
How to Argue for Anything:
Enforcing Arbitrary Sets of Labellings Using AFs

Sjur K. Dyrkolbotn
Durham Law School, Durham University, UK

s.k.dyrkolbotn@durham.ac.uk

Abstract

We contribute to the investigation of possible outcomes of
argumentation under semantics formulated using argumenta-
tion frameworks (AFs). In particular, we study this question
for the labelling-based formulation of such semantics, gener-
alizing previous work which has focused on extensions. In
this paper, we restrict attention to the preferred and semi-
stable semantics, showing that as long as we have a sufficient
number of fresh arguments available, we can in fact argue for
anything. That is, for any set of finite labellings there is an
AF that enforces exactly this set as the outcome of argumen-
tation.

1 Introduction
Formal argumentation in the style of (Dung 1995) is becom-
ing an increasingly important formalism in artificial intelli-
gence.1 Dung observed that by representing argumentation
scenarios by directed graphs, referred to as argumentation
frameworks (AFs) in this context, various denotational se-
mantics for non-monotonic reasoning could be formulated
using graph-theoretic terms. Such semantics work by pre-
scribing to an AF a set of extensions, sets of arguments that
are regarded as successful when held together. In (Caminada
2006) it was shown that extensions could be defined in terms
of three-valued labellings to the argument set, with every
argument obtaining the status of being either accepted, de-
feated or undetermined. Hence an AF can be viewed as a
theory in three-valued logic, and it has since been observed
that Łukasiewicz logic is particularly well-suited for rea-
soning about argumentation (Dyrkolbotn and Walicki 2013;
Dyrkolbotn 2013).

In recent work, the question of the signature of an ar-
gumentation semantics has been studied, asking about the
structure of the different possible sets of extensions that can
arise from an AF under a given semantics (Dunne et al.
2013). This work is interesting in that it promises to provide
a bird’s-eye view on the behavior of argumentation seman-
tics, allowing us to develop a better understanding of their
expressive power and meta-logical properties.
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1We point to (Rahwan and Simari 2009) for a recent volume
devoted to the use of abstract argumentation theory in AI.

However, developing this theory with respect to sets of
extensions is unsatisfactory since the behavior of argumen-
tation semantics is fundamentally three-valued. In particu-
lar, it seems to us that the question should also be studied
when outcomes of argumentation are represented more real-
istically as sets of labellings. In this paper we make a con-
tribution in this regard, by characterizing the possible out-
comes of finite argumentation under the preferred and semi-
stable semantics.2 In particular, we show that every set of
labellings can be enforced, as long as we have a sufficient
number of additional arguments available. The proof is con-
structive and also demonstrates that the time needed to en-
force a given set of labellings is linear in the number of pos-
sible labellings that are not in the outcome.

The structure of the paper is as follows. In Section 2 we
present necessary background on AFs and semantics formu-
lated using labellings. Then in Section 3 we prove the main
result by constructing canonical AFs that can be used to en-
force sets of labellings. In Section 4 we offer a conclusion.

2 Background
We give a terse background on AFs and the labelling-based
approach to argumentation semantics, for more details we
point to (Rahwan and Simari 2009, Chapter 2). First let us
fix a countably infinite set Π of arguments. Then we can de-
fine an AF simply as a set of directed edges E ⊆ Π × Π.
If (p, q) ∈ E we think of it as encoding the fact that p rep-
resents an argument that attacks the argument represented
by q. We use the notation E+(x) = {y ∈ Π | (x, y) ∈
E}, E−(x) = {y ∈ Π | (y, x) ∈ E}, and extend it to sets
such that E∗(A) =

⋃
x∈A E∗(x) for ∗ ∈ {+,−}. We also

define Π(E) = {x | E+(x) ∪ E−(x) 6= ∅}, the set of ar-
guments from Π which appear in some attack from E. We
will often present AFs by simply depicting the attacks they
contain, as in Figure 1.

Given an AF E, an argumentation semantics is used to
identify sets of arguments that can be held successfully to-
gether. Typically, this involves various formalizations of the

2We remark that (Dunne et al. 2013) also notes the possibility
of studying signatures with respect to labellings rather than exten-
sions. They have little to say about it, however, apart from listing it
as an important direction for future work.
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Figure 1: An AF E such that Π(E) = {p, q, q′, p′}

intuition that the set should be internally consistent and able
to defend itself against attacks from other arguments. Differ-
ent semantics differ about the details, but they have the same
signature: they are defined as an operator S which takes an
AF E and returns a set of sets of S(E) ⊆ 2Π, the set of ac-
ceptable sets, called extensions. Moreover, to the best of our
knowledge, all semantics share the property that arguments
in an extension should be internally consistent, free of inter-
nal conflict. Formally, for all such semantics S, all AFs E
and all A ∈ S(E), we have E−(A) ⊆ Π \ A, such that no
two arguments in A attack each other.

For a given argument, it is accepted or it is not, but a
boolean perspective fails to do justice to the nature of the
structure (E,S) in two important ways. First, it is not clear
whether we should say that p is accepted on E under S when
there exists some A ∈ S(E) such that p ∈ A, or whether we
should require p ∈ A for all such A. Both notions of ac-
ceptance have been used, and the former is typically dubbed
credulous while the latter is referred to as skeptical.3

The second sense in which acceptance is not a binary no-
tion has to do with the structure of E. In particular, given
any A ∈ S(E) the status of p with respect to A can be any
of the following:

1 : p ∈ A 2 : p ∈ E+(A)
3 : p ∈ Π \ (A ∪ E+(A))

(1)

Notice that by conflict-freeness of A, it follows that if p ∈
E+(A) then p 6∈ A. Hence when the focus is on the status
of individual arguments, we might as well view S(E) as a
set of partitions of Π into three disjoint sets or, equivalently,
as a collection of labellings (Caminada 2006), functions c :
Π→

{
1, 1

2 , 0
}

such that for all x ∈ Π:

c(x) = 0 ⇐⇒ ∃y ∈ E−(x) : c(y) = 1 (2)

For any AF E we let cf(E) be the set of all labellings for E,
and we define c1 = {x ∈ Π | c(x) = 1}, c0 = {x | c(x) =

0} and c
1
2 = {x ∈ Π | c(x) = 1

2}. This, in particular,
defines a semantics for argumentation such that for all E,
we regard A ⊆ Π as acceptable if there is some c ∈ cf(E)
such that c1 = A.4 In applications of argumentation theory,

3It is natural to view skeptical and credulous acceptance as dual
modalities, suggesting the study of the set of validities character-
izing their interactions. This, in particular, is a different approach
to modal reasoning about AFs than that explored in (Grossi 2010b;
2010a), where modalities are used to talk about AFs, to allow se-
mantics to be defined in terms of modal formulas addressing the
graph structure. It is closer to what is called an “object level” ap-
proach in (Caminada and Gabbay 2009), where arguments are re-
garded as atoms in a propositional language.

4Hence it is not hard to see that values assigned by labellings
correspond to the three points of Equation 1 whenever we restrict
attention to conflict-free sets of accepted arguments. Notice, in par-
ticular, that p ∈ c0 ⇐⇒ p ∈ E+(c1) and p ∈ c

1
2 ⇐⇒ p ∈

Π \ (c1 ∪ c0)

Admissible: a(E) = {c ∈ cf(E) | E−(c1) ⊆ c0}
Complete: c(E) = {c ∈ cf(E) |

c1 = {x ∈ Π | E−(x) ⊆ c0}}
Grounded: g(E) = {

⋂
c(E)}

Preferred: p(E) = {c1 ∈ a(E) | ∀c2 ∈ a(E) : c11 6⊂ c12}

Semi-stable: ss(E) = {c1 ∈ a(E) | ∀c2 ∈ a(E) : c
1
2
1 6⊃ c

1
2
2 }

Stable: s(E) = {c ∈ a(E) | c
1
2 = ∅}

Figure 2: Various semantics, defined for any E ⊆ Π×Π

this is usually considered too permissive, and a range of var-
ious restrictions has been considered, each giving rise to a
new semantics, the most well-known of which are defined
in Figure 2.

To illustrate the definition, consider the AF in Figure 1.
We notice, in particular, that the set of admissible and com-
plete extensions is a(E) = c(E) = {∅, {q}, {q′}}, that the
grounded extension is empty, that the preferred and semi-
stable extensions are p(E) = ss(E) = {{q}, {q′}} and that
E does not have any stable extensions (the labellings corre-
sponding to these sets can be easily recovered using Equa-
tion (1)).

We can now illustrate why the approach from (Dunne et
al. 2013), which focuses on extensions rather than labellings,
fails to do full justice to the question of characterizing the
possible outcomes of argumentation. For instance, consider
enforcing the outcome where one argument, call it w, is
accepted, while all other arguments from Π are defeated.
That is, there should be only one acceptable labelling and
it should assign 1 to w and 0 to all other arguments. Look-
ing at extensions alone there is no way to distinguish this
from the case when w is accepted and all other arguments
are undecided: in both cases it will hold that {w} is the only
extension. If we go on by attempting to enforce the outcome
that all arguments in Π are rejected we come across a va-
lidity of argumentation that (Dunne et al. 2013) is unable to
capture. It is easy to see, in particular, that while many AFs
exist for which the empty set is the only admissible exten-
sion, it is impossible to construct an AF such that every argu-
ment is defeated, since then no arguments labelled 1 would
be around to defeat them.

Due to validities of this type, it seems difficult in general
to characterize the set of all infinite labellings that can be en-
forced without the addition of new arguments. In the follow-
ing we therefore restrict attention to finite AFs, a restriction
which is also made in (Dunne et al. 2013). The upshot is that
we can always assume availability of additional arguments
to help ensure that a given outcome for V ⊂ Π is obtained.5

5We remark that in the context of logic-based approaches to
argumentation, such as those explored in (Dyrkolbotn and Walicki
2013; Dyrkolbotn 2013), this restriction is suitable as long as we do
not consider languages with infinitary connectives. Moreover, we
note that while the finiteness restriction is not in itself crucial and
may be dropped, the presence of a sufficient amount of additional
arguments is indeed needed for the results presented in the next
section.
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3 Enforcing an Arbitrary Set of Labellings
We now proceed to show how canonical AFs can be used
to enforce arbitrary sets of labellings to finite V ⊂ Π un-
der preferred and semi-stable semantics. The same AFs will
be canonical for both, so our result is relevant also to the
investigation of translations between semantics (Dvorák and
Woltran 2011; Dvorák and Spanring 2012). In particular, our
constructions provide an alternative to the approach of mod-
ifying AFs so that their behavior under one semantics can be
captured by another. For any argumentation semantics which
prescribes labellings, we can capture it using preferred and
semi-stable semantics, by using the canonical AF.

To construct it formally, assume we are given a finite V ⊆
Π and a set of three-valued assignments F ⊆

{
1, 1

2 , 0
}V

.
Then we will construct EF and show that it enforces F on
V in the following sense, for S ∈ {p, ss}:

{c|V | c ∈ S(EF )} = F (3)

We rely on two basic constructions to show that there exists
EF which satisfies this equation, for all V, F . First we intro-
duce, for all p ∈ Π, the AF Łp, which we refer to as a circuit
for p. It is defined as depicted below.
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The reader may easily verify that Łp satisfies the following
property, for both preferred and semi-stable S:

{c|p | c ∈ S(Łp)} = {{p 7→ 0}, {p 7→ 1}, {p 7→ 1

2
}} (5)

That is, in the AF Łp, the semantic status of p is com-
pletely open: for any of the three values p could have, the
preferred and semi-stable semantics admit labellings for Łp

that give p this value. This implies that for any finite set
V = {p1, . . . , pn} there is an AF which characterizes the
set X =

{
1, 1

2 , 0
}V

, containing all functions from V to{
1, 1

2 , 0
}

. In particular, we can take EX to be the follow-
ing AF (assuming, of course, that all arguments pxi used to
construct a circuit for pi are fresh, i.e. do not occur in V ).

EX =
⋃

1≤i≤n

Łpi
(6)

To show the general claim, for arbitrary F ⊆ X , we will
start from EX and then inductively define EF in terms of
EF ′ such that F = F ′ \ {f}. We will show, in particular,
how to obtain EF from EF ′ by ensuring that f becomes
forbidden while all other assignments from F ′ are still per-
mitted. To explain how to do this, let us first observe the
following crucial property, allowing us to characterize any
of the three values that pi can have by an argument that is
accepted if, and only if, pi has this value. In particular, the

reader can easily verify that the following holds, for pre-
ferred and semi-stable S and all c ∈ S(Łpi):

c(pi) = 1 ⇐⇒ c(p1
i ) = 1

c(pi) = 0 ⇐⇒ c(p0
i ) = 1

c(pi) = 1
2 ⇐⇒ c(p

1
2
i ) = 1

(7)

Notice also that c(pyi ) ∈ {1, 0} for all y, i and c ∈ S(Łpi
).

That is, the arguments witnessing to the value of pi are
always assigned one of the boolean values. This will be
important to keep in mind below. Now, assume as induc-
tion hypothesis that we have been able to define EF ′ for
F ′ = F ∪ {f} based on EX such that Equation (3) holds
for F ′, and such that Equation (7) holds for all c ∈ S(EF ′).
To define EF we first partition V according to the values
assigned by f :

V = V1 ∪ V0 ∪ V 1
2

where V1 = {x | f(x) = 1} = {u1, . . . , uk}, V0 = {x |
f(x) = 0} = {v1, . . . , vl}, V 1

2
= {x | f(x) = 1

2} =

{w1, . . . , wm} (notice that this implies that all Vi’s are dis-
joint). Next we let {f, xf | x ∈ V } be a collection of |V |+1
fresh arguments, and we define EF as follows:

EF = EF ′ ∪
⋃

1≤i≤k

{(u1
i , u

f
i ), (uf

i , f), (f, u1
i )}

∪
⋃

1≤i≤l

{(v0
i , v

f
i ), (vfi , f), (f, v0

i )}

∪
⋃

1≤i≤m

{(w
1
2
i , w

f
i ), (wf

i , f), (f, w
1
2
i }

In the figure below we sketch this construction, depicting the
pattern made up of the edges added in the induction step.
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(8)

First let us note that Equation 7 holds for all c ∈ S(EF ). In-
deed, none of the edges that have been added interfere with
the fact that for all xi ∈ V , we have c(xy

i ) = 1 if, and only
if, c(xi) = y. It is then straightforward to establish that there
is no c ∈ S(EF ) such that c|V = f . In particular, if there
was such a c it would follow that all arguments of the form
x
f(xi)
i would be assigned 1, so all attackers of f would be

labelled 0, which in turn would imply that the fresh argu-
ment f would be labelled 1. This would be contradiction,
however, since f attacks all xf(xi)

i . On the other hand, it is
easy to see that any other f ′ ∈ F ′ is still permitted: as long
as one or more arguments from V are labelled by something
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different from their value under f , it follows from Equation
(7) that the argument named f will be rejected, thus render-
ing all new attacks on existing arguments, which all come
from f , irrelevant to the labelling of arguments from V .

Having demonstrated how to construct the desired AF EF

by induction, we conclude as follows.

Theorem 3.1. For all finite V ⊆ Π, and all F ⊆{
1, 1

2 , 0
}V

, there is a finite AF EF such that for all S ∈
{p, ss} we have

{c|V | c ∈ S(EF )} = F

The proof of this result essentially consisted in an algo-
rithm for computing EF . To analyze the complexity of this
construction, notice first that EX has linear size in V . More-
over, remember that we needed |V | + 1 new arguments in
each step of the procedure, and that the number of total steps
required was equal to the number of forbidden labellings. In
light of this, we obtain the following corollary.

Corollary 3.2. For any finite V ⊆ Π and any F ⊆{
1, 1

2 , 0
}V

, we can construct EF that enforces F un-
der preferred and semi-stable semantics in time O(|V | ×
|
{

1, 1
2 , 0
}V \ F |).

Before we conclude, we comment briefly on the other se-
mantics from Figure 2. It is easy to see, in particular, that
Theorem 3.1 does not hold for any of the other semantics
defined there. For the stable semantics this is trivial since
it only permits boolean labellings.6 For the other semantics,
notice that all of them always prescribe a labelling such that
all other permissible labellings extend it (the empty labelling
for the admissible semantics, the grounded labelling for the
others). This means, in particular, that no set of labellings
can be enforced if it fails to include this labelling.

4 Conclusion
We have studied the finite signatures of the preferred and
semi-stable semantics, in terms of the sets of finite labellings
they may give rise to. As it turns out, any set of labellings
is a possible outcome under these semantics, so in a sense
we have indeed shown how to argue for anything. More-
over, while the construction we used takes exponential time
to compute in general, it is linear in an interesting parame-
ter: the number of labellings that are not supposed to be in
the outcome.

This result provides theoretical insight concerning the
preferred and semi-stable semantics and it also strength-
ens the connection between argumentation and three-valued
Łukasiewicz logic. As observed in (Dyrkolbotn 2013), any
semantics applied to an AF can be seen as a theory in this
logic. Hence Theorem 3.1 serves to complete the picture by
showing that any finite theory of Łukasiewicz logic can also
be represented as an AF. That is, for any such theory there
is a corresponding AF such that a three-valued assignment

6However, notice that the argument used to prove Theorem 3.1
can be easily adapted to show that the stable semantics is canonical
for boolean theories.

to atoms is a model of the theory if, and only if, it cor-
responds to a preferred/semi-stable labelling for the corre-
sponding AF.

This is interesting in its own right, but also suggests the
possibility of obtaining completeness results for modal log-
ics that allow us to reason about skeptical and credulous
acceptance under preferred and semi-stable semantics. It
seems, in particular, that we are able to instantiate a canoni-
cal class of three-valued doxastic Kripke frames using AFs.7
This will be explored further in future work.
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