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Abstract

Angry Birds is a popular video game where the task is
to kill pigs protected by a structure composed of dif-
ferent building blocks that observe the laws of physics.
The structure can be destroyed by shooting the angry
birds at it. The fewer birds we use and the more blocks
we destroy, the higher the score. One approach to solve
the game is by analysing the structure and identifying
its strength and weaknesses. This can then be used to
decide where to hit the structure with the birds.
In this paper we use a qualitative spatial reasoning ap-
proach for this task. We develop a novel qualitative spa-
tial calculus for representing and analysing the struc-
ture. Our calculus allows us to express and evaluate
structural properties and rules, and to infer for each
building block which of these properties and rules are
satisfied. We use this to compute a heuristic value for
each block that corresponds to how useful it is to hit
that block. We evaluate our approach by comparing the
suggested shot with other possible shots.

Introduction
Qualitative spatial representation and reasoning has numer-
ous applications in Artificial Intelligence including robot
planning and navigation, interpreting visual inputs and un-
derstanding natural language (Cohn and Renz 2008). In re-
cent years, plenty of formalisms for reasoning about space
were proposed (Freksa 1992; Frank 1992; Renz and Mitra
2004). An emblematic example is the RCC8 algebra pro-
posed by Randell et al. (1992). It represents topological re-
lations between regions such as “x overlaps y”, or “x touches
y”; however, it is unable to represent direction informa-
tion such as “x is on the right of y” (Balbiani, Condotta,
and del Cerro 1999). The Rectangle Algebra (RA) (Muker-
jee and Joe 1990; Balbiani, Condotta, and del Cerro 1999),
which is a two-dimensional extension of the Interval Alge-
bra (IA) (Allen 1983), can express orientation relations and
at the same time represent topological relations, but only for
rectangles. If we want to reason about topology and direc-
tion relations of regions with arbitrary shapes, we could for
example combine RCC8 and RA, which was analysed by
(Liu, Li, and Renz 2009). However, if we only consider the
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minimum bounding rectangles (MBR) of regions, RA is ex-
pressive enough to represent both direction and topology.

What is common in basically all qualitative spatial rep-
resentations that have been proposed in the literature, and
in particular for two-dimensional calculi such as the RA,
is that the represented world is assumed to be represented
from a birds-eye view, that is from above like a typical map.
This is particularly remarkable since qualitative representa-
tion and qualitative reasoning are usually motivated as being
very close to how humans represent spatial information. But
humans typically don’t perceive the world from a birds-eye
view, the “human-eye view” is to look at the world sideways!
When looking at the world sideways, the most important fea-
ture of the world is the distinction of “up” and “down” and
the concept of gravity. What goes up must come down, ev-
erything that is not supported by something and is not stable
will invariably fall to the ground. This gives a whole new
meaning to the concept of consistency which is typically
analysed in the context of qualitative spatial reasoning: a
qualitative representation Θ is consistent if there is an ac-
tual situation θ that can be accurately represented by Θ. But
if any possible θ is not stable and would fall apart under
gravity, then Θ cannot be consistent.

In this paper we are concerned with the human-eye view
of the world, i.e., we want to be able to have a qualitative
representation that takes into account gravity and stability
of the represented entities.

Ideally, we want a representation that allows us to in-
fer whether a represented structure will remain stable or
whether some parts will move under the influence of gravity
or some other forces (e.g. the structure is hit by external ob-
jects). Additionally, if the structure is regarded as instable,
we want to be able to infer the consequences of the insta-
bility, i.e., what is the impact and resulting movement of the
instable parts of the structure. Gravity and stability are es-
sential parts of our daily lives and any robot or AI agent that
is embedded in the physical world needs to be able to reason
about stability. Obvious examples are warehouse robots who
need to be able to safely stack items, construction robots
whose constructions need to be stable, or general purpose
household robots who should be able to wash and safely
stack dishes. But in the end, any intelligent agent needs to
be able to deal with stability, whenever something is picked
up, put down or released. While this problem is clearly of

378

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



general interest, the motivating example we use in this pa-
per is the popular Angry Birds game. There we have a two-
dimensional snapshot of the world, ironically in the human-
eye view and not the birds-eye view, and inferring how ob-
jects move and fall down under gravity and other forces is
of crucial importance when trying to build an AI agent that
can successfully play the game.

The Rectangle Algebra is not expressive enough to rea-
son about the stability or consequences of instability of a
structure in a human-eye view. While it is possible to some
degree, we could simply impose that a structure can only be
consistent if each rectangle is supported from below, this is
only a necessary condition, it is clearly not sufficient. For ex-
ample, in Fig. 1(a) and (b), assume the density of the objects
is the same and object 2 is on the ground. The RA relation
between object 1 and object 2 in these two figures are both
<start inverse, meet inverse>, but obviously the structure in
Fig. 1(a) is stable whereas object 1 in (b) will fall. In order to
make such distinctions, we need to extend the granularity of
RA and introduce new relations that enable us to represent
these differences. In this paper, we introduce an Extended
Interval Algebra (EIA) which contains 27 relations instead
of the original 13. We use the new algebra as a basis for an
Extended Rectangle Algebra (ERA), which is obtained in the
same way as the original RA. Depending on the needs of an
application, we may not need to extend RA to 27 relations in
each dimension. Sometimes we only need the extended rela-
tions in one axis. Thus, the extended RA may include 13 ×
27, 27×13 or 27×27 relations depending on the requirement
of different tasks.

Figure 1: Two structures with the same RA relation (si,mi)

In the following, we will introduce EIA and ERA and then
develop a rule-based reasoning method that allows us to in-
fer the stability of a structure and the consequences of the de-
tected instability. Our method is focused towards our target
application, namely, to build an agent that can play the An-
gry Birds game automatically and rationally. This requires
us to identify a target that will make a given stable struc-
ture maximally instable and will lead to the greatest damage
to the structure. In order to do so, we take a stable struc-
ture (typically everything we see is by default stable) and for
each possible target object we remove the object and analyse
the consequences of the structure minus this object. Other
applications may require a slightly different method, but the
basic stability detection we develop is a general method. The
results of our evaluation show that the agent based on this
method is able to successfully detect stability and to infer
the consequences of instability.

Interval Algebra and Rectangle Algebra
Allen’s Interval Algebra defines a set Bint of 13 basic rela-
tions between two intervals (see Fig.2). It is an illustrative
model for temporal reasoning. The set of all relations of IA
is the power set 2Bint of Bint. The composition (◦) between
basic relations in IA is illustrated in the transitivity table in
Allen [1983]. The composition between relations in IA is
defined as R ◦ S = ∪{A ◦B : A ∈ R,B ∈ S}.

Figure 2: The 13 basic relations of the Interval Algebra

RA is an extension of IA for reasoning about 2-
dimensional space. The basic objects in RA are rectangles
whose sides are parallel to the axes of some orthogonal ba-
sis in 2-dimensional Euclidean space (see Fig. 1). The basic
relations of RA can be denoted as Brec = {(A,B)|A,B ∈
Bint}. The composition between basic RA relations is de-
fined as (A,B) ◦ (C,D) = (A ◦ C,B ◦D).

The Extended Rectangle Algebra (ERA)
In order to express the stability of a structure and reason
about the consequences of the instability in a situation which
observes physical rules, we extend the basic relations of
IA from 13 relations to 27 relations denoted as Beint (see
Fig.3). The relations consider the importance of the centre
of mass of an object for its stability, which corresponds to
its centre point for rectangular objects.

Definition 1 (The extended IA relations). We introduce the
centre point of an interval as a new significant point in addi-
tion to the the start and end points. For an interval a, denote
centre point, start point and end point as ca, sa and ea, re-
spectively.
1. The ’during’ relation has been extended to ’left during’,
’centre during’ and ’right during’ (ld, cd & rd).

• “x ld y” or “y ldi x” : sx > sy, ex ≤ cy
• “x cd y” or “y cdi x”: sx > sy, sx < cy, ex > cy, ex <
ey

• “x rd y” or “y rdi x” : sx ≥ cy, ex < ey

2. The ’overlap’ relation has been extended to ’most over-
lap most’, ’most overlap less’, ’less overlap most’ and ’less
overlap less’(mom, mol, lom &lol).
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Figure 3: The 27 basic relations Beint of the extended IA

• “x mom y” or “y momi x” : sx < sy, cx ≥ sy, ex ≥
cy, ex < ey

• “x mol y” or “y moli x” : sx < sy, cx ≥ sy, ex < cy
• “x lom y” or “y lomi x” : cx < sy, ex ≥ cy, ex < ey
• “x lol y” or “y loli x” : cx < sy, ex > sy, ex < cy

3. The ’start’ relation has been extended to ’most start’ and
’less start’ (ms & ls).

• “x ms y” or “y msi x” : sx = sy, ex ≥ cy
• “x ls y” or “y lsi x” : sx = sy, ex > sy, ex < cy

4. Similarly, the ’finish’ relation has been extended to ’most
finish’ and ’less finish’ (mf & lf).

• “x mf y” or “y mfi x” : sx > sy, sx ≤ cy, ex = ey
• “x lf y” or “y lfi x” : sx > cy, sx < ey, ex = ey

Denote the set of relations of extended IA as the power
set 2Beint of the basic relation setBeint. Denote the set of
relations of extended RA as the power set 2Berec of the basic
relation setBerec. The composition table of EIA and ERA is
straightforward to compute.

Note that EIA can be expressed in terms of INDU rela-
tions (Pujari, Kumari, and Sattar 2000) if we split each inter-
val x into two intervals x1 and x2 that meet and have equal
duration. However, this would make representation of spa-
tial information very awkward and unintuitive. There is also

some similarity with Ligozat’s general intervals (Ligozat
1991) where intervals are divided into zones. However, the
zone division does not consider the centre point.

Inferring stability using ERA rules
In the example in Figure 1 we have seen a simple case where
a situation is instable. However, since instability is not a
concept which is contained in ERA itself, but is rather a
consequence of certain ERA cases, compositional reason-
ing which is typically used in qualitative spatial reasoning is
not helpful for determining instability. Instead, we express
standard physical stability rules using ERA relations and use
rule-based reasoning to infer stability.

For our analysis we assume that the centre of mass of all
objects we represent is at the centre of their MBR. This is al-
ways the case for circles and rectangles with a uniform den-
sity, even if the rectangles are not parallel to the ground. This
covers most objects used in Angry Birds, with the exception
of triangular shaped objects and non-structurally significant
objects. The MBRs of all Angry Birds objects are obtained
using the object recognition module of the basic Angry Birds
game playing software that is provided by the organisers of
the Angry Birds AI competition (AIBIRDS ). In order to get
the real shapes of objects, we used an improved version of
the object recognition module (Ge et al. 2014), which will be
added to the basic software package soon. This module also
detects the ground, which is important for stability analysis.
In accordance with Ge and Renz (2013) we call rectangles
that are equivalent to their MBRs regular rectangles and oth-
erwise angular rectangles. Figure 4 gives an overview of the
different kinds of angular rectangles that Ge and Renz dis-
tinguish. The distinctions are mainly whether rectangles are
fat or slim, or lean to the left or right. Interestingly, these dis-
tinctions can be expressed using ERA relations by compar-
ing the projections of each of the four edges of the angular
rectangle with the projections of the corresponding MBR.

We first translate all objects we obtain using the object
recognition modules into a set of ERA constraints Θ. Since
all these objects are from real Angry Birds scenes, all ERA
constraints in Θ are basic relations and the identified objects
are a consistent instantiation of Θ. This is a further indica-
tion that compositional reasoning is not helpful for deter-
mining stability. The next step is that we extract all contact
points between the objects. This is possible for us to ob-
tain since we have the real shapes of all objects. The contact
points allow us to distinguish different types of contact be-
tween two objects, which we define as follows:
Definition 2 (Contact Relation). Two rectangles R1 and
R2 can contact in three different ways:
• If one corner of R1 contacts with one edge of R2, then
R1 has a point to surface contact with R2, denoted as
CR(R1, R2) = ps

• If one edge of R1 contacts with one edge of R2, then
R1 has a surface to surface contact with R2, denoted as
CR(R1, R2) = ss

• If one corner of R1 contacts with one corner of R2,
then R1 has a point to point contact with R2, denoted as
CR(R1, R2) = pp
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Figure 4: 9 types of angular rectangles (Ge and Renz 2013)

• If R1 does not touch R2, then R1 has no contact with R2,
denoted as CRR1,R2

= n

Definition 3 (Contact Dimension). The contact dimension
expresses in which dimension (horizontal or vertical) two
rectangles R1 and R2 contact each other. Specifically, if
CR(R1, R2) ∈ {ps, ss, pp}, then:
• R1 and 2 contact horizontally (denoted asCD(R1, R2) =

hc), if ERA(R1, R2) ∈ ({m,mi}, UEIA), where UEIA

is the set of all EIA relations.
• In all other cases R1 and R2 contact vertically, denoted

as CD(R1, R2) = vc.
If CR(R1, R2) = n , then CD(R1, R2) = n, too.

Stability of Regular Rectangles
We start with stability for regular rectangles as the rules are
obvious consequences of Newtonian physics. Throughout
this paper, we will never consider what is happening above
an object when determining its stability. As an example how
this can influence stability, refer again to Figure 1(b). Sup-
pose we put a very heavy object 3 on object 1, then object 1
might be stable if the combined centre of mass of objects 1
and 3 is above object 2. Since this requires numerical calcu-
lations and cannot be obtained qualitatively, we will always
ignore these cases, and consequently will only be able to ob-
tain an approximation of stability. We therefore call our sta-
bility concept ERA-stability. ERA-stability is based on the
simple physical rule that an object is stable and will not top-
ple if the vertical projection of the centre of mass of an object
falls into the area of support base.

Given a set of ERA-constraints Θ and a consistent instan-
tiation θ, where the centre of mass of all elements x ∈ θ

Figure 5: Examples for ERA-stable cases of regular rectan-
gles

coincides with the centre of the MBR of x. ERA-stability
for regular rectangles x ∈ θ is determined recursively us-
ing the following rules, until no more objects are determined
ERA-stable:

A regular rectangle x ∈ θ is ERA-stable, if one of the
following rule applies:

Rule 1.1: x lies on the ground.

Rule 1.2: ∃y, z ∈ θ such that y and z are both ERA-
stable and CD(y, x) = CD(z, x) = vc: ERAx(x, y) ∈
{momi,moli, lomi, loli,msi, lsi, ldi} ∧ERAx(x, z) ∈
{mom,mol, lom, lol,mfi, lfi, rdi}.

Rule 1.3: ∃y ∈ θ such that y is ERA-stable and
CD(y, z) = vc: ERAx(x, y) ∈ {ms,mf,msi,
ls,mfi, lf, cd, cdi, ld, rd,mom,momi, lomi,mol}.

Rule 1.4: ∃y, z ∈ θ such that y and z are both ERA-stable,
CD(x, y) = hc and CD(x, z) = hc:
((ERAx(x, y) ∈ {mi} ∧ ERAx(x, z) ∈
{mom,mol, lom, lol,mfi, lfi, rdi}) ∨
(ERAx(x, y) ∈ {m} ∧ ERAx(x, z) ∈
{momi,moli, lomi, loli,msi, lsi, ldi}))
Rule 1.2 covers the cases where the vertical projection of

the mass centre of an object is located between two ERA-
stable supporters y and z. Rule 1.3 covers the cases where it
is located above the contact area of an ERA-stable supporter
y. Rule 1.4 covers cases where x is horizontally contacting
with an ERA-stable object on one side and has an ERA-
stable supporter on the other side. Fig. 5 shows examples of
the four ERA-stable cases for a regular rectangle. In all four
rules x is always ERA-stable.

Stability of Angular Rectangles
The case of angular rectangles is more complicated than reg-
ular rectangles, but it follows the same physical rule that if
an object is stable, the vertical projection of the centre of
mass must falls into a support area. While the support area
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for regular rectangles is defined by two supporting objects,
for angular rectangles it can be defined by the ground, act-
ing as a supporting object, and one supporting object. Angu-
lar rectangles always have a momentum to become regular
rectangles. The rectangles in Figure 4(a,b,e) have a momen-
tum in counter-clockwise direction, the rectangles in Fig-
ure 4(c,d,f) have a momentum in clockwise direction. The
three rectangles in the bottom row probably never occur in
reality as the top point has to be exactly above the bottom
point and we ignore these cases. The momentum means that
an angular rectangle always needs support to prevent it from
becoming a regular rectangle. In cases where the bottom
point of an angular rectangle is supported, for example by
the ground, the second support must always be on the oppo-
site side of the centre of mass. This leads to the following
rules, which again are applied recursively, until no more ob-
jects are determined ERA-stable:

An angular rectangle x ∈ θ is ERA-stable, if one of the
following rule applies:

Rule 1.5: ∃y, z ∈ θ such that y and z are both ERA-
stable and CD(y, x) = CD(z, x) = vc: ERAx(x, y) ∈
{momi,moli, lomi, loli,msi, lsi, ldi} ∧ERAx(x, z) ∈
{mom,mol, lom, lol,mfi, lfi, rdi}.

Rule 1.6: ∃y ∈ θ such that y is ERA-stable and
CD(y, x) = vc and CR(x, y) = ss: ERAx(x, y) ∈
{ms,mf,msi, ls,mfi, lf, cd, cdi, ld, rd,mom,momi,
lomi,mol}.

Rule 1.7: ∃y, z ∈ θ such that y and z are both ERA-
stable and CD(y, x) = hc and CD(z, x) = vc :
((ERAx(x, y) ∈ {mi} ∧ ERAx(x, z) ∈ {mom,mol,
lom, lol,mfi, lfi, rdi}) ∨ (ERAx(x, y) ∈ {m} ∧
ERAx(x, z) ∈ {momi,moli, lomi, loli,msi, lsi, ldi})).

Rule 1.8: ∃y, z ∈ θ such that y and z are both ERA-stable
and CD(y, x) = CD(z, x) = hc : ERAx(x, y) ∈ {m}
∧ ERAx(x, z) ∈ {mi}
The principle of Rule 1.5 is similar to Rule 1.2 which tests

if the centre of mass falls between two vertical supporters.
Rule 1.6 is similar to Rule 1.3, the difference is that it re-
quires the two objects to be surface-to-surface contact, oth-
erwise the angular rectangle will topple. The supporter in
this case also needs sufficient support to remain stationary.
Rule 1.7 is a similar rule as Rule 1.4 which describes hor-
izontal support for angular rectangles. Rule 1.8 describes a
different property of angular rectangles, which is an angular
rectangle can remain stable with the support of two hori-
zontally contacting objects on both left and right sides. This
is because the two objects on the sides can provide upward
frictions to support the angular rectangle. Fig. 6 shows ex-
ample cases of the above four rules where angular rectangles
are ERA-stable.

All these rules only consider objects as support that are
already stable. Cases where two rectangles are stable be-
cause they support each other are not considered. Applying
rules 1.1-1.8 recursively to all objects in θ until no more ob-
jects are detected as ERA-stable identifies all ERA-stable
objects. If all objects in θ are ERA-stable, then θ is ERA-
stable. The recursive assignment of ERA-stability to objects

Figure 6: ERA-stable cases of angular rectangles

Figure 7: Illustration of support structure

allows us to build a stability hierarchy. Regular objects that
lie on the ground are objects of stability level 1. Then, ob-
jects that are stable because they are supported by an object
of stability level ` and possible objects objects of stability
level smaller than ` are considered to be of level `+ 1. Con-
versely, we could define the support depth of a target ob-
ject (see Figure 7). Those object that are directly responsible
for the ERA-stability of a target object x as they support it
have support depth 1. Objects that are directly responsible
for the ERA-stability of an object y of support depth ` as
they support it have support depth ` + 1. This can be calcu-
lated while recursively determining stability of objects. The
support level can be helpful in order to separate the support
structure of an object from the larger structure, or when de-
termining which object could cause the most damage to a
structure when destroyed.

Applying ERA-stability to identify good shots
in Angry Birds

The goal of the Angry Birds game is to shoot birds using
a slingshot in a way that all pigs are killed with the fewest
number of used birds. The pigs are typically supported by
complicated structures that have to be destroyed in order to
kill the pigs. Instead of shooting at a pig directly, it might
be better to destroy the whole structure that supports the pig.
This could be optimised by using the support structure we
defined in the previous section.

Another useful substructure is the shelter of the pigs. The
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reason is straightforward, if a pig is not reachable, there must
be some objects that protect it; these objects form the shel-
tering structure of the pigs. Destroying the sheltering struc-
ture can either kill the pig or make the pig directly reachable
to the bird. We define the sheltering structure of a pig as
the closest objects that protect the pig from a direct hit from
each direction. Specifically, a sheltering structure of an ob-
ject (usually a pig) consist of left, right and top sheltering
objects. In order to obtain the sheltering structure of a cer-
tain object, the first step is to get the closest object from the
left side of the queried object; then, get the supportee list
of the object (similar process as getting the supporter list);
after that, get the right closest object with its supportee list.
The next step is to check if the two supportee lists have ob-
jects in common. If so, pick the one with smallest depth as
the roof object of the sheltering structure; if not, there is no
sheltering structure for the queried object. If a roof object is
found, also put the supportees of both the left and right clos-
est objects with smaller depth than the roof object into the
sheltering structure. Finally, put the supporters of both left
and right closest objects which are not below the queried ob-
ject into the sheltering structure. This can also be described
using rules expressed in ERA (actually RA is sufficient).

The integration of the rules to evaluate a shot
With the rules described above, we are able to dynamically
analyse the possible consequences after a shot has been
made. In order to predict the final consequence of an ex-
ternal influence on the structure (usually the impact from a
bird), the direct consequence and its following subsequences
should be analysed in detail. Funt (1987) suggested a simi-
lar method to simulate the consequence of a structure with a
changed object which assumes that the changed object dis-
appears and chooses the most significant instable object to
simulate the consequence.

In the following, we analyse different cases of how a
structure can be impacted from an external force and, in par-
ticular, what other objects will be affected by an impact to
the target object. We separately analyse regular rectangles
and angular rectangles, each of which can be affected in
four different ways. First we consider the four cases where
the affected objects are regular rectangles:

Case 1: The target object is directly hit by another object.
The direct consequence to the hit object will be one of
three types: destroyed, toppling, remaining stationary.
Empirically, the way to determine the consequence of the
hit depends on the height and width ratio of the target.
For example, if an object hits a target with the height
and width ratio larger than a certain number (such as 2),
the target will fall down. And this ratio can be changed
to determine the conservative degree of the system. In
other words, if the ratio is high, the system tends to be
conservative because many hits will have no influence
on the target. Moreover, if the external object affects
a target with the height and width ratio less than one,
the target itself will remain stable temporarily because
the system will also evaluate its supporter to determine
the final status of the target. After deciding the direct

Algorithm 1 Direct hit estimation
1: PROCEDURE Hit(Object o)
2: o ∈ pendingList
3: if o ∈ affectedList then
4: pendingList.remove(o)
5: Exit()
6: end if
7: if o.isRegular then
8: if o.affectedMethod = “Hit” then
9: if o.isDestroyed then

10: affectedList.add(o)
11: pendingList.add(supporteesOf(o))
12: else if !o.isDestroyed then
13: if o.height/o.width > threshold then
14: affectedList.add(o)
15: pendingList.add(supporteesOf(o))
16: pendingList.add(supportersOf(o))
17: else
18: pendingList.add(supportersOf(o))
19: end if
20: end if
21: end if
22: end if
23: pendingList.remove(o)

Figure 8: Two examples for case 2.

consequence of the hit, the system should be able to
suggest further consequences of the status change of the
direct target. Specifically, if the target is destroyed, only
its supportees will be affected. If the target falls down,
the case will be more complex because it may influence
its supporters due to the friction, as well as its supportees
and neighbours. If the target remains stable temporarily,
it will also influence its supporters, and its supporters
may again affect its behaviour. Algorithm 1 demonstrates
the evaluation process of an object that has been hit by
another object.

Case 2: The supportee of the target object topples down.
The target object’s stability is also determined by its
height to width ratio, but the number should be larger
(about 5) as the influence from a supportee is much
weaker than from a direct hit. If the target is considered
as instable, it will fall down and affect is neighbours and
supporters; otherwise, it will only influence its supporters
(see Fig. 8).

Case 3: The supporter of the target object topples down.
Here a structure stability check process (applying Rules
1.1 - 1.4) is necessary because after a supporter falls,
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Figure 9: Examples for Cases 3&4

the target may have some other supporters and if the
projection of its mass centre falls into the areas of its
other supporters, it can stay stable. Then, if the target
remains stable, it will again only affect its supporters
due to the friction; otherwise, it may fall and affect its
supporters, supportees and neighbours (see Fig. 9(a)).

Case 4: The supporter of the target is destroyed. This is
more like a sub case of the previous one. If the target can-
not remain stable after its supporter is destroyed, it may
fall and affect its supporters, supportees and neighbours
(see Fig. 9(b)).

Next we consider the four cases where the target objects
are angular rectangles:
Case 5: The target object is directly hit. As analysed in

Section Inferring stability using ERA rules, angular rect-
angles can be classified into 9 classes. If we only consider
the direction of the objects, there only exists 3 classes,
which are “lean to left”,“lean to right” and “stand neu-
trally”. Assume the hit is from left to right. Then if a
“lean-to-left” object is hit and the force is strong enough,
the object will rotate around the lowest pivot, i.e. the low-
est corner of the object. However, in the Angry Birds
game, before the force becomes sufficient to make the
object rotate, the object will be destroyed first. Thus, the
two possibilities here are either the target object affects its
supporters or it is destroyed and affects its supportees. The
case of “lean-to-right” object is the same as above. For a
“stand-neutrally” object, it cannot stand by itself and at
least one point-to-surface touched supporter on each side
is necessary. If it is hit from left, there will be no friction
applied to its left supporter, thus it will either be destroyed
or affect its right supporter.

Case 6: The supportee of the target object topples down.
Angular objects will not topple due to the fall of their
supportees. Because their supporters restrict their spatial
location. And therefore only the supporters will be
affected. For “stand-neutrally” objects, if the friction
given by their supportees is from left to right, the left
supporters will not be affected, and vice-versa for the
right supporter.

Case 7: The supporter of the target object topples down.
First check the stability using Rules 1.5 - 1.8. If the object
still has sufficient support, it only affects its supporters,
otherwise it will rotate and affect its supportees, other
supporters and neighbours.

Case 8: The supporter of the target object is destroyed.
Again, a stability check is applied first. However if it
remains stable, it will not affect its supporters because no
friction applies to the target from the destroyed supporter.
If it is not stable, than it will affect its supportees, other
supporters and neighbours.

By applying these cases recursively for each potential tar-
get object, we obtain a list of objects that are affected when
hitting a particular target object. Then, with all the affected
objects in a list, the quality of the shot can be evaluated
by calculating a total heuristic value depending on the af-
fected objects. The scoring method is defined as follows and
is based on experimenting with different heuristic values:
if an affected object belongs to the support structure or the
sheltering structure of a pig, 1 point will be added to this
shot; and if the affected object is itself a pig, 10 points will
be added to the shot. After assigning scores to shots at differ-
ent possible target objects, the target with the highest score
is expected to have the largest influence on the structures
containing pigs when it is hit. The heuristic value roughly
corresponds to the number of affected objects plus a higher
value for destroyed pigs. Then, based on different strategies,
the agent can choose either to hit the reachable object with
highest heuristic value or generate a sequence of shots in
order to hit the essential support object of the structure.

We first extract the ERA relations between all objects and
then match the rules for all relevant combinations of objects.
Thus, the process of evaluating the significance of the targets
is straightforward and fast.

Planning in Angry Birds
The previous analysis only looks at the effects of one shot,
while taking into account reachability of target objects.
Reachability is calculated using the impact different bird
types have on different block types. For example, a yellow
bird can hit through 2 layers of wood, a blue bird can go
through 2 layers of ice, etc. We can use this knowledge to
reason about the reachability of a bird and roughly estimate
the damage of the direct consequence of a shot. Ideally, we
would like to plan a sequence of shots. Due to the inability
to accurately predict the state after a shot (we can currently
only predict affected objects), successful planning of shot
sequences seems very hard.

However, in order to demonstrate how planning in Angry
Birds could work, we have implemented one special case
of planning, which can be used when the shot with highest
score is not reachable due to some blocks in the path. We
can identify which blocks are on the trajectory and block the
target. Then a planner could be used to generate a shot to
first clear the blocks in the path and then hit the primary tar-
get with the second shot. Specifically, the planner will first
check if the highest-ranked shot is reachable. If not, it will
retrieve the block objects in the calculated trajectory. Then
it will search for a shot that can affect most of the objects in
the block list. Finally, the planner will suggest using the first
shot to clear the blocks if applicable. However, as we cannot
exactly simulate the consequence of a shot, sometimes the
first shot may lead to an even worse situation. Initial experi-
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Figure 10: Process of the proposed two step planner

ments we did with this method showed good results though.
Fig.10 shows the process of the planner.

Evaluation
We evaluate our approach by applying it to the first
21 Poached Eggs levels, which are freely available at
chrome.angrybirds.com. These levels are also used to bench-
mark the participants of the annual Angry Birds AI compe-
tition. We take each level and calculate the heuristic value of
all reachable objects and rank them according to the heuris-
tic value. We then fire the bird at each of the reachable ob-
jects and record the actual game score resulting from each
shot. We reload the level before each shot, so each bird al-
ways fires at the initial structure. We restricted our analysis
to initial shots only, as we found that it is not possible to
consistently obtain the same intermediate game state sim-
ply by repeating the same shot. However, our method works
equally well for intermediate game states.

The results of our evaluation are shown in Table 1 where
we listed for each of the 21 levels how many reachable ob-
jects there are, the resulting game scores of shooting at the
four highest ranked reachable objects, as well as the rank of
the object that received the highest game score. It turns out
that in about half of the levels (10 out of 21), our method cor-
rectly identified the best object to hit. In a further 5 cases, the
second highest ranked object received the highest score, in
2 cases the 3rd highest ranked object. On average there are
about 7.8 reachable objects. The average score of the shoot-

Table 1: Evaluation on first 21 levels. #RO is the number
of reachable objects, S1, S2, and S3 are the scores obtained
when shooting at the highest, second-highest and third high-
est ranked object. HS is the rank of the reachable object with
the highest score.

Level #RO S1 S2 S3 Time(s) HS
1 6 29030 30370 27330 1.34 2
2 7 16240 6040 11250 1.06 1
3 5 5410 41850 6790 0.77 4
4 2 36890 1850 1.45 1
5 6 22380 66240 16800 5.11 2
6 10 1610 6770 7710 1.83 4
7 10 46200 6230 6210 3.81 1
8 7 17310 17310 6010 1.08 4
9 9 14030 10140 13210 5.37 1

10 9 22920 3860 5920 3.88 1
11 10 57110 22640 9680 6.60 1
12 6 26570 15010 21800 3.47 1
13 8 12200 12650 14460 4.02 3
14 10 30330 28590 37670 2.43 7
15 9 16880 17550 4580 3.97 2
16 11 15090 22430 23860 4.24 3
17 12 48850 12240 19850 7.18 1
18 10 9460 14590 3240 3.02 2
19 2 5870 3290 5.83 1
20 8 7420 8170 6820 4.46 2
21 8 14270 4650 7170 12.70 1

Figure 11: Level 1-16 in Chrome Angry Birds and agent out-
put for this level

ing at the highest ranked object over all 21 levels is about
21,700, shooting at the second ranked object gives an aver-
age of about 16,700 and the third ranked object an average
of about 13,100. This clearly demonstrates the usefulness of
our method in identifying target objects.

However, the resulting game score is not always a good
measure, as shots can have unexpected side effects that lead
to higher scores than expected. These side effects are typi-
cally unrelated to the stability of a structure and, hence, are
not detected by our method. As an example, consider level
16 where the second and third ranked objects resulted in a
higher score than the first ranked object. Figure 11 shows
the level and output of our stability analysis. Our method
predicts that shooting at object 30 will kill the two pigs on
the left and result in the toppling of the left half structure.

Figure 12 shows the actual result after the recommended
shot has been made. We can see that the prediction of the
system is very accurate in this case. The left two pigs are
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Figure 12: Actual result for the recommended shot

killed and the left part of the structure toppled. However,
the shots at the second and third ranked objects each killed
three pigs and therefore obtained higher scores. It turns out
that two of the three pigs were killed when they bounced to
the wall without actually destroying much of the structure
(see Figure 13). Therefore, the next shot is much less likely
to solve the level as more of the structure remains. So the
shot at the highest ranked object first is likely still the best
shot overall as the second shot can easily solve the level.
This example nicely shows that Angry Birds requires even
more sophisticated methods to correctly predict the outcome
of shots.

Figure 13: Actual result for the 3rd ranked shots

Related Work
Qualitative spatial representation and reasoning has been ap-
plied to some physical systems to do common sense rea-
soning (Klenk et al. 2005). Physical reasoning has two im-
portant theories, namely kinematics and dynamics(Forbus
1988). Kinematics mainly concerns about the position of
objects which may change continuously over time and the
shape which is strictly rigid and static over time (Davis
2008). However it considers less about the forces between
objects and the type of motions. These features make kine-
matics easy to be formulated, on the other hand models us-
ing kinematics are usually limited by the context and appear
to be less expressive. The CLOCK Project (Forbus, Nielsen,
and Faltings 1991) is a typical success which uses a variety
of techniques but mainly kinematics to represent and reason
about the inner motions of a mechanical clock. Under some
given environments and constraints, this approach can suc-

cessfully analyse the mechanisms; however, as this system
requires restricted constraints such as the exact shape of the
parts and the range of the motion, it may not be applicable
in the cases with high degrees of freedom such as the world
of Angry Birds.

In contrast, dynamics takes force analysis into account
which allows reasoning about more complex motions and
the transfer of motion. However, the limitation is that pre-
cisely predicting a consequence of a motion in an arbitrary
environment is almost impossible due to uncertainty. How-
ever, it is possible to reason about some simpler physical fea-
tures of a structure, such as stability. Fahlman (1973) imple-
mented a stability verification system dealing with the stabil-
ity of blocks with simple shapes (e.g. cuboid). This system
can produce qualitative output to determine whether a struc-
ture is stable without external forces, but it requires some
quantitative inputs (e.g. magnitude of forces and moments).
The stability check in our work is partially inspired by this
system, however without quantitative inputs about forces,
we use a purely qualitative way to analyse the probability of
the balance of forces and moments in a structure. Although
our approach may produce a few false predictions in very
complex cases, it is a good estimation of humans’ reason-
ing approach. Our work also focuses on reasoning about the
impacts of external forces (a hit from an external object) on
a structure, which has not been discussed much in previous
work.

Additionally, a method for mapping quantitative physi-
cal parameters (e.g. mass, velocity and force) to different
qualitative magnitudes will be very useful for the situation
where the input information is often incomplete. (Raiman
1991) developed a formalization to define and solve order of
magnitude equations by introducing comparison operators
such as ≈ (in the same magnitude) and � (far less than).
Raiman’s method is of particular significance for our ap-
proach, for example, we will be able to infer that a hit from
1× 1 block will not change the motion state of a 100× 100
block with the same density.

Discussion and Future Work
In this paper we have introduced an extended rectangle alge-
bra useful for representing and reasoning about stability un-
der gravity and other properties of 2-dimensional structures.
By splitting some basic interval relations into more detailed
ones, we obtained 27 interval relations in each dimension
that can express the physical relations between rectangular
objects more precisely. Our algebra is very useful when rep-
resenting a human-eye view of the physical world, rather
than the birds-eye view which is surprisingly common in
qualitative spatial representation and reasoning. A nice ex-
ample of a two-dimensional human-eye view of the world
is Angry Birds, where we can represent the world using the
new algebra.

In addition to representing what we see using the extended
interval algebra, we also used it for defining some useful
structural rules regarding properties such as stability, reach-
ability, support, and shelter that allow us to perform rule-
based reasoning about these properties. We tested the useful-
ness of our rules by designing an agent that performs a struc-
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tural analysis of Angry Birds levels. Based on these rules, we
predict for each block the consequences if it gets hit and cal-
culate a heuristic value that determines the usefulness to hit
the block. We then shoot at the block with the highest value
that is reachable with the current bird. Our evaluation shows
that our method is very successful in determining good tar-
get objects and good shots.

Despite its success, some parts of our method offer signif-
icant room for improvement. For example, our current mo-
tion analysis can only vaguely predict which objects may be
affected by a shot, i.e., we do not have accurate predictions
about a possible successor state at this stage. Because of this,
we currently cannot plan ahead and evaluate sequences of
shots in advance. Also we only consider stability of an ob-
ject with respect to its supporters, but not with respect to ob-
jects that are on top of it, which means we do not analyse the
interactions between substructures. In the future, we will try
to design a feedback loop between the dynamic analysis and
ERA, specifically, so we can use the results of the dynamic
analysis to restrict a range of possible subsequent positions
of an object and use ERA rules to suggest several possible
successor cases. Then we can use dynamic analysis again to
check the stability of these cases and finally decide on de-
sirable successor states. Moreover, we will find a method to
determine useful substructures in order to increase the relia-
bility of the dynamic analysis.
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