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Abstract
Many knowledge representation tasks involve trees or similar
structures as abstract datatypes. However, devising compact
and efficient declarative representations of such properties is
non-obvious and can be challenging indeed. In this paper,
we take acyclicity properties into consideration and investi-
gate logic-based approaches to encode them. We use answer
set programming as the primary representation language but
also consider mappings to related formalisms, such as propo-
sitional logic, difference logic, and linear programming.

Introduction
Numerous hard computational tasks involve the construction
of acyclic or tree structures. Constraint satisfaction and re-
lated methods are an important approach for solving many of
these problems. Since acyclicity and the property of being a
tree are no primitives in common constraint-based represen-
tation formalisms, the challenge of formulating such condi-
tions in terms of more basic constraint expressions arises.
Hence, in this work, we systematically investigate logic-
based approaches to encode respective properties.

Construction of acyclic graphs, trees, or chordal graphs
shows up in numerous applications. For instance, Bayesian
network structure learning, where directed acyclic graphs
provide solution candidates, can be reduced to constraint
optimization (Jaakkola et al. 2010; Cussens 2011). Further-
more, chordal Markov network learning amounts to the task
of optimizing maximum weight spanning trees induced by
chordal graphs (Corander et al. 2013). Chordality is a re-
laxation of strict acyclicity in which cycles of length three
are allowed in an otherwise tree-structured undirected graph.
Constraint-based methods can also be used to infer phyloge-
netic trees (Brooks et al. 2007; Bonet and John 2009), de-
scribing the evolution of living organisms, languages, and
other evolving systems.

The basic problem to be solved with constraint-based for-
malisms in the above and other applications is constructing
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an acyclic or a tree structure subject to further conditions.
That the choice among underlying edge candidates actually
results in some graph structure with the desired properties
must be enforced by corresponding constraints. Straightfor-
ward formulations, however, can become impractically large
and inefficient, and our work sheds light on ways to encode
such constraints succinctly and efficiently.

Although we rely on answer set programming (ASP)
(Brewka, Eiter, and Truszczyński 2011) as the primary rep-
resentation language for encodings, respective formulations
in related formalisms, such as propositional satisfiability
(SAT), SAT extended with difference logic (DL), and linear
programming (LP), can be obtained through automatic poly-
nomial translations from ASP. Linear translations to SAT ex-
ist whenever ASP rules are tight (Erdem and Lifschitz 2003),
i.e., if there are no circular positive dependencies through
rules’ prerequisites on the ground level. In the non-tight
case, level mappings (Janhunen 2004) can be used to bridge
the semantic gap between ASP and SAT. Compact linear
representations of level mappings can be achieved by means
of difference constraints available in DL (Niemelä 2008) or
integer variables in LP (Liu, Janhunen, and Niemelä 2012).

In this short paper, we present encoding approaches for di-
rected acyclic graphs. Their extensions to forests and trees,
in the directed and undirected case, as well as chordal graphs
are addressed in an extended version of this paper.1

Directed Graphs
As usual, a directed graph G is a pair 〈V,E〉, where V is a fi-
nite set of vertices and E ⊆ V ×V is a set of directed edges.
For some v ∈ V , we denote the number of incoming or out-
going edges, respectively, by deg−(v) = |{u | 〈u, v〉 ∈ E}|
and deg+(v) = |{u | 〈v, u〉 ∈ E}|; v is a root (or leaf ) of G
if deg−(v) = 0 (or deg+(v) = 0). A path of length k − 1
in G is a non-empty sequence v1, . . . , vk of vertices from V
such that 〈vi, vi+1〉 ∈ E and vi 6= vj for all 1 ≤ i < j ≤ k.
A sequence v0, v1, . . . , vk is a cycle of length k in G if
〈v0, v1〉 ∈ E, v0 = vk, and v1, . . . , vk is a path in G.

A directed acyclic graph is a directed graph G such that
there is no cycle in G. A directed acyclic graph G = 〈V,E〉
is a directed forest if, for every vk ∈ V , there is exactly
one path v1, . . . , vk in G from a root v1 of G to vk. Given

1
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Figure 1: Directed example graphs with five vertices each

1 #const n=5.
2 node(1..n).
3 pair(X,Y) :- node(X;Y), X != Y.
4 { edge(X,Y) } :- pair(X,Y).

Figure 2: Encoding part for generating directed graphs

that any incoming edge 〈vk−1, vk〉 can be extended to a
path v1, . . . , vk−1, vk from a root v1, the former condition is
equivalent to requiring deg−(v) ≤ 1 for all vertices v ∈ V .
Finally, a directed tree is a directed forest G = 〈V,E〉with a
unique root, i.e., deg−(v) = 0 holds for exactly one v ∈ V .
Some directed example graphs illustrating the introduced
acyclicity properties are depicted in Figure 1.

Encodings
We illustrate different encodings by means of first-order
specifications in the input language of the ASP grounder
GRINGO (Gebser et al. 2012). The underlying principles,
however, are of general applicability, and we outline partic-
ularities of respective SAT, DL, and LP formulations.

Rules describing the (non-deterministic) generation of di-
rected graphs are shown in Figure 2. The predicate node/1
provides the labels 1, . . . , n for vertices, where n is an in-
teger constant standing for the number of vertices, and the
symmetric predicate pair/2 represents the domain of di-
rected edges given by all pairs of distinct vertices. Any
subset of these pairs can be generated via the choice rule in
line 4, permitting instances of edge/2 to hold without further
preconditions. For instance, the atoms characterizing the di-
rected graph in Figure 1(a) are edge(1,2), edge(1,3),
edge(2,4), edge(3,2), edge(4,5), and edge(5,3).

Acyclicity Checking
To make sure that a generated directed graph 〈V,E〉 is
acyclic, we may check whether there is a strict partial or-
der < over vertices in V such that u < v if 〈u, v〉 ∈ E. The
rules in Figure 3 encode this approach in an inductive fash-
ion. Given n=5, the following (simplified) ground instances
are obtained when the label 3 is substituted for X:

order(3,1) :- not edge(3,1).
order(3,1) :- order(1).
order(3,2) :- not edge(3,2).
order(3,2) :- order(2).
order(3,4) :- not edge(3,4).
order(3,4) :- order(4).
order(3,5) :- not edge(3,5).
order(3,5) :- order(5).

5 order(X,Y) :- pair(X,Y), not edge(X,Y).
6 order(X,Y) :- pair(X,Y), order(Y).
7 order(X) :- node(X),

order(X,Y) : pair(X,Y).
9 :- node(X), not order(X).

Figure 3: Inductive bottom-up encoding of acyclicity test

order(3) :- order(3,1), order(3,2),
order(3,4), order(3,5).

:- not order(3).

As expressed by order(3,v), vertex 3 fulfills the condi-
tion of < relative to a potential successor v ∈ {1, 2, 4, 5}
if there is no edge from 3 to v or if v has no path to 3.
Then, order(3) is derived once the existence of a cycle
through vertex 3 can be safely excluded for all potential suc-
cessors v of 3. In particular, the positive prerequisites of cor-
responding ground rules for other vertices along with well-
foundedness of derivations, as required in ASP, prohibit
order(3) to hold if 3 belongs to some cycle. Given this,
the integrity constraint denying models such that order(3)
is false rejects any directed graph with a cycle through 3, and
respective ground rules establish the same for other vertices.

Reconsidering the example graph in Figure 1(a), we have
that order(u,v) can be derived for distinct vertices u and v
such that 〈u, v〉 is not an edge. Since each vertex u has some
successor v, there still is some atom order(u,v) for u
that cannot be concluded in this way, e.g., order(5,3)
for vertex 5. Hence, order(u) remains underivable for all
u ∈ {1, 2, 3, 4, 5}, and the cyclic graph in Figure 1(a) is re-
jected by means of the rules in Figure 3. Unlike this, vertex 5
has no successor in the acyclic graph shown in Figure 1(b),
so that order(5,v) is derivable for v ∈ {1, 2, 3, 4}. This in
turn yields order(5), order(4,5), and order(4), given
that 5 is the only successor of vertex 4. Similarly, the deriva-
tion of order(2,4) leads to order(2), and the establish-
ment of order(3,2), order(3,4), and order(3,5) for
the successors of vertex 3 allows for deriving order(3). Fi-
nally, order(1) can be concluded in view of order(1,2)
and order(1,3). As derivable atoms are compatible with
(ground instances of) the integrity constraint in line 9 of Fig-
ure 3, the graph in Figure 1(b) passes the acyclicity test.

Encoding Variants
The encoding in Figure 3 is non-tight, i.e., it relies on
well-foundedness in the presence of circular positive de-
pendencies on the ground level. Level mappings (cf. (Jan-
hunen 2004; Niemelä 2008; Liu, Janhunen, and Niemelä
2012)) furnish an alternative mechanism to express well-
founded derivations, where difference constraints or inte-
ger variables allow for linear embeddings in DL and LP.
A respective approach is taken by the tight ASP formula-
tion of the predicate order/1 in Figure 4. In order to elimi-
nate circular positive dependencies between rules’ prerequi-
sites and conclusions, the auxiliary predicates order/3 and
order/2 include an additional argument for “step count-
ing” that unfolds the derivation of a partial vertex order <
witnessing acyclicity. If such an order exists, its con-
struction must be completed in at most n steps. For in-
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5 order(X,Y,1..n) :- pair(X,Y),
not edge(X,Y).

6 order(X,Y,N-1) :- pair(X,Y),
order(Y,N).

7 order(X,N) :- node(X), N = 2..n,
order(X,Y,N) : pair(X,Y).

8 order(X) :- node(X),
order(X,Y,1) : pair(X,Y).

Figure 4: Unfolded bottom-up derivation of order/1

stance, the (total) order 1 < 3 < 2 < 4 < 5 over ver-
tices of the acyclic graph in Figure 1(b) is represented in
terms of the atoms order(5,2. . . 5), order(4,2. . . 4),
order(2,2. . . 3), and order(3,2) along with order(u)
for u ∈ {1, 2, 3, 4, 5}. On the one hand, explicit step count-
ing eliminates the potential of circular derivations, so that
straightforward translations like completion (Clark 1978)
can be used to map the encoding in Figure 4 to SAT, DL,
or LP. In fact, the tight ASP formulation of order/1 can be
viewed as a directed counterpart of the SAT encoding for
the undirected case in (Corander et al. 2013). On the other
hand, the step argument introduces an additional dimension
increasing the number of atoms as well as constraints. For
directed graphs 〈V,E〉, the size of ground instances grows
from O(|E|) for the encoding in Figure 3 to O(|E|×|V |),
thus shifting from linear to quadratic space.

Variants of the encodings presented so far can be obtained
by replacing the unconditional generation of edges in line 4
of Figure 2 by the following (non-deterministic) choice rule:

{ edge(X,Y) } :- pair(X,Y), order(Y).

The additional prerequisite order(Y) necessitates the ab-
sence of cycles through a vertex substituted for Y before
admitting any edge from a predecessor substituted for X.
Hence, the generation of edges with the above choice rule
progresses successively from the leaves of a directed acyclic
graph. Whether such conditional edge generation is advan-
tageous or not is empirically investigated in the evaluation
section below. While the leaf encodings in Figure 3 and 4
describe “bottom-up” traversals starting from the leaves of
a directed graph, acyclicity tests can likewise be performed
“top-down” from roots, and a successive choice rule similar
to the one above can optionally be used in root encodings
instead of line 4 in Figure 2. Without other side constraints,
bottom-up and top-down traversals appear fully symmetric,
but in extended contexts the orientation of acyclicity tests
may interact or interfere.

Notably, the predicate definitions in Figure 3 and 4 are
both stratified (cf. (Apt, Blair, and Walker 1988)). That is,
when instances of the predicate edge/2 are fixed, there is at
most one (well-founded) model that can be deterministically
determined. In the absence of circular positive dependen-
cies, as with ground instances of the rules in Figure 4, the
unique model or unsatisfiability is also obtained by evaluat-
ing (via unit propagation) the rules’ completion. Except for
variants introducing prerequisites for conditional edge gen-
eration, all encoding parts in the sequel are stratified, so that
the choice of edges is the only source of non-determinism.

directed leaf encoding root encoding
acyclic graphs non-tight tight non-tight tight
CLASP 0.26 — 0.27 —
CLASP/SAT 2.41 1.59 1.55 1.16
LINGELING 5.65 2.53 5.19 2.49
Z3 1.69 — 1.67 —
CPLEX 682.54 623.17 639.38 687.46

Table 1: Average runtimes for directed acyclic graphs

Evaluation
To test our encodings, we ran CLASP (2.1.3) both as an ASP
and SAT solver, the SAT solver LINGELING (ats-57807c8-
131016), the DL solver Z3 (4.3.1), and the LP solver CPLEX
(12.5.0.0) with default settings on a cluster of Linux ma-
chines. We used GRINGO (3.0.5) to ground first-order ASP
formulations and the translators LP2SAT2 (1.18) (Janhunen
and Niemelä 2011), LP2DIFF (1.33) (Janhunen, Niemelä,
and Sevalnev 2009), and LP2MIP (1.18) (Liu, Janhunen, and
Niemelä 2012) for converting ground instances to SAT, DL,
or LP, respectively. In order to perturb the search space
for directed acyclic graphs, we added randomly generated
XOR-constraints over edges, systematically varying both
the length and the number of such constraints.

Average runtimes in seconds for 25 instances with n=25
vertices are given in Table 1. Runs exceeding 1000 seconds
were counted as 1000 seconds, and an entry “—” marks that
no run completed in time. We compare the performance
of the considered solvers on four different encodings of di-
rected acyclic graphs. The non-tight and tight variants of the
leaf encoding consist of the rules shown in Figure 2 along
with the inductive or unfolded bottom-up acyclicity test, re-
spectively, encoded in Figure 3 and 4. Their counterparts
denoted by root encoding swap the orientation of acyclicity
tests by traversing vertices top-down from roots instead of
bottom-up from leaves. The runtimes of CLASP on ASP for-
mulations in the first row exhibit no significant differences
between the symmetric leaf and root encodings. That is, in-
stances relying on their non-tight variants were solved eas-
ily by CLASP (with default settings), whereas all runs on the
tight variants timed out. Similar behavior is observed with
the Z3 solver, for which non-tight instances are mapped to
DL and tight ones to plain SAT. However, LINGELING and
CLASP, run as a SAT solver, both perform well on the trans-
lations by LP2SAT2, where the tight ASP formulations have
some advantage over the level mappings introduced when
translating non-tight instances. The performance of the LP
solver CPLEX (with default settings) is rather unstable on
all of our encoding variants. In particular, CPLEX does not
substantially benefit from the use of integer variables to rep-
resent level mappings for non-tight instances.

Conclusions
Graphs satisfying acyclicity properties are frequent in
knowledge representation tasks. Since these properties do
not appear as basic primitives in common constraint-based
representation formalisms, formulating them compactly and
efficiently is a recurring challenge. We have investigated
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logic-based characterizations of directed acyclic graphs and
developed encodings in the language of answer set program-
ming. Directed forests and trees, their undirected variants, as
well as chordal graphs are addressed in an extended draft.1

Experiments indicate the relevance of representation ap-
proaches and constraint formulations, with particular em-
phasis on well-foundedness. While the size of ground in-
stances is linear for the acyclicity test in Figure 3, en-
codings based on the full transitive closure of edges (Rin-
tanen, Heljanko, and Niemelä 2004; Brooks et al. 2007;
Çaylı et al. 2007; Cussens 2008; Çelik et al. 2009; Brewka,
Eiter, and Truszczyński 2011) yield quadratic space com-
plexity, even for sparse graphs. As the discovery of a sin-
gle “universal” encoding is highly unlikely, the alternatives
investigated here provide a toolkit for representing graph
structures in different applications. In fact, we believe
that effective declarative means to specify such fundamental
datatypes are important cornerstones for the development of
robust constraint-based solving methods.
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Çaylı, M.; Karatop, A.; Kavlak, E.; Kaynar, H.; Türe, F.;
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