
Simultaneous Learning and Prediction

Loizos Michael
Open University of Cyprus

loizos@ouc.ac.cy

Abstract

Agents in real-world environments may have only par-
tial access to available information, often in an arbitrary,
or hard to model, manner. By reasoning with knowledge
at their disposal, agents may hope to recover some miss-
ing information. By acquiring the knowledge through a
process of learning, the agents may further hope to guar-
antee that the recovered information is indeed correct.
Assuming only a black-box access to a learning process
and a prediction process that are able to cope with miss-
ing information in some principled manner, we examine
how the two processes should interact so that they im-
prove their overall joint performance. We identify nat-
ural scenarios under which the interleaving of the pro-
cesses is provably beneficial over their independent use.

Introduction
Consider a medical database, with one row for each patient,
and one column for each attribute of interest to some medical
doctor. Due to numerous reasons, not every patient-attribute
pair is associated with a definite value. Can the missing val-
ues be reliably and efficiently predicted / recovered, given
the rest of the available information, and without assuming
any particular structure in the way information is missing?

It is typical for research in Knowledge Representation and
Reasoning (KRR) to assume that an agent (e.g., the medical
doctor in our example scenario) has access to some knowl-
edge base of rules that collectively capture certain regular-
ities in the environment of interest. By applying such rules
on the available information, the agent draws inferences on
those aspects of its available inputs that are not explicitly ob-
served, effectively recovering some of the missing informa-
tion. Research, then, seeks to identify how to most appropri-
ately represent and reason with rules for this recovery task.

A knowledge base need not comprise only infallible rules,
in that rules need not be fully qualified at an individual or lo-
cal level. Instead, rules could be qualified via the reasoning
process, so that they are blocked from drawing an inference
they support if and when another piece of evidence supports
a contradictory inference, and the latter takes precedence.
First, rules could be endogenously qualified, if they are ex-
plicitly known to be overridden by certain other rules in the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge base (e.g., the rule that “high fever during winter
suggests a flu infection” could be overridden by another rule
that “high fever near a swamp suggests a malaria infection”).
Second, rules could be exogenously qualified, if they yield in
the presence of explicit, but external to the knowledge base,
information that contradicts them (e.g., the rule that “pain or
pressure in the chest or arms suggests a heart attack” could
yield to an explicit observation of a negative test result.

Accounting for the qualifications, the underlying assump-
tion remains that after applying a (sound) reasoning process
on the knowledge base and the available information, the
drawn inferences should be accepted as correctly recovering
the missing information. And they should be, if the knowl-
edge that is available for the agent to reason with is, indeed,
appropriate for the environment on which it is being used.

It has often been argued that the appropriateness of knowl-
edge can be guaranteed if (and in many settings, only if) it
is acquired through a process of induction over the agent’s
experiences from its environment (Valiant 2013). Indeed, by
a simple, in retrospect, statistical argument (Valiant 1984),
rules that have been found to be correct on past experiences
are also Probably (i.e., except with a small probability with
which the agent did not have typical experiences from its
environment) Approximately Correct (i.e., they will predict
correctly on almost all of the agent’s future experiences).

To learn knowledge with the aim to recover some missing
information in its future partially observable experiences, an
agent has access only to such equally partially observable
experiences from which it can learn. It has been shown that
the PAC learning semantics (Valiant 1984) can be extended
to deal with arbitrarily missing information, and that certain
PAC learning algorithms can be easily modified to cope with
such experiences (Michael 2010), even under the seemingly
arduous requirements that we later impose on the guarantees
provided by these algorithms. In the interest of generality,
we shall not deal in the sequel with the exact details of how
such algorithms work. Instead, we shall, henceforth, assume
a black-box access to any algorithm for learning from par-
tially observable experiences, and call it the base algorithm.

Applying a base algorithm on the database, a medical doc-
tor may seek to learn a predictor Pi for each of the database
attributes xi, and apply these predictors on each row of the
database to complete some of the missing information. Due
to partial information and imperfect training, the predictors

348

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

may sometimes abstain or predict incorrectly when applied,
giving rise to a database that is generally more complete, but
less sound. The question we seek to answer in this work is
this: Is there a natural and general technique to improve the
completeness and soundness of the above naive approach?

It is important to clarify upfront that the notions of sound-
ness and completeness that are used in this work are akin,
but not identical, to those used in KRR research. In the latter,
one typically has a semantics that determines, for each input
and knowledge base, the inferences that are valid / correct
(e.g., by specifying the models of the given input and knowl-
edge base). Then, one may conceivably consider a number of
different reasoning processes, and evaluate each one in terms
of soundness and completeness thus: a reasoning process is
sound if the inferences it produces agree with the inferences
specified by the semantics, and it is complete if it produces
all the inferences that are specified by the semantics.

Since knowledge bases in KRR research are typically as-
sumed to truly capture the structure of the environment of
interest, a definition of soundness and completeness against
a knowledge base is appropriate. When learning is involved,
however, the knowledge base is only approximately correct.
The goal of the combined learning and reasoning processes
is, then, to produce inferences not as specified against the
agent’s own knowledge base, but rather as specified against
some “ideal” knowledge base; or in other words, to produce
inferences specified by the underlying truth of things.

In effect, this work considers different policies (i.e., ways
to apply learned rules) for drawing inferences, and evaluates
them in terms of their soundness and completeness. More
precisely, we take the stance that soundness should not be
compromised (beyond the approximate correctness that can-
not be avoided due to learning), and seek to find policies that
draw inferences in a manner that improves completeness.

In seeking such policies we ask: When is it meaningful
to learn the predictors (for each attribute) independently of
each other? When is it meaningful to apply them indepen-
dently of each other? Can something be gained by interleav-
ing their learning and their application? We offer formal an-
swers to these questions, and discuss how our results apply
when knowledge is acquired through learning in other typi-
cal settings, such as supervised classification / regression.

Preliminaries and Notation
Fix a set A of attributes xi, with i ∈ {1, . . . n}. Denote by
dom[i] the domain of attribute xi, and by dom[A] the cross
product dom[1] × · · · × dom[n] of all attribute domains. A
complete assignment of values to the attributesA is denoted
by asg ∈ dom[A], and the value of attribute xi in asg
is denoted by asg[i]. To account for partial observability,
denote by dom∗[i] the extended domain dom[i] ∪ {∗}, and
by dom∗[A] the cross product dom∗[1]× · · · × dom∗[n] of
all extended attribute domains; ∗ stands for “don’t know”.
An (observed) assignment of values to the attributes A is
denoted by obs ∈ dom∗[A], and the value of attribute xi
in obs is denoted by obs[i]. Our example medical database
can, then, be represented simply as a list S∗ of assignments.

Given S∗, we seek a new list S ′ of assignments in which
some of the ∗ values are replaced with the “actual” (as deter-

mined by nature) values, from the domain of the correspond-
ing attributes. That is, given the partial inputs and whatever
relevant domain knowledge we have at our disposal, we seek
to reason and infer (some of) the information that is not ex-
plicitly given in the inputs. For instance, while the height-at-
birth attribute of some patient might be missing in medical
database S∗, the patient does have some value associated
with that attribute, and the goal is to accurately recover it.

Although the recovery process does not have access to the
underlying reality, our analysis of the recovery process will
make use of it. We shall, henceforth, consider S to be a list
of complete assignments, and assume that S∗ is always such
that the j-th observed assignment obs ∈ S∗ is obtained by
applying an unknown fixed process mask on the j-th com-
plete assignment asg ∈ S. In the general case, the mask-
ing process mask is a (possibly stochastic) mapping from
dom[A] to dom∗[A]. This general treatment captures cases
where masking may (arbitrarily) hide or even distort parts of
the underlying reality. For this work we shall restrict our at-
tention to masking processes that only hide (without distort-
ing) assignments, by insisting that whenever obs is obtained
from mask(asg), either obs[i] = ∗ (i.e., information is
hidden) or obs[i] = asg[i] (i.e., information is preserved).
Such an observed assignment obs shall be said to mask the
complete assignment asg, and each attribute xi ∈ A whose
value obs[i] is ∗ shall be said to be masked in obs.

A base algorithm is one that given access to a list S∗ and
an attribute xi ∈ A, returns a predictor Pi. A predictor Pi

for xi is a mapping from dom[A \ {xi}] to dom[i] that is
computable in time polynomial in n (i.e., in its input size).
A given assignment obs ∈ dom∗[A] may not necessarily
offer enough information to uniquely determine the value of
the mapping. In such a case, and only then, Pi abstains from
making a prediction. Thus, the predictor Pi is naturally lifted
to a mapping from dom∗[A \ {xi}] to dom∗[i] to account
for abstaining from predictions when sufficient information
is not available to determine a definite value. To reduce no-
tation, we shall write Pi(obs) to denote the prediction of
Pi on assignment obs ∈ dom∗[A], with the implicit under-
standing that only the values of attributes A \ {xi} are read
from obs. When Pi abstains due to insufficient information
in obs to determine a prediction, then Pi(obs) = ∗.

We shall restrict our attention to classical (or monotonic)
predictors, which we take to mean that when they make a
definite prediction on some assignment, they do not change
that prediction in the presence of more information.1 Other
than that, we shall treat the base algorithm and the returned
predictors as black boxes. It is exactly therein that lies the
general applicability of our framework and formal results.

Dealing with Multiple Predictors
Consider a medical database S∗ with multiple rows, and 7
columns corresponding to real-valued patient characteristics
(e.g., cholesterol level). Let the complete assignment asg =

1Although reasoning with non-monotonic rules has a very long
and rich history in KRR research (Reiter 1980), the learning of non-
monotonic rules has received considerably less attention in Learn-
ing Theory research (Schuurmans and Greiner 1994) and the prac-
tical deployment of Machine Learning techniques (Mitchell 1997).

349

〈−1, 0, 5, 0, 4,−7, 9〉 ∈ S determine the actual values that
these characteristics take for patient John Doe, and let the
observed assignment obs = 〈−1, 0, ∗, 0, 4, ∗, 9〉 ∈ S∗ cor-
respond to John Doe’s (partial) medical record as found in
the medical database S∗. Suppose that a doctor reads in a
medical journal that the values of certain patient character-
istics can be predicted from the values of the other patient
characteristics through a set P of the following2 predictors:
(i) P1 predicts according to rule “x3 := |√x5|+ |

√
x7|”;

(ii) P2 predicts according to rule “x4 := x2 · x6”;
(iii) P3 predicts according to rule “x6 := x3 − x5/2”.

The doctor wishes to recover reliably as much of the in-
formation missing in S∗, and in John Doe’s medical record
in particular. To this end, the doctor chooses to apply the
predictors in P in parallel, in the following sense: each of
the predictors is applied on obs independently of the oth-
ers, the prediction of each predictor is computed, and only
then the predictions are used to complete the information
that is missing in John Doe’s medical record. By following
this process, the doctor computes the predictions of P1, P2,
P3 to be, respectively, 5, 0, ∗. Note that predictor P3 abstains
since its prediction cannot be determined without the value
of x3. Incorporating these predictions in obs yields obs′ =
〈−1, 0, 5, 0, 4, ∗, 9〉, which is sound when compared against
the underlying truth asg, and more complete than obs.

Applying predictors in parallel is not the only option. For
instance, the doctor could choose to apply the predictors se-
quentially, in the following sense: apply one of the predic-
tors on obs, compute its prediction, modify obs to incorpo-
rate that prediction, and repeat the process with another pre-
dictor. Unlike the parallel process, the second predictor will
now be applied not on obs, but on the new version of John
Doe’s medical record that has incorporated the prediction of
the first predictor. By following this process, the doctor ap-
plies P1 on obs = 〈−1, 0, ∗, 0, 4, ∗, 9〉, and its prediction
5 for x3 turns obs into obs′ = 〈−1, 0, 5, 0, 4, ∗, 9〉. Sub-
sequently, the doctor considers P2, but seing that the value
of x4 is already known in obs′, the doctor chooses to let
obs′′ = obs′, effectively ignoring the prediction of P2. Fi-
nally, the doctor applies P3 on obs′′, and its prediction 3 for
x6 turns obs′′ into obs′′′ = 〈−1, 0, 5, 0, 4, 3, 9〉.

Evidently, the two ways of applying the very same set of
predictors yield different results. Indeed, in the second case,
predictor P3 has access to a value for attribute x3 at the time
of its application, and is able to make a definite prediction.
The resulting medical record obs′′′ is now fully complete,
but unsound when compared against the underlying truth
asg, since the value of x6 is predicted, but incorrectly.

A set of predictors may be applied in other more involved
ways as well; e.g., first apply {P1, P3} in parallel, and subse-
quently apply {P2}. It is even possible for the value of some
attribute to be predicted on multiple occasions by predictors
that are applied, however, at different points in the process.
Henceforth, we shall assume that an ordering of predictors
is implicitly prescribed by each given P. We shall call P a

2Predictors utilizing other representations for the rules accord-
ing to which they make predictions are also possible. In particular,
utilizing boolean attributes and a logic-based representation gives
rise to rules closer to what a lot of KRR research employs.

policy, and think of it as a sequence of non-empty sets of
predictors, so that the predictors in each set are applied in
parallel (with each predictor in the set predicting the value
of a different attribute), before those in the subsequent set
are applied, and so on. We shall write P(obs) to mean the
final assignment obtained when predictors in P are applied
on obs in the prescribed ordering. We shall write P(S∗) to
mean the list with elements in {P(obs) | obs ∈ S∗}.

Note that a prediction P(obs) ∈ dom∗[A] of a policy P
on obs determines values in dom∗[A] for all attributes A,
since every attribute on which a predictor in P abstains will
have its value persist from what is given in obs ∈ S∗. A
policy P is complete on obs ∈ S∗ if P(obs) ∈ dom[A].
A policy P is sound on obs ∈ S∗ against asg ∈ S if
P(obs) masks asg; soundness concisely states that the re-
sulting value for each xi ∈ A is either ∗, or correct according
to the nature-assigned value of xi in asg. By extension: A
policy P is complete on a given fraction / sublist of S∗ if it
is complete on each obs in that fraction / sublist of S∗. A
policy P is sound on a given fraction / sublist of S∗ against
S if it is sound on each obs in that fraction / sublist of S∗
against the asg in S that corresponds to obs.

We shall employ the notions of soundness and complete-
ness mutatis mutandis on individual predictors as well, by
thinking of them as policies that include a single predictor.

Before continuing with the technical analysis of different
policies in subsequent sections, certain remarks are in order.

The first remark relates to soundness and completeness
and how these notions relate to their typical use in KRR. In
addition to the points we have already made in the first sec-
tion, we note also the quantitative nature of the notions. We
will not refer to a policy as being simply sound or complete,
but we will quantify the fraction / percentage of the given
inputs on which soundness and completeness are achieved.

The second remark relates to how rules are applied. Some
form of sequentiality when applying rules seems to resem-
ble proof procedures in KRR research more closely than the
parallel application of rules. After all, one could argue, the
latter approach seems to unnecessarily waste the opportunity
to get more complete inferences by having rules interact. On
the other hand, the parallel application of rules seems to be
closer to what a lot of Machine Learning research has tradi-
tionally done when dealing with multiple predictors; certain
exceptions of this trend are discussed in the last section.

In the sequel we shall identify the reason behind the above
discrepancy, which comes down to the fact that applying
learned (and hence approximately correct) rules naively in
some sequential fashion, can reduce soundness. On the other
hand, we shall show that an appropriate application of rules
in some non-parallel fashion provably improves their com-
bined soundness and completeness. The main question, then,
becomes that of finding how to apply rules so that to exploit
this improvement, without sacrificing their soundness.

The third remark relates to the qualification of rules.
When each rule in a policy is applied, its prediction is used
to update information on an attribute only if information on
the attribute’s value is missing. If an attribute’s value is ob-
served, then the prediction will yield to this explicit observa-
tion, and be exogenously qualified. It can be easily observed

350

that the same treatment accounts for the endogenous quali-
fication of rules as well. If rules that are applied first do not
abstain and do make a prediction, then those predictions will
complete missing information, which will subsequently pre-
vent the predictions of rules that are applied later from being
recorded; in effect, the former rules override the latter rules.

Our investigation herein seeks to learn these rules, and the
ordering in which they are applied. Since ordering captures
rule qualification, the knowledge bases that we end up learn-
ing are ultimately non-classical (i.e., non-monotonic), even
though each individual rule is restricted to being classical.

Benefits of Chaining Predictors
Consider a policy P that prescribes a sequence of d sets of
predictors. We shall call d the depth of P, and the sets the
layers of P, indexed by their order in the sequence. A policy
P is flat if its depth d is 1, and is chained if d ≥ 2; i.e., when
at least one predictor in P is applied after some other predic-
tor in P. An empty policy P has depth d = 0. A policy P1 is a
reordering of a policy P2 if the multi-set of the union of the
layers of P1 matches that of P2; i.e., the policies share the
predictors that are being used, but may differ on their depths
and on how predictors are assigned to the policy layers.

We proceed to consider whether having chained policies
is ever a good idea. In other words, we seek to understand if a
form of sequential application of rules, as done in proof pro-
cedures in KRR, is useful when it comes to learned rules?

The distinction between learned and programmed rules is
critical and should be emphasized. It is trivial to demonstrate
the benefits (in terms of completeness) of chaining in knowl-
edge bases with programmed rules: given the rules “if you
have fever then you are sick” and “if you are sick then visit a
doctor”, the inference “visit a doctor” cannot be drawn from
the observation “you have fever” without using both rules,
since no single rule can bridge the gap between the available
observation and the sought inference. However, when rules
are learned, there is nothing preventing the learning process
from inducing a single rule that bridges this gap (e.g., “if you
have fever then visit a doctor”). In theory, then, the learning
process itself could render the need for chaining superfluous.

We have revealed in the preceding section that, despite
the concern above, chaining remains provably beneficial for
knowledge bases with learned rules. To establish this claim,
one must consider not only the completeness that a knowl-
edge base can achieve (as in the case of programmed rules),
but also the soundness. Indeed, the ability of a learning pro-
cess to construct rules (in contrast to being given prescribed
rules by a process of programming) may trivially lead to per-
fect completeness by constructing a constant rule for each
attribute. It is only by including soundness in the evaluation
of a knowledge base that we can demonstrate the benefits of
chaining. This evaluation metric of combined soundness and
completeness is captured by the following definition.
Definition 1 (Chaining Collapsibility). Chaining col-
lapses on S∗ against S if: for every policy P that is unsound
on an ε fraction of S∗ against S, and incomplete on an ω
fraction of S∗, there exists a flat policy P′ of predictors that
is unsound on an ε′ fraction of S∗ against S, and incomplete
on an ω′ fraction of S∗ such that ε′ + ω′ ≤ ε+ ω.

The sum of the soundness and completeness of a policy P
on S∗ against S will play an important role in our analysis,
and shall be called the performance of P on S∗ against S.
Chaining is provably beneficial if a situation can be demon-
strated where the performance of a particular policy P can-
not be matched by any flat policy (not necessarily a reorder-
ing of P). We shall demonstrate such a situation next.

Fix an assignment obs ∈ S∗, a predictor Pt for attribute
xt ∈ A, and an attribute xi ∈ A that is masked in obs. Con-
sider changing the ∗ value of xi in obs to a value in dom[i].
If at least one such value change causes the prediction of Pt

to change, then xi is relevant for Pt w.r.t. obs. If at least
two such value changes cause the prediction of Pt to change
in two different ways, then xi is critical for Pt w.r.t. obs.

By way of illustration, consider a predictor P3 that pre-
dicts according to the rule “x3 := x1 ·x2”. Given the assign-
ment obs = 〈∗, 2,−1〉, the prediction of P3 is ∗. Changing
the value of x1 in obs to any real number causes the pre-
diction of P3 to change from ∗ to the double of that number.
Thus, attribute x1 is critical (and relevant) for P3 w.r.t. obs.

Lemma 1 (Uniqueness of Critical Attributes). Consider a
predictor Pt for attribute xt ∈ A, and an assignment obs.
Then: If attribute xi ∈ A is critical for Pt w.r.t. obs, then
no other attribute xj ∈ A is relevant for Pt w.r.t. obs.

Proof. Consider the assignment obsu,v obtained from obs
after replacing obs[i], obs[j] respectively with u, v. If xi
is critical for Pt w.r.t. obs, then Pt(obsc,∗), Pt(obsd,∗), ∗
are distinct for some c, d ∈ dom[i], c 6= d. Assume, by way
of contradiction, that xj is relevant for Pt w.r.t. obs. Then
Pt(obs∗,a) 6= ∗ for some a ∈ dom[j]. Since Pt is classical,
Pt(obsc,a) = Pt(obs∗,a) = Pt(obsd,a) = Pt(obsd,∗) 6=
Pt(obsc,∗) = Pt(obsc,a); a contradiction, as needed.

Hence, no classical predictor can have its predictions be
unilaterally affected / determined by the values of more than
one attribute. Although this limitation does not necessarily
burden non-classical predictors, Lemma 1 bears a significant
weight due to the widespread use of classical predictors in
Machine Learning research. To prove that chaining does not
collapse, it suffices to demonstrate any particular policy P
that chains its predictors in a manner that effectively simu-
lates non-classical predictors. We present such a policy next.

Consider a list S of complete assignments, where unbe-
knownst to a base algorithm, attributes x1 and x2 are always
assigned values equal to each other, and x3 is assigned their
product. In all assignments in S∗ available to the base algo-
rithm, both x3 and exactly one of x1, x2 are masked. Given
our knowledge (of S) that x1 and x2 share common values,
we may expect the base algorithm to return a predictorP0 for
x3 that always makes correct predictions. Using this predic-
tor P0, along with a predictor P1 that predicts according to
the rule “x1 := x2”, and a predictor P2 that predicts accord-
ing to the rule “x2 := x1”, we would be able to construct a
flat policy that would be perfectly sound and complete. Alas,
this scenario is not possible, as a consequence of Lemma 1.

Theorem 2 (The Benefits of Chaining). There exist lists S∗
and S such that chaining does not collapse on S∗ against S.

351

Proof. Consider lists S∗ and S as in the paragraph above.
Let policy P have predictors P1 and P2 from above in its

first layer, and a predictor P3 according to the rule “x3 :=
x1 · x2” in its second layer. P has optimal performance.

Now further specify list S∗ and list S so that: At least
two complete assignments asg1,asg2 ∈ S are such that
asg1[1] 6= asg2[1]; i.e., two different values in the do-
main dom[1] of x1 appear in complete assignments in S.
The assignments obs1,obs2 ∈ S∗ that correspond to
asg1,asg2 ∈ S mask attribute x2. At least one assign-
ment obs3 ∈ S∗ masks attribute x1, and for each attribute
xi ∈ A\{x1, x2, x3}, it is the case that obs3[i] = obs1[i];
i.e., the “context” defined by the other attributes is the same,
although the values of the attributes of interest may differ.

Assume that some flat policy P′ has optimal performance.
Then, P′ includes a predictor P3 for x3 that always makes
a correct definite prediction. Since its predictions on obs1

and obs2 differ, then x1 is critical for P3 w.r.t. the assign-
ment obs∗ that is obtained from either obs1 or obs2 by
replacing the value of x1 with ∗. Necessarily, the prediction
of P3 when applied on obs∗ is ∗. Assignment obs∗ can be
obtained also from obs3 by replacing the value of x2 with ∗.
Since predictor P3 makes a definite prediction when applied
on obs3, then x2 is relevant for P3 w.r.t. the assignment
obs∗. A contradiction by Lemma 1, as needed.

Collectively, the predictors in policy P given in the proof
of Theorem 2 implement a non-classical rule: “x3 := (x1)

2

if x2 is not known, or (x2)2 if x1 is not known”. The rule’s
non-classical nature is evidenced by observing that if more
information becomes known, the rule may retract a definite
prediction it had previously made. As a matter of fact, it can
be shown that any “epistemic” rule that makes predictions
based not only on what holds, but also on what is known, can
be simulated by appropriately choosing and chaining classi-
cal predictors as part of a certain policy (Michael 2008).

Can the Benefits be Realized?
Chaining predictors in some appropriate manner can prov-
ably enhance the combined soundness and completeness that
is achieved. Are there concrete efficient algorithms that iden-
tify such a chaining? We consider two approaches below.

First Learn, Then Chain
In the first approach proceed as follows: First, call the base
algorithm on list S∗ to get one predictor Pi for each attribute
xi ∈ A. Then, order the predictors to obtain a policy P.

Such an approach captures what is implicitly assumed in
certain research in KRR: that some process effectively pro-
duces the rules in the knowledge base, after which the rules
can be applied in any order to draw inferences while safely
ignoring the process through which the rules were produced.

Is the approach of first learning and then chaining (FLTC)
the predictors ever useful? To answer this question, we need
to examine more precisely the guarantees that the base algo-
rithm is assumed to offer on the predictors it returns.

Scenario 1: Guarantees on S

For our first scenario, assume that each Pi is guaranteed to
be unsound on only an εi fraction of S against S. Note that
the predictive guarantees are w.r.t. the complete assignments
S, which capture the underlying reality associated with S∗.
Thus, soundness is assumed even when the predictors are ap-
plied on complete assignments in S (where, in particular, ab-
stentions are disallowed); a more stringent requirement than
the general case where soundness is assumed on S∗ against
S. The problem of how such guarantees can be effectively
obtained is orthogonal, and is discussed later in this work.
Let ε ,

∑n
i=1 εi < 1. We study the performance of P on S∗.

Theorem 3 (Soundness in FLTC Setting). Consider the
predictors as described above. Any policy P that uses these
predictors is unsound on at most an ε fraction of S∗
against S.

Proof. By a union bound, since predictors are classical.

Theorem 4 (Completeness in FLTC Setting). Consider
the predictors as described above. Let policy P have n lay-
ers, with each predictor appearing in every layer. Let policy
P′ be a reordering of P. Then: If P and P′ are, respectively,
incomplete on an ω and ω′ fraction of S∗, then ω ≤ ω′.

Proof. The policy P + P′ that concatenates the layers of P′
after all the layers of P, is not less complete than P′. It suf-
fices to establish that P is not less complete than P + P′.
Consider an assignment obs ∈ S∗. If P(obs) ∈ dom[A],
then the claim follows. Otherwise, and since P has n layers,
there must exist some layer in P that does not complete the
value of any new attributes (that were not already completed
by earlier layers). Since that layer is a superset of each sub-
sequent layer in P+P′, any subsequent layer will also fail to
complete the value of any new attributes. Thus, P and P+P′
will abstain on the same attributes. The claim follows.

Theorems 3–4 offer a first efficient algorithm for chain-
ing predictors, with bounded unsoundness, and optimal, in a
defined sense, completeness. However, the assumed guaran-
tees on the predictors might not always be possible to have.

Before moving on, we note that this scenario accounts for
what is assumed in some KRR work: each rule truly captures
the structure of the environment of interest (i.e., unsound on
an εi = 0 fraction of S), and so chaining rules in any order is
justified without cost on the overall soundness (i.e., ε = 0).
Further, applying each predictor (in a given knowledge base)
as often as possible is optimal in terms of completeness.

Scenario 2: Guarantees on S∗

For our second scenario, assume that each Pi is guaranteed
to be unsound on only an εi fraction of S∗ against S. The
predictive guarantees are w.r.t. the observed assignments S∗.
Let ε ,

∑n
i=1 εi < 1. We study the performance of P on S∗.

Although Theorem 4 holds unchanged, a naive ordering
approach compromises Theorem 3 and the soundness of P.

Theorem 5 (Unsoundness in FLTC Setting). Consider the
predictors as described above. Assume that at least one pre-
dictor is not constant on all complete assignments. Then:
There exists a policy P (in fact, there exist exponentially in n

352

many such policies) that orders these predictors that is un-
sound on all of S∗ against S, even though some reordering
of P is unsound on at most an ε fraction of S∗ against S.

Proof. Let Pt be a non-constant predictor for xt ∈ A. Order
dom[A] as a Gray Code (Knuth 2011). Choose two complete
assignments asg1,asg2 ∈ dom[A] that are consecutive in
the Gray Code and such that Pt(asg1) 6= Pt(asg2), and
let xj be the attribute on which the assignments differ. Since
Pt does not base its predictions on xt, then xj 6= xt, and
asg1[t] = asg2[t]. Without loss of generality, let asg1 be
one among the two chosen complete assignments such that
Pt(asg1) 6= asg1[t]. Construct the observed assignment
obs1 from asg1 by replacing asg1[j] and asg1[t] with ∗.

Let S include only asg1, and let S∗ include only obs1.
Then, Pt(obs1) = ∗. Choose a predictor Pj for xj ∈ A
such that Pj(obs1) = asg1[j]. Choose a predictor Pi for
each xi ∈ A \ {xt, xj} such that Pi(obs1) ∈ {asg1[i], ∗}.
It is consistent for all these predictors to have been returned
by the base algorithm as assumed in the current scenario. A
flat policy of the predictors is sound on all of S∗ against S.

Consider a policy P out of the exponentially in n many
ones that order Pj before Pt. Since Pj(obs1) = asg1[j],
then policy P will apply Pt on an assignment obtained from
obs1 by replacing obs1[j] with asg1[j]. On this assign-
ment, Pt will predict a value in the domain dom[t] of xt
that differs from asg1[t]. Therefore, P(obs1) will not mask
asg1, and hence P is unsound on all of S∗ against S. The
flat policy given earlier, which is a reordering of P, is triv-
ially unsound on at most an ε fraction of S∗ against S.

The severe loss of soundness in the second scenario is not
due to the cumulative effect of the unsoundness of individ-
ual predictors; that happens in the first scenario. Rather, it is
due to chaining forcing predictors to make predictions when
they would have otherwise abstained. More specifically: The
guarantees of each predictor Pi are w.r.t. S∗. Yet, Pi is ap-
plied to predict on assignments that are not in S∗, but assign-
ments that have incorporated the predictions of predictors in
earlier layers in P. These more complete assignments are the
ones that cause Pi to enhance its completeness by abstaining
less, at the cost, however, of sacrificing its soundness.

SLAP-ing with Predictors
The naive FLTC approach essentially trades off soundness
for completeness. To boost completeness without sacrificing
soundness, the predictors need to be applied on assignments
w.r.t. which they (will be made to) have guarantees.

The second approach, then, recognizes that learning and
prediction cannot proceed independently, and that one needs
to simultaneously learn and predict (SLAP) with predictors.

Algorithm 1, henceforth denoted by LSLAP, achieves the
need to SLAP by interleaving learning and prediction to it-
eratively build a chained policy P. It is given a list S∗ of size
m, a non-negative integer d indicating the desired depth of
P, and a positive value ε indicating the desired upper bound
on the unsoundness of P on S∗ against an unspecified list S.

One should not be surprised with the requirement that al-
gorithm LSLAP achieves soundness guarantees on S∗ against

Algorithm 1 Simultaneous Learning and Prediction
input: depth d, n attributes A, soundness error ε, list S∗
of m assignments, base algorithm Lbase as given in text.
Set S∗0 to equal S∗.
for every k = 1, 2, . . . , d do

for every attribute xi ∈ A do
Call the base algorithm Lbase on input xi, A, εk, δk,
and S∗k−1, and let Pi be the predictor that it returns.

end for
Let Pk be a flat policy of the predictors {Pi | xi ∈ A}.
Let S∗k be the list of assignments given by Pk(S∗k−1).

end for
Set P so that its j-th layer includes the predictors in Pj .
output: Return the policy P, and terminate.

an unspecified, and unavailable, list S. Meeting this seem-
ingly inordinate requirement is critically facilitated by the
oracle access that algorithm LSLAP has to a base algorithm
Lbase. As in the second scenario of the preceding section, we
shall assume that Lbase is able to provide guarantees for indi-
vidual predictors on S∗ against S. Furthermore, we shall as-
sume that the base algorithm Lbase can be made to reduce the
unsoundness of its returned predictors to any specified posi-
tive value εk, assuming Lbase is given access to list S∗ and is
allowed time polynomial in 1/εk.3 So, as long as we do not
ask for “unreasonably” small (as a function of n and m) val-
ues for εk, the calls to base algorithm Lbase will not burden
the overall computational efficiency of algorithm LSLAP.

Given oracle access to base algorithm Lbase with the char-
acteristics described above, algorithm LSLAP calls Lbase on
S∗ to obtain a predictor for each attribute, and applies these
predictors in parallel to update the assignments in S∗. It re-
peats the process, by calling algorithm Lbase on the new as-
signments to obtain a new predictor for each attribute, and
applying the new predictors in parallel to further update the
assignments, and so on for d iterations. Algorithm LSLAP
keeps track of all predictors Pj obtained and applied in each
iteration, and constructs the policy P by assigning in its j-th
layer the predictors that were used during the j-th iteration.

We have purposefully left unspecified what values would
be considered “reasonable” for εk, both in the discussion
above, and in Algorithm 1. We will examine two scenarios.

For our first scenario, we assume that accessing all assign-
ments in S∗ is conceptually meaningful and computationally
plausible; e.g., when seeking to recover missing information
in all records of a database. Since time linear in n and m is
already needed just for reading all of S∗, it seems reasonable
to allow εk to be an inverse linear function of n and m.

Observe, then, that setting εk = 1/2m would ensure that
each predictor returned by Lbase during the k-th iteration of
LSLAP would be perfectly sound on S∗k−1, and so would pol-
icy Pk. As a result, list S∗k would be noiseless, and by induc-
tion the returned policy P would be perfectly sound on S∗.

3We have already remarked on the black-box view of base algo-
rithms taken herein, and the emphasis, instead, on their appropriate
use. Nonetheless, we remind the reader that such base algorithms
can be constructed under typical assumptions (Michael 2010).

353

For our second scenario, we assume that assignments in
S∗ can only be sampled or otherwise only partly accessed;
e.g., when seeking to learn predictors from a sample of data
with the aim to apply them on future data. Time linear in n
is still needed just for reading a single assignment in S∗, but
no dependence of the running time on m can be generally
assumed.4 Thus, we shall not allow εk to depend on m.

Exactly due to the restricted access assumed on S∗, Lbase
may occasionally fail to produce a predictor with the sought
unsoundness εk. Analogous to our treatment for εk, we shall
assume that the base algorithm Lbase can be made to reduce
the failure probability to any specified positive value δk, as-
suming Lbase is allowed time polynomial in 1/δk. For rea-
sons same as for εk, we shall not allow δk to depend on m.

Given a base algorithm Lbase as discussed above, we can
establish that SLAP preserves soundness despite chaining.
Theorem 6 (Soundness in SLAP Setting). For any inputs
and value δ, there exist values εk and δk such that the policy
P returned by algorithm LSLAP is, except with probability δ,
unsound on at most an ε fraction of S∗ against S. For fixed
d, algorithm LSLAP runs in time polynomial in n, 1/ε, 1/δ.

Proof. Let q(n, 1/εk, 1/δk) be a polynomial that determines
the running time of the base algorithm Lbase on input A, εk,
δk. It is easy to show that algorithm LSLAP runs in time

O

(
d · poly(n) ·

d∑
k=1

q(n, 1/εk, 1/δk)

)
.

Set δk := δ/2d. Then, there is a polynomial p(n, 1/δ, d)
and a constant c such that setting εk := (ε/p(n, 1/δ, d))c

d−k

establishes that the running time of algorithm LSLAP is poly-
nomial in n, 1/ε, 1/δ for fixed d. Furthermore, the choices of
δk and εk guarantee that, except with probability δ, each call
of Lbase will return a sufficiently sound predictor such that
whenever it is applied in the context of algorithm LSLAP, its
predictions will be sound (i.e., the improbable event of mak-
ing unsound predictions will never occur). Overall then, ex-
cept with probability δ, the above effectively reproduces the
noiseless intermediate predictions of the first scenario.

Theorem 6 is to the SLAP setting what Theorem 3 is to the
FLTC setting. Analogously to Theorem 4 for the FLTC set-
ting, one can show that the completeness of algorithm LSLAP
is optimal for certain natural settings. The settings in ques-
tion are those where attributes (i.e., notions whose defini-
tions one may wish to learn) are defined in terms of one an-
other in a hierarchical fashion, so that there are no directed
cycles in the definitions. We formalize such settings below.

A list S of complete assignments is d-stratified if for a
partitioning A1, . . . ,Ad of A, and for every xi ∈ Aj , there
is a predictor Pi sound on all of S against S and complete on
all of S, that does not base its predictions on Aj ∪ . . .∪Ad.

We shall assume that we have access to base algorithms,
which we shall call focused, that return predictors that do not
base their predictions on attributes that are clearly irrelevant

4Under this second scenario, algorithm LSLAP can no longer be
assumed to explicitly compute the list S∗

k := Pk(S∗
k−1) during the

last step of the k-th iteration. This can be easily dealt with, by lazily
computing parts of S∗

k if and when needed for subsequent steps.

due to the stratification of A. Such base algorithms can be
constructed either by having direct access to the partitioning
if it is known, or by exploiting domain-specific knowledge,
attribute-efficient learning, or other relevant techniques.

By way of illustration, let d = 4, x5 ∈ A2 and x3 ∈ A4,
and obs = 〈8,−3, ∗, 7, ∗,−2〉. Any predictor P5 for x5 re-
turned by a focused base algorithm makes a definite predic-
tion, since none of the attributes A \ (A2 ∪ A3 ∪ A4) is
masked. On the other hand, a definite prediction by a pre-
dictor P3 for x3 might not be possible since the value of x3
may depend on the value of x5, which is masked in obs. If
we consider, however, a policy P that chains P3 after P5, the
prediction of the latter predictor necessarily completes x5’s
value before the prediction of the former predictor on x3,
ensuring that a definite prediction is made by P3 for x3.

We show that algorithm LSLAP guarantees predictors with
optimal completeness in such stratified settings.

Theorem 7 (Completeness in SLAP Setting). Consider
any integer value d, a d-stratified list S of complete as-
signments, and an associated list S∗. Assume that algorithm
LSLAP has oracle access to a focused base algorithm Lbase
and returns a policy P of depth d. Then: P is complete on all
of S∗.

Proof. The claim follows by straightforward induction.

Theorems 6–7 offer a second algorithm for chaining pre-
dictors, with bounded unsoundness, and optimal complete-
ness when in stratified settings. The algorithm is efficient for
constant-depth policies. Unlike the first algorithm of Theo-
rems 3–4, the second algorithm is more realistic in assuming
a base algorithm with guarantees w.r.t. S∗, instead of S.

Although it remains open whether the efficiency guaran-
tees of Theorem 6 can be extended to hold for super-constant
values of d, several natural modifications to algorithm LSLAP
fail to resolve this question: (i) Employing base algorithms
that produce predictors by expending sub-linear resources in
the inverse error parameter 1/εk are excluded (Ehrenfeucht
et al. 1989). (ii) Base algorithms that identify their inaccurate
predictions (Rivest and Sloan 1994) employ a strategy that
does not scale up to expressive predictors, and fails to work
when instead of complete assignments one has access to ar-
bitrary assignments. (iii) Training all predictors on a com-
mon set of assignments (Valiant 2000) corresponds, effec-
tively, to the FLTC scenario and not to the SLAP scenario
considered herein. (iv) Appealing to noise-resilient base al-
gorithms also fails,5 as the unsound predictions of the pre-
dictors in earlier layers of P can be shown (Michael 2008)
to correspond to malicious noise for the predictors in later
layers of P. Such malicious noise is known to be especially
intolerable by base algorithms (Kearns and Li 1993).

Overall, then, evidence suggests that interleaving learning
and prediction is a solid approach when seeking to improve

5We are not suggesting that noise-resilient (or otherwise robust)
base algorithms be avoided altogether, only that doing so does not
improve asymptotically the achieved chaining depth. One can in-
vestigate how the noise-resilience of base algorithms relates to that
of LSLAP (as done for soundness and completeness). We have not
considered noise in this work to avoid obscuring the main points.

354

completeness without sacrificing soundness. Even in scenar-
ios where d-stratification is not a priori guaranteed, calling
LSLAP with increasing values for d allows the effective trade-
off of time for possibly better, but never worse, performance.

Explicit Completeness
We have established in certain settings explicit bounds on the
unsoundness of our considered policies, but only a type of
optimal, not always specific, degree of completeness. Why
not expect algorithms to return policies with explicit bounds
on their degree of completeness? The answer is two-fold:

First, completeness depends externally on the masking
process used to produce list S∗ from list S. In the interest of
generality — and this happens to be the case in certain natu-
ral settings — no assumptions on how this masking process
operates have been (or can be) made. The more information
is missing in list S∗ the more a policy is forced to abstain, as
long as one insists, as we have done herein, that soundness
should not be severely compromised to boost completeness.

Second, even if one can construct efficiently a policy that
achieves either perfect soundness or perfect completeness,
and even if sufficient information is available in list S∗ for
some policy to make perfectly sound and perfectly complete
predictions, it is still not possible, in general, to achieve effi-
ciency, soundness, and completeness together. We establish
next a barrier to efficiently constructing a policy that simul-
taneously has soundness that is slightly better than a policy
that predicts with constant predictors, and has completeness
that is slightly better than a policy that makes no predictions.
Definition 2 (Properties of Policy-Learning Algorithms).
In what follows, parameters are: an integer n > 1, a list S
of complete assignments over a set A of n attributes, and a
list S∗ of assignments. A policy-learning algorithm L:

(i) is computationally efficient if there is a polynomial
r(·, ·) such that for every choice of the parameters, L takes
A and S∗ as input, and returns a policy P in time r(n, |S∗|);

(ii) achieves non-trivial soundness if there is a polyno-
mial s(·) such that for every choice of the parameters, L
takesA and S∗ as input, and returns a policy P that is sound
on an 1/2 + 1/s(n) fraction of S∗ against S;

(iii) achieves non-trivial completeness if there is a poly-
nomial c(·) such that for every choice of the parameters, L
takes A and S∗ as input, and returns a policy P that is com-
plete on an 1/c(n) fraction of S∗.

Given these desirable properties for a policy-learning al-
gorithm, the following observations are immediate: The triv-
ial algorithm that returns the empty policy is computation-
ally efficient and perfectly sound. The trivial algorithm that
returns a policy comprising one constant predictor for each
attribute is computationally efficient and perfectly complete.

Achieving perfect soundness and perfect completeness is
easily shown to be impossible if information is hidden adver-
sarially. Assume, therefore, that we are in a non-adversarial
setting, where this third combination of two desirable prop-
erties is achievable. It it still the case that achieving all three
properties simultaneously is impossible, even if only non-
trivial soundness and non-trivial completeness is required.
Theorem 8 (Barriers to Explicit Completeness). Under
typical cryptographic assumptions (Kearns and Vazirani

1994), no algorithm that returns policies is computationally
efficient and achieves non-trivial soundness and non-trivial
completeness. This is so even if there is a perfectly sound and
perfectly complete policy, and such policy can be approxi-
mated by a (possibly inefficient) PAC learning algorithm.

Proof. Assume that the claim does not hold for an algorithm
L, and consider the polynomials r(·, ·), s(·), c(·) from Defi-
nition 2. Consider any concept class known not to be weakly
PAC-learnable under standard cryptographic assumptions
(Kearns and Vazirani 1994). For any function in the class,
and every distribution D over examples, construct a list S
of m · c(n) · (s(n) + 1) complete assignments by sampling
examples from D and assigning to x1 their label according
to f . Construct the list S∗ by masking attribute x1 in each
assignment except with probability 1/(c(n) · (s(n) + 1)).

The policy that includes only predictor f for x1 is sound
on all of S∗ against S, and complete on all of S∗. In addition,
choosing m to be sufficiently large (but still polynomial in
n and the PAC error parameters 1/ε and 1/δ), PAC learning
can be achieved by finding any function in the concept class
that is consistent with assignments in S∗ that are complete.

Running algorithm L on S∗ for time r(n, |S∗|) will return
a policy P that is non-trivially complete on S∗, and, there-
fore, complete on |S∗|/c(n) assignments, which is more
than those already complete in S∗. Then, P includes a pre-
dictor g for x1 that makes predictions on every assignment
in S∗. Policy P is also non-trivially sound on S∗ against S,
and, therefore, sound on at least (1/2 + 1/s(n)) · |S∗| as-
signments against S . Ignoring the assignments that are com-
plete in S∗ (and on which the prediction of g is qualified), g
predicts correctly with probability ((1/2 + 1/s(n)) · |S∗| −
m)/(|S∗|−m) ≥ 1/2+1/2s(n). Since |S∗| is polynomial,
so is r(n, |S∗|), and therefore the concept class is weakly
PAC-learnable; a contradiction, and the claim follows.

Applications and Implications
We have chosen to motivate and present our framework in
the context of a single list S∗ of observed assignments that
one seeks to complete further. The choice mostly serves to
not clatter our central claims: (i) chaining predictors is prov-
ably beneficial, and (ii) the benefits can be realized by (and
only by — at least for certain natural strategies) an iterative
learning and prediction process. The same ideas and formal
results presented herein can be applied to other settings that
have been traditionally studied in Machine Learning.

The first point worth making is that the framework applies
equally well to the traditional setting of distinct training and
testing sets. There, S∗ plays the role of the testing set, while
another list T of assignments plays the role of the training
set accessed by the base learning algorithm to provide the
sought guarantees on each predictor Pi. The only modifica-
tion needed to the framework is that of giving access to T in-
stead of S∗ to the learning algorithms. In the first scenario of
the FLTC setting, T is a list of complete assignments drawn
from the same distribution as those in S. In the second sce-
nario of the FLTC setting and in the SLAP setting, T is a list
of assignments drawn from the same distribution as those
in S∗. Existing models of learning from complete (Valiant

355

1984; Michael 2011a) or observed (Michael 2010) assign-
ments, show that these choices of T suffice to efficiently and
reliably obtain the guarantees on Pi assumed herein.

A second important point is that the central claims of this
work apply also to the traditional supervised classification /
regression setting, where certain, possibly continuous and /
or unobserved, features are used to inform a prediction on
a single target attribute xt ∈ A, which is observed during
training but not during testing. First, note that the proofs of
our results, other than those in the SLAP section, go through
even if we insist that some target attribute xt is never ob-
served in the testing set S∗, and always observed in the train-
ing set T that one uses to produce each predictor Pi.

For the results in the SLAP section, we argue as follows:
Assume that some target attribute xt is always observed both
in the testing set S∗ and in the training set T . Theorem 6
holds for this choice of S∗. Now, mask xt in all assignments
in S∗ to obtain S∗. The change from S∗ to S∗ affects only
the completeness of P, and hence Theorem 6 still holds. To
avoid affecting completeness also, and to ensure that Theo-
rem 7 holds, choose a partitioning with xt ∈ Ad, so that no
predictor can base its prediction on the value of xt, and so
that the completeness guarantees on S∗ and on S∗ coincide.

So, chaining predictors is beneficial for supervised learn-
ing, and SLAP helps realize these benefits. Seeking to de-
velop classification / regression algorithms that are robust to
missing information is bound to either produce non-classical
predictors or result in worse performance than SLAP.

A final point relates to using predictors to complete miss-
ing values, but never to override observed values. This view
aligns with KRR work that treats observations as indefeasi-
ble, and as exogenously qualifying rules (Kakas, Michael,
and Miller 2011; Michael 2013b). Although we have chosen
to adopt this treatment, we note that predictors that override
observed values would also be useful, especially in settings
where a prediction might possibly correct an observed noisy
value. This choice is inconsequential for our results herein.

Conclusions and Related Work
This work has initiated a formal investigation of interleaving
learning and prediction with multiple predictors, examining
the guarantees one may get under minimum assumptions.

Among works that interleave learning and prediction, In-
ductive Logic Programming (Muggleton 1991) typically dif-
fers from this work in: (i) placing less emphasis on compu-
tational efficiency; (ii) seeking to fit available data instead of
providing statistical guarantees during prediction; (iii) pro-
ducing predictors that never abstain (under the Closed World
Assumption) instead of bounding their incompleteness.

Some form of interleaved learning and prediction is found
in Transformation-Based Learning (Brill 1993), although lit-
tle emphasis seems to have been placed on its formal anal-
ysis. TBL predictors aim to correct initial heuristic predic-
tions rather than make predictions only when it is justified.

Rivest and Sloan (1994) learn predictors in a layered man-
ner, with subsequent predictors being trained on the predic-
tions of earlier ones. This resembles the SLAP setting, but
their approach does not extend to assignments with miss-
ing information. Also, unlike us, they achieve super-constant

depth of chaining, at the expense, however, of considering
severely restricted classes of predictors. Attempting to inte-
grate their and our approach is certainly worth looking into.

Valiant (2000) considers the parallel learning of predictors
before their chaining, as in the first scenario under the FLTC
setting. As in our approach, it is the availability of base algo-
rithms with guarantees on complete assignments that allows
the decoupling of learning and prediction. Both of our works
place emphasis on efficiency and predictive guarantees. The
relational learning and the two types of missing information
that he employs can be carried over to our framework.

Read et al. (2009) investigate a version of multi-label clas-
sification with predictions for a label being available when
training predictors for other labels. To account for their sub-
optimal random ordering of the predictors, they produce en-
sembles of such orderings. Instead of a distinguished fixed
set of labels, we allow predictions on all attributes that may
happen to be masked. Instead of an ensemble of orderings,
we produce a single universal ordering. Finally, our empha-
sis is on the formal analysis and understanding of when
SLAP is provably useful. To that end, the principled treat-
ment of missing information and abstentions is essential.

Chaining learned predictors differs from learning circuits,
neural networks, or other expressive functions, where the
values of internal nodes are never observed during the train-
ing (or testing) phase. Furthermore, missing information (on
internal nodes) is only implicitly completed during predic-
tion, whereas we do so explicitly, and also allow abstentions.

In the spirit of implicit reasoning, Juba (2013) considers a
setting of partially observed assignments closely following
the one of our work (Michael 2010), and chains learned rules
without, however, explicitly representing them. It remains
an intriguing question to understand the comparative advan-
tages of the implicit and explicit representations of learned
rules, in terms of the performance (soundness and complete-
ness) achieved when they are chained to draw inferences.

On the empirical front, the benefits of chaining have been
demonstrated on the massive-scale extraction of common-
sense knowledge from raw text (Michael and Valiant 2008)
and on other language-related tasks (Doppa et al. 2011). The
results obtained in this work can be seen to offer a formal ba-
sis for these experimental results, while the latter exemplify
the applicability of our framework in real-world settings.

Some arguments and empirical evidence in other contexts
also point to the benefits of chaining rules (Dietterich 2000;
Valiant 2006), for reasons ultimately related to limitations
of the base algorithms: hypothesis class expressivity, statis-
tical and computational constraints, data availability. This
work formally ties the benefits of chaining to a limitation of
rules (cf. Lemma 1), and seeks ways to realize them. Certain
ideas from our work have been argued (Michael 2009) to be
important in the Recognizing Textual Entailment task (Da-
gan, Glickman, and Magnini 2005). The design of base al-
gorithms has been considered (Michael 2010), with applica-
tions (Michael 2013a), and open problems (Michael 2011b).

The goal of enhancing completeness resembles the goal of
“boosting” from Machine Learning, where one seeks to im-
prove a weakly sound predictor. A typical boosting approach
(Schapire 1990) proceeds by learning a sequence of predic-

356

tors, each trained on those assignments on which the preced-
ing predictor was unsound. At this abstract level, the paral-
lels with our work are immediate: SLAP attempts to improve
a weakly complete predictor set by learning a sequence of
such predictor sets, each trained on those assignments on
which the preceding predictor set was incomplete. Of course
there are critical differences as well, not the least of which
being that an unsound prediction cannot be identified dur-
ing testing, whereas an incomplete one can. Understanding
the parallels and differences in more technical detail may al-
low boosting techniques to be adapted and adopted for the
problem of improving the completeness of predictors.

Regarding discussions pointing out that Machine Learn-
ing research has focused on the construction of flat (in our
defined sense) predictors (Dietterich 2003), this work offers
a glimpse of what one may expect when moving to a chained
(and more structured) use of predictors. The work presented
herein offers a concrete basis upon which a large scale inves-
tigation of this intriguing phenomenon may be carried out.

References
Brill, E. D. 1993. A Corpus-Based Approach to Language
Learning. Ph.D. Dissertation, University of Pennsylvania,
U.S.A.
Dagan, I.; Glickman, O.; and Magnini, B. 2005. The PAS-
CAL Recognizing Textual Entailment Challenge. In Proc. of
1st PASCAL Challenges Workshop for Recognizing Textual
Entailment (RTE’05), 1–8.
Dietterich, T. G. 2000. Ensemble Methods in Machine
Learning. In Proc. of 1st International Workshop on Mul-
tiple Classifier Systems (MCS’00), 1–15.
Dietterich, T. G. 2003. Learning and Reasoning. Unpub-
lished Manuscript.
Doppa, J. R.; Nasresfahani, M.; Sorower, M. S.; Irvine, J.;
Dietterich, T. G.; Fern, X.; and Tadepalli, P. 2011. Learn-
ing Rules from Incomplete Examples via Observation Mod-
els. In Proc. of Workshop on Learning by Reading and
its Applications in Intelligence Question-Answering (FAM-
LbR/KRAQ’11).
Ehrenfeucht, A.; Haussler, D.; Kearns, M. J.; and Valiant,
L. G. 1989. A General Lower Bound on the Number of Ex-
amples Needed for Learning. Information and Computation
82(3):247–261.
Juba, B. 2013. Implicit Learning of Common Sense for
Reasoning. In Proc. of 23rd International Joint Conference
on Artificial Intelligence (IJCAI’13), 939–946.
Kakas, A.; Michael, L.; and Miller, R. 2011. Modular-E and
the Role of Elaboration Tolerance in Solving the Qualifica-
tion Problem. Artificial Intelligence 175(1):49–78.
Kearns, M. J., and Li, M. 1993. Learning in the Presence of
Malicious Errors. SIAM Journal on Computing 22(4):807–
837.
Kearns, M. J., and Vazirani, U. V. 1994. An Introduction to
Computational Learning Theory. The MIT Press.
Knuth, D. E. 2011. The Art of Computer Programming,
Volume 4A: Combinatorial Algorithms. Addison-Wesley.

Michael, L., and Valiant, L. G. 2008. A First Experimental
Demostration of Massive Knowledge Infusion. In Proc. of
11th International Conference on Principles of Knowledge
Representation and Reasoning (KR’08), 378–388.
Michael, L. 2008. Autodidactic Learning and Reasoning.
Ph.D. Dissertation, Harvard University, U.S.A.
Michael, L. 2009. Reading Between the Lines. In Proc. of
21st International Joint Conference on Artificial Intelligence
(IJCAI’09), 1525–1530.
Michael, L. 2010. Partial Observability and Learnability.
Artificial Intelligence 174(11):639–669.
Michael, L. 2011a. Causal Learnability. In Proc. of 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI’11), 1014–1020.
Michael, L. 2011b. Missing Information Impedements to
Learnability. In Proc. of 24th Annual Conference on Learn-
ing Theory (COLT’11), JMLR: Workshop and Conference
Proceedings, volume 19, 825–827.
Michael, L. 2013a. Machines with WebSense. In Proc. of
11th International Symposium on Logical Formalizations of
Commonsense Reasoning (Commonsense’13).
Michael, L. 2013b. Story Understanding... Calculemus! In
Proc. of 11th International Symposium on Logical Formal-
izations of Commonsense Reasoning (Commonsense’13).
Mitchell, T. M. 1997. Machine Learning. McGraw Hill
Series in Computer Science. McGraw-Hill.
Muggleton, S. H. 1991. Inductive Logic Programming. New
Generation Computing 8(4):295–318.
Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2009.
Classifier Chains for Multi-label Classification. In Proc. of
European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-
PKDD’09), 254–269.
Reiter, R. 1980. A Logic for Default Reasoning. Artificial
Intelligence 13(1–2):81–132.
Rivest, R. L., and Sloan, R. 1994. A Formal Model of Hi-
erarchical Concept Learning. Information and Computation
114(1):88–114.
Schapire, R. E. 1990. The Strength of Weak Learnability.
Machine Learning 5(2):197–227.
Schuurmans, D., and Greiner, R. 1994. Learning Default
Concepts. In Proc. of 10th Canadian Conference on Artifi-
cial Intelligence (CSCSI’94), 99–106.
Valiant, L. G. 1984. A Theory of the Learnable. Communi-
cations of the ACM 27:1134–1142.
Valiant, L. G. 2000. Robust Logics. Artificial Intelligence
117(2):231–253.
Valiant, L. G. 2006. Knowledge Infusion. In Proc. of 21st
National Conference on Artificial Intelligence (AAAI’06),
1546–1551.
Valiant, L. G. 2013. Probably Approximately Correct: Na-
ture’s Algorithms for Learning and Prospering in a Complex
World. Basic Books.

357

