redundant in a network of RCC constraints, but
Γ is over a tractable subclass, then a prime subnetwork can
be found in O(n5) time. If in addition weak composition
distributes over non-empty intersections of relations in S,
then Γ has a unique prime subnetwork, which is obtained by
removing all redundant constraints from Γ.

As in the case of propositional logic formulas (Libera-
tore 2005), redundancy of RCC constraints “often leads to
unnecessary computation, wasted storage, and may obscure
the structure of the problem” (Belov et al. 2012). Finding
a prime subnetwork can be useful in at least the follow-
ing aspects: a) computing and storing the relationships be-
tween spatial objects and hence saving space for storage
and communication; b) facilitating comparison between dif-
ferent constraint networks; c) handling the inconsistency
by modifying critical constraints; d) unveiling the essential
graphical structure of a network; and e) adjusting geometri-
cal objects to meet topological constraints (Wallgrün 2012).

Motivational Example: Placename Footprints
To motivate our discussion, we focus briefly on one spe-
cific application to illustrate just one of our five uses of
prime subnetworks: saving space for storage. Figure 1 gives
a small example of a set of spatial regions formed by the
geographic “footprints” associated with placenames in the
Southampton area of the UK. The footprints are derived
from crowd-sourced data, formed from the convex hull of
the sets of coordinate locations at which individuals used the
placenames on social media. Using such data sets in natu-
ral language placename searches frequently requires queries
over the topological relationships between footprints (e.g.,
“is Clarence Pier in Southampton?”). Computing such rela-
tionships on-the-fly requires computationally intensive and
slow geometric operations; by contrast Web-search queries
demand rapid responses.

One potential solution is to cache the topological rela-
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Figure 1: Examples of crowd-sourced geographic place-
name “footprints” around Southampton, UK

tions between all footprints of interest. However, even the
small example in Figure 1, the 84 footprints then require
84∗83/2 = 3486 stored relations. The moderate-sized foot-
print data set from which Figure 1 contains a total of 3474
footprints leads to a constraint network with 6, 032, 601 re-
lations. It is easy to see that as crowd-sourced data sources
continue to grow, the volumes of such data is set to explode.
In the case of footprints, many of the relationships can be in-
ferred, and computing the prime subnetwork can reduce the
number of stored relationships to be approximately linear
in the number of footprints. In the case of the Southampton
constraint network, 1324 redundant relations lead to a prime
subnetwork with only 2150 relations needing to be stored.
For the full data set, 5, 713, 563 redundant relations lead to
a prime subnetwork of just 319, 038 relations (in contrast to
the full constraint network of more than 6 million relations).

In Section 2 we recall the RCC constraint language and
then define the key notions of redundant constraint and
prime subnetwork in Section 3. We present our major results
in Section 4 and conclude the paper in Section 5.

2 RCC Constraint Language
The RCC was introduced in (Randell, Cui, and Cohn 1992).
Let U be the set of nonempty regular closed sets of R2. We
call each element in U a region. For two regions a, b, we say
a is a part of b, written aPb, if a ⊆ b; say a is connected to
b, written aC b, if a ∩ b 6= ∅. Using C and P, we define

xPP y ≡ xP y ∧ ¬(yPx)

xOy ≡ (∃z)(zPx ∧ zP y)

xDR y ≡ ¬(xOy)

xPO y ≡ xOy ∧ ¬(xP y) ∧ ¬(yPx)

xEQ y ≡ xP y ∧ yPx

xDC y ≡ ¬(xCy)

xEC y ≡ xC y ∧ ¬(xOy)

xTPP y ≡ xPP y ∧ (∃z)(zECx ∧ zEC y)

xNTPP y ≡ xPP y ∧ ¬(xTPP y)

Write PP−1, TPP−1 and NTPP−1 for the converses of
PP, TPP and NTPP, respectively. Then

B5 = {DR,PO,EQ,PP,PP−1}(1)
B8 = {DC,EC,PO,EQ,TPP,NTPP,(2)

TPP−1,NTPP−1}
are two jointly exhaustive and pairwise disjoint (JEPD) sets
of relations, i.e., for any two regions a, b ∈ U , a, b is re-
lated by exactly one relation in Bl (l = 5, 8). We call the
Boolean algebra generated by relations in Bl the RCCl al-
gebra, which consists all relations that are unions of the ba-
sic relations in Bl. For convenience, we denote a non-basic
RCCl relationR as the subset of Bl it contains. For example,
we write {DR,PO,PP} for the relation DR∪PO∪PP,
and write ?5 and ?8 for the universal relation.

The composition of two basic RCC5/8 relations is not
necessarily a relation in RCC5/8. For two RCC5/8 rela-
tions R and S, we call the smallest relation in RCC5/8
that contains R ◦ S the weak composition of R and S,
written R ◦w S (Düntsch, Wang, and McCloskey 2001;
Li and Ying 2003).

RCC5/8 Constraint Network
An RCC5/8 constraint has the form (xRy), where x, y are
variables taking values from U , the set of regions, R is an
RCC5/8 relation (not necessarily basic). Given a set Γ of
RCC5/8 constraints over variables V = {v1, v2, ..., vn}, we
say Γ is consistent or satisfiable if there is an assignment
σ : V → U such that (σ(vi), σ(vj)) satisfies the constraint
in Γ that relates vi to vj .

Without loss of generality, we assume Γ has the form
{xiRijxj}ni,j=1, where, for any 1 ≤ i, j ≤ n, there is a
unique constraint Rij , and Rji = R∼ij and Rii = EQ.
In this sense, we call Γ a constraint network. Let Γ =
{xiRijxj}ni,j=1 and Γ′ = {xiR′ijxj}ni,j=1 be two RCC5/8
constraint networks. We say Γ and Γ′ are equivalent if they
have the same set of solutions; and say Γ refines Γ′ if
Rij ⊆ R′ij for all (i, j). We say an RCC5/8 network Γ is
a basic network if each constraint is either the universe rela-
tion or a basic relation; and say a basic network complete if
there are no universal relations.

Suppose S is a subset of RCC5/8. We say an RCC5/8 net-
work Γ = {viRijvj} is over S if Rij ∈ S for every pair
of variables vi, vj . The consistency problem over S, written
as CSP(S), is the decision problem of the consistency of an
arbitrary constraint network over S. It is well known that the
consistency problem over RCC5/8, i.e., CSP(RCC5/8), is
NP-complete and RCC8 has three maximal tractable sub-
classes that contain all basic relations (Renz 1999) and
RCC5 has only one (Jonsson and Drakengren 1997).

We say a network Γ = {viRijvj} path-consistent if for
every 1 ≤ i, j, k ≤ n, we have

Rij ⊆ Rik ◦w Rkj .(3)

A cubic algorithm, henceforth called the path-consistency
algorithm or PCA, has been devised to enforce path-
consistency. For any RCC5/8 network Γ, the PCA either de-
tects inconsistency of Γ or returns a path-consistent network,
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written Γp, which is equivalent to Γ and known as the alge-
braic closure or a-closure of Γ (Ligozat and Renz 2004). It
is easy to see that in this case Γp also refines Γ, i.e., we have
Sij ⊆ Rij for each constraint (xiSijxj) in Γp.
Proposition 1. Let S be a tractable subclass of RCC5/8
which contains all basic relations. An RCC5/8 network Γ
over S is consistent if applying PCA to Γ does not result
inconsistency.

In particular, we have
Proposition 2. A basic RCC5/8 network Γ is consistent if it
is path-consistent.

Distributive Subalgebra
Write B̂5 for the closure of B5 under converse, intersection,
and weak composition in RCC5. Then B̂5 contains the basic
relations as well as

{PO,PP}, {PO,PP−1}, {PO,PP,PP−1,EQ},
{DR,PO,PP}, {DR,PO,PP−1}, {DR,PO}, ?5,

where ?5 = {DR,PO,PP,PP−1,EQ}. It is interesting
to note that in B̂5 the weak composition operation is distribu-
tive over nonempty intersections in the following sense.

Lemma 3. Let R,S, T be three relations in B̂5. Suppose
S ∩ T is nonempty. Then we have

R ◦w (S ∩ T ) = R ◦w S ∩R ◦w T(4)
(S ∩ T ) ◦w R = S ◦w R ∩ T ◦w R.(5)

In what follows, we call such a subclass a distributive sub-
algebra. Formally, we have
Definition 4. Let S be a subclass of RCC5/8. We say S is a
distributive subalgebra if
• S contains all basic relations, and is closed under con-

verse, weak composition, and intersection;
• weak composition distributes over nonempty intersec-

tions of relations in S.

3 Redundant Constraint and Prime
Subnetwork

We give a formal definition of redundant constraints.
Definition 5. Suppose Γ is an RCC5/8 network over vari-
ables V = {v1, ..., vn}. We say Γ entails a constraint
(viRvj), written Γ |= (viRvj), if for every solution
{a1, ..., an} of Γ we have (ai, aj) ∈ R. A constraint
(viRvj) in Γ is redundant if Γ \ {(viRvj)} entails (viRvj).
We say Γ is reducible if it has a redundant constraint, and
irreducible otherwise. We say a subset Γ′ of Γ is a prime
subnetwork of Γ if Γ′ is irreducible and equivalent to Γ.

Each universal constraint (vi ? vj) in Γ is, by definition, a
redundant constraint in Γ.

Given an RCC5/8 network Γ, a very interesting question
is, how to find a prime subnetwork of Γ? This problem is
clearly at least as hard as determining if Γ is reducible. Sim-
ilar to the case of propositional logic formulars (Liberatore
2005), we have the following result for RCC5/8.

Proposition 6. Let Γ be an RCC5/8 network and suppose
(xRy) is a constraint in Γ. It is co-NP-complete to decide if
(xRy) is redundant in Γ.

A naive method to obtain a prime subnetwork is to remove
redundant constraints one by one from Γ until we get an
irreducible network. Suppose we have an oracle which can
tell if a constraint is redundant. Then in an additional O(n2)
time we can find an irreducible network that is equivalent to
Γ by removing several constraints from Γ.

Despite that it is in general intractable to determine if a
constraint is redundant, we have a polynomial time proce-
dure if the constraints are all taken from a tractable subclass.
Proposition 7. Let S be a tractable subclass of RCC5/8 that
contains all basic relations. Suppose Γ is a network over S.
Then in O(n3) time we can determine whether a constraint
is redundant in Γ and in O(n5) time find all redundant con-
straints of Γ. In addition, a prime subnetwork for Γ can be
found in O(n5) time.
Definition 8. The core of an RCC5/8 network Γ, written Γc,
is defined to be the set of non-redundant constraints in Γ.

It is easy to see that the core of Γ is contained in every
prime subnetwork of Γ. Are prime subnetworks unique? In
general this is not the case.

In the following we assume without loss of generality that
Γ has the following property:

(∀i, j)[(i 6= j)→ (Γ 6|= (vi EQ vj))].(6)

In the next section we show that, if Γ is a constraint net-
work over a distributive subalgebra of RCC5/8, then Γc is
the unique prime network of Γ. This is quite surprising, as, in
general, knowing that (xRy) and (uSv) are both redundant
in Γ does not imply that (uSv) is redundant in Γ\{(xRy)}.

4 Networks over a Distributive Subalgebra
In this section, we assume S is a distributive subalgebra of
RCC5/8. Let Γ be a consistent network over S which satis-
fies (6). We show that Γc is equivalent to Γ and hence the
unique prime network of Γ.
Definition 9 (cf. (Chandra and Pujari 2005; Liu and Li
2012)). Suppose Θ = {viTijvj}1≤i,j≤n is an RCC5/8 net-
work. We say Θ is minimal if for every pair of variables
vi, vj (i 6= j) and every basic relation α in Tij , there ex-
ists a solution {a1, a2, · · · , an} of Θ such that (ai, aj) is an
instance of α.

Each consistent RCC5/8 constraint network has a unique
minimal network, but it is in general NP-hard to compute it.

Notation: We write Γm for the minimal network of Γ, Γp

for the a-closure of Γ, and Γc for the core of Γ.
To prove that Γc is equivalent to Γ, we need two important

results. The first result, stated in Theorem 10, shows that Γm

is exactly Γp. The second result, stated in Proposition 11,
shows that a particular constraint (xRy) is redundant in Γ
iff its corresponding constraint in Γp is redundant. Our main
result, stated in Theorem 12, then follows immediately.
Theorem 10. Let S be a distributive subalgebra of RCC5/8.
Suppose Γ is a consistent network over S and Γp its a-
closure. Then Γp is Γm, the minimal network of Γ.

620



Proposition 11. Let S be a distributive subalgebra of
RCC5/8. Suppose Γ is a consistent network over S which
satisfies (6). Assume that (xRy) and (xSy) are the con-
straints from x to y in Γ and Γp respectively. Then (xRy)
is redundant in Γ iff (xSy) is redundant in Γp.

Recall that Theorem 10 asserts that Γp is minimal. As a
consequence, we have our main result.

Theorem 12. Let S be a distributive subalgebra of RCC5/8.
Suppose Γ is a consistent network over S which satisfies (6)
and Γc the core of Γ. Then Γc is equivalent to Γ and hence
the unique prime network of Γ.

Recall that Proposition 7 shows that the core of an
RCC5/8 network over a tractable subclass can be found in
O(n5) time. In the next subsection we show this can be im-
proved if the network is over a distributive subalgebra.

A Cubic Algorithm for Computing the Core of Γ

We first consider the special case when Γ is path-consistent.

Lemma 13. Let S be a distributive subalgebra of RCC5/8.
Suppose Γ is a path-consistent network over S. Then a con-
straint (viRijvj) is redundant in Γ iffRij =

⋂
{Rik◦wRkj :

k 6= i, j}, i.e., Rij is the intersection of the weak composi-
tions of all paths from vi to vj which have length 2.

Suppose Γ is a consistent network over a distributive sub-
algebra of RCC5/8 and satisfies (6). Proposition 11 and
Lemma 13 suggest a simple way for computing Γc, the
unique prime network of Γ. By Proposition 11, a constraint
(viRijvj) in Γ is redundant iff the corresponding constraint
(viSijvj) in Γp is redundant. Furthermore, Lemma 13 shows
that (viSijvj) is redundant in Γp iff Sij is the intersection of
all Sik ◦w Skj (k 6= i, j). We hereby have the following cu-
bic algorithm for finding all redundant constraints in Γ. For
each constraint (viSijvj), to verify if Sij =

⋂
{Sik ◦w Skj :

k 6= i, j}, we introduce a relation Pij which consists of all
basic relations α that are not in Sik ◦w Skj for some k 6= i, j
and then check if Pij ∪ Sij is the universal relation.

5 Conclusion
In this paper, we have systematically investigated the com-
putational complexity of redundancy checking for RCC5/8
constraints. Although it is in general co-NP-complete, we
have shown that a prime network can be found in O(n5) for
any consistent network over a tractable subclass of RCC5/8.
If the constraints are taken from a distributive subalgebra,
we proved that the core of the constraint network is the
unique prime network and can be found in cubic time.

Some of these results (e.g., all results before Theorem 10)
can be applied to many other qualitative calculi e.g. Inter-
val Algebra (Allen 1983) immediately, but Proposition 11
and Theorem 12 do use the particular algebraic properties of
RCC5/8. Future work will consider how to extend our results
to these qualitative calculi.
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