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Abstract
Nominal schemas extend description logics (DLs) with a re-
stricted form of variables, thus integrating rule-like expres-
sive power into standard DLs. They are also one of the most
recently introduced DL features, and in spite of many works
on algorithms and implementations, almost nothing is known
about their computational complexity and expressivity. We
close this gap by providing a comprehensive analysis of the
reasoning complexities of a wide range of DLs—from EL to
SROIQ—extended with nominal schemas. Both combined
and data complexities increase by one exponential in most
cases, with the one previously known case of SROIQ be-
ing the main exception. Our proofs employ general modeling
techniques that exploit the power of nominal schemas to suc-
cinctly represent many axioms, and which can also be applied
to study DLs beyond those we consider. To further improve
our understanding of nominal schemas, we also investigate
their semantics, traditionally based on finite grounding, and
show that it can be extended to infinite sets of individuals
without affecting reasoning complexities. We argue that this
might be a more suitable semantics when considering entail-
ments of axioms with nominal schemas.

1 Introduction
The fruitful integration of reasoning on both schema and in-
stance level poses a continued challenge to knowledge repre-
sentation and reasoning. While description logics (DLs) ex-
cel at the former task, rule-based formalisms are often more
adequate for the latter. An established and highly productive
strand of research therefore continues to investigate ways of
reconciling both paradigms.

A practical breakthrough in this area was the discovery
of DL-safe rules, which ensure decidability of reasoning
by restricting the applicability of rules to a finite set of
elements that are denoted by an individual name (Motik,
Sattler, and Studer 2005). As of today, DL-safe rules are
the most widely used DL-rule extension, supported by sev-
eral mainstream reasoners (Kolovski, Parsia, and Sirin 2006;
Motik, Shearer, and Horrocks 2009).

More recently, nominal schemas have been proposed as
an even tighter integration of “DL-safe” instance reasoning
with DL schema reasoning (Krötzsch et al. 2011). A nominal
is a DL concept expression {a} that represents a singleton
set containing only (the individual denoted by) a. Nominal
schemas replace a by a variable x that ranges over all indi-
vidual names, so that it might represent arbitrary nominals
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{a}, where all occurrences of {x} in one axiom represent the
same nominal. For example,
∃hasFather.{x}u∃hasMother.({y}u∃married.{x})

represents the set of all individuals whose father (x) and
mother (y) are married to each other, where the parents must
be represented by individual names. No standard DL can ex-
press this in such a concise way. The interplay with other DL
features also makes nominal schemas more expressive than
the combination of DLs and DL-safe rules (cf. Sect. 8).

Nominal schemas have thus caused significant research
interest, and several reasoning algorithms that exploit this
succinct representation have been proposed (Krisnadhi and
Hitzler 2012; Wang and Hitzler 2013; Steigmiller, Glimm,
and Liebig 2013; Martı́nez, Wang, and Hitzler 2013). Most
recently, Steigmiller, Glimm, and Liebig (2013) demon-
strated that such algorithms can even outperform other sys-
tems for reasoning with DL-safe rules.

Surprisingly and in sharp contrast to these successes,
many basic questions about the expressivity and complex-
ity of nominal schemas have remained unanswered. A naive
reasoning approach is based on replacing nominal schemas
by nominals in all possible ways, which leads to complexity
upper bounds one exponential above the underlying DL. The
only tight complexity result so far is that the N2EXPTIME
combined complexity of reasoning in the DL SROIQ is not
affected by nominal schemas—a result that reveals almost
nothing about the computational or expressive impact of
nominal schemas in general (Krötzsch et al. 2011). Beyond
this singular result, it is only known that nominal schemas
can simulate Datalog rules of any arity using ∃, u, and the
universal role U (Knorr, Hitzler, and Maier 2012).

In this paper, we give a comprehensive account of the
reasoning complexities of a wide range of DLs, consider-
ing both combined complexities (w.r.t. the size of the given
knowledge base) and data complexities (w.r.t. the size of the
ABox only). Figure 1 summarizes our results for combined
complexities for DLs with nominal schemas (right; marked
by the letter V) in comparison with known complexities of
DLs with nominals (left). It turns out that SROIQ is an ex-
ception, while most other DLs experience exponential com-
plexity increases due to nominal schemas.

The effects on the data complexity are even more striking.
The data complexity of standard DLs is either in P (for EL
and Horn-DLs, which restrict the use of t and ¬) or in NP.
In contrast, the data complexities for all nominal-schema
DLs in Fig. 1 are only one exponential below their combined
complexity, i.e., EXPTIME or NEXPTIME for most cases.
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Figure 1: Combined complexities for DLs with nominals
compared to DLs with nominal schemas

To obtain these results, we identify general modeling
techniques that use nominal schemas to express complex
schema information very succinctly. Two fundamental tech-
niques provide the basis for most of our hardness proofs:
• TBox-to-ABox Internalization A TBox is replaced by

a small set of “template axioms” with nominal schemas,
and the original TBox is expressed with ABox assertions.

• GCI Iterators Templates of TBox axioms (general con-
cept inclusions, short GCIs) are instantiated by replacing
placeholder concepts by concepts from an exponentially
long list of “indexed” concept names.

TBox-to-ABox internalization explains why the data com-
plexity of most DLs with nominal schemas agrees with
the combined complexity of their underlying standard DL.
SROIQV is a noteworthy exception where the internal-
ization is not possible. GCI iterators are a kind of gener-
alized TBox axiom that can be used to encode exponen-
tially large TBoxes polynomially using nominal schemas.
This technique can be applied to TBoxes from known hard-
ness proofs to boost complexities by one exponential. Both
techniques provide concrete illustrations for the expressive
power of nominal schemas and outline ways to obtain re-
sults for DLs that we did not consider.

After establishing these results, we revisit the formal se-
mantics of nominal schemas. Normally, nominal schemas
are considered to represent a finite set of nominals, based
on individuals that either occur in the knowledge base or
are part of some finite signature. This can lead to unintu-
itive effects, since entailments may become invalid when
adding more individuals. We thus study the semantics ob-
tained when using an infinite set of individual names instead.
This makes it impossible to replace nominal schemas by
nominals in all possible ways to decide entailment. Surpris-
ingly, reasoning is still decidable with the same complexity
results. Indeed, the consequences of both approaches turn
out to agree under some mild assumptions.

2 Standard Description Logics
The DLs we consider are based on the well-known DL
SROIQ (Horrocks, Kutz, and Sattler 2006). The precise
syntax and semantics that we adhere to is explained in de-
tail in the freely available DL Primer (Krötzsch, Simančı́k,

and Horrocks 2012), so we will not repeat it here. We also
consider Horn-DLs, which, in essence, forbid t and ¬, and
restrict the use of ∀ (Krötzsch, Rudolph, and Hitzler 2013).

Our results apply to many DLs. The smallest DL we con-
sider is EL, allowing only u, ∃, and >. We do not con-
sider variants of DL-Lite, since these DLs typically exclude
nominals, and are therefore no natural candidates for exten-
sion with nominal schemas. We also exclude lightweight
approaches like DLP, pD∗, and OWL RL, since the rule-
like expressiveness of these DLs is subsumed completely
by nominal schemas (see Section 4). We thus use the term
standard description logic to mean a DL L with EL ⊆ L ⊆
SROIQ. Our complexity results refer to standard reason-
ing tasks, and this is what the term reasoning will refer to.
Formally, a standard reasoning problem of L is any prob-
lem that can be polynomially reduced to checking if an L
knowledge base KB entails a fact A(a) (note that EL con-
sistency checking is trivial). Nondeterminstic complexity
classes may occur in two versions, e.g., NEXPTIME and co-
NEXPTIME, depending on the exact reasoning task.

Two knowledge bases are semantically equivalent if they
have the same models. This is often too restrictive, since
many “essentially equivalent” transformations make use of
auxiliary symbols that affect the set of models. A useful way
to describe that a knowledge base faithfully captures the se-
mantics of another one is to use conservative extensions.

Definition 1. Consider a knowledge base KB over a sig-
nature Σ, and a knowledge base KB′ over a signature Σ′

that extends Σ. Then KB′ is a (model-)conservative exten-
sion of KB if (a) every model of KB′ is a model of KB, and
(b) every model of KB can be extended to a model of KB′
by adding suitable interpretations for additional signature
symbols. Note that we do not require KB⊆ KB′.

Essentially all mainstream DLs allow axioms to be nor-
malized. We exploit this in some of our proofs.

Definition 2. A DL L is called normalizable, if there is a
finite set {α1, . . . ,αk} of L axioms and a polynomially com-
putable function τ that maps L knowledge bases to L knowl-
edge bases such that for every L knowledge base KB

• τ(KB) is a conservative extension of KB, and
• every axiom of τ(KB) can be obtained from some α ∈
{α1, . . . ,αk} by renaming signature symbols.

3 Nominal Schemas: Syntax and Semantics
Recall that a SROIQ knowledge base is based on a sig-
nature consisting of finite sets NI of individual names, NC
of concept names, and NR of role names. To define nom-
inal schemas, we extend signatures by an additional finite
set NV of variable names. A nominal schema is a concept
of the form {x} with x ∈ NV , which can be used in axioms
and complex concept expressions like any other SROIQ
concept. DLs with nominal schemas are denoted by their
standard name extended by V as in SROIQV or ELV .

The semantics of nominal schemas are defined by ground-
ing. For a SROIQV axiom α , ground(α) is the set of
all SROIQ axioms obtained from α by uniformly replac-
ing all variables in α by individual names in NI in all
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possible ways. The grounding of a knowledge base KB is
ground(KB) :=

⋃
α∈KB ground(α). Note that ground(KB)

is finite, since NI is finite. An interpretation satisfies a
SROIQV knowledge base KB if it satisfies ground(KB),
and satisfiability and entailment are defined accordingly.

The semantics of nominal schemas depends on the set NI
of individual names in the given signature. For example,

{a} v {b} |= {a} v {x} (1)

is a valid entailment in a signature with NI = {a,b}, but not
in one with NI = {a,b,c}. However, the choice of NI (as long
as it is non-empty) is only relevant when asking if axioms
with nominal schemas are entailed but not for standard rea-
soning problems, such as instance or subsumption checking.
Hence we often do not mention NI explicitly, though, in gen-
eral, always assume that the signature is given. Moreover, in-
stances of entailment problems are always considered in the
context of a single signature that covers all involved axioms.

One could take other approaches, which are worth men-
tioning. First, instead of using NI , one could define nominal
schemas to refer to all individual names that occur in the
knowledge base. This raises questions when considering en-
tailment problems (Which of the knowledge bases? Both?),
and it leads to a kind of non-monotonicity, where {a} v {x}
follows from {a} v {b}, while the logically weaker axiom
{a} v {x}t{c} does not (since it extends the range of {x}).
Secondly, to overcome this problem, one could restrict the
range of each nominal schema explicitly by requiring ad-
ditional syntax. The original formulation of DL-safe rules,
e.g., requires each rule variable x to appear in an atom of the
form O(x) in the premise, and O was defined in the ABox
(Motik, Sattler, and Studer 2005). For DL axioms, however,
such restrictions would unduly clutter the syntax. Finally, in-
stead of considering NI to be variable and finite, one could
consider an infinite signature used by all knowledge bases.
Grounding is no longer possible in this approach, and it is
not the semantics that was assumed in previous works. We
study this approach in Section 8, and find that it leads to
mostly the same results as the traditional formulation.

Regarding reasoning complexity, it is important that we
do not assume NI to be fixed. Rather, the signature is part of
the problem instance of an entailment problem. Therefore,
the size of a problem always includes the size of the signa-
ture. Analogously, data complexity refers to the complexity
of a problem under the assumption that the size of TBox and
RBox is bounded by a constant, while the ABox and the sig-
nature can vary. When speaking of the size of a knowledge
base or of an ABox, we always assume that the size of the
signature is included.

Since the size of ground(KB) is exponential in the size
of KB and polynomial in the size of the ABox (where the
number of variables per TBox axiom is bounded), we obtain
some general upper bounds for the complexity of reasoning.

Theorem 1. Consider a DL L. The combined complexity of
LV is at most exponentially higher than that of LO. If the
combined complexity of LO is in a complexity class C that
subsumes P, then the data complexity of LV is in C as well.

4 Expressiveness of Nominal Schemas
We now take a closer look at the expressive power of nomi-
nal schemas, and draw some first conclusions about the com-
plexity of reasoning. It was immediately observed that nom-
inal schemas can be used to encode DL-safe rules (Krötzsch
et al. 2011), and this result has later been extended to show
that they can express extended DL-safe rules with predicates
of any arity (Knorr, Hitzler, and Maier 2012). The universal
role U was used in both encodings. However, it is easy to
see that we can remove this requirement. To represent a first-
order logic atom p(t1, . . . , tn), where ti ∈ NI ∪NV , we use a
fresh concept Ap and auxiliary roles atom, arg1, . . . , argn.
We define enc(p(t1, . . . , tn)) to be the formula

∃atom.(Apu∃arg1.{t1}u . . .u∃argn.{tn}). (2)
A rule B1∧ . . .∧B`→ H, where B1, . . . ,B`,H are first-order
atoms, can now be encoded by the DL axiom

enc(B1)u . . .u enc(B`)v enc(H) (3)
(as usual, the left-hand side is> if `= 0). It is easy to see that
this captures the semantics of an arbitrary set of function-
free Horn rules (a.k.a. Datalog). Hence, the simple DL ELV
can already capture Datalog and thus inherits its EXPTIME
complexity (Dantsin et al. 2001). The matching upper bound
follows from Theorem 1 and the polynomial combined com-
plexity of EL (Baader, Brandt, and Lutz 2005).
Theorem 2. Standard reasoning in ELV is EXPTIME-
complete for combined complexity.

Note that the encoding of rules does not provide any inter-
action between unary and binary rule predicates and DL con-
cepts and roles, respectively. We could add this using axioms
like ∃atom.(Ar u ∃arg1.{x} u ∃arg2.{y}) v ∃aux.({x} u
∃r.{y}). However, some DL knowledge bases may interfere
with the correctness of the encoding if they restrict the over-
all domain size. We address this issue in the next section.

In addition to the above, it is intuitively clear that nominal
schemas are at least as expressive as nominals. The next def-
inition provides a suitable construction. As before, we only
need features of EL.
Definition 3. Let KB be a knowledge base. The knowledge
base nomelim(KB) is obtained from KB as follows:
• replace all occurrences of {a} in KB by Oa, where Oa is

a fresh concept name,
• add an ABox axiom Oa(a) for all a ∈ NI in KB,
• add the axiom > v ∃somenom.{x}, where somenom is a

fresh role name, and
• add the axiom Oau∃somenom.({x}uOa)v {x} for each

of the fresh Oa.
Essentially this procedure installs atomic concepts Oa

which are axiomatized to have the same extension as the
nominals they substitute. It is clear that one can compute
nomelim(KB) in polynomial time. Moreover, nomelim(KB)
is a conservative extension of KB. Part (a) of Defini-
tion 1 is straightforward since {a} ≡ Oa is a direct con-
sequence of nomelim(KB) for every nominal {a} of KB.
For (b) we enrich any model I of KB by OI

a = {aI} and
somenomI = ∆I×{aI | a individual in KB} to find a model
of nomelim(KB). This leads to the following general result.
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Theorem 3. For any DL L with EL ⊆ L, the combined and
data complexities of standard reasoning in LO are lower
bounds for the respective complexities of LV .

Nominal schemas thus generalize the expressiveness of
nominals, DL-safe rules, and (DL-safe) Datalog. Neverthe-
less, using grounding, all of these can be expressed with
nominals already, though an exponential loss in efficiency
is unavoidable in general. DL-safe rules, in contrast, cannot
even express nominals. The Datalog encoding (3) illustrates
a type of expression that is not expressible in DLs extended
with DL-safe rules. Indeed, if we consider all rules and ax-
ioms as first-order logic formulae, then the existential quan-
tifiers in the conclusion of (3) occur in the scope of (i.e.,
“depend on”) an arbitrary number of nominal schema as-
signments. In contrast, existential quantifiers in DLs (with
or without DL-safe rules) occur only in axioms that share
exactly one variable between the left and right formula. In
other words, using Skolemization to eliminate quantifiers,
one only needs unary Skolem functions in standard DLs, but
Skolem functions of arbitrary arity with nominal schemas.

A related property of DLs with nominal schemas is that
they cannot be normalized in the sense of Definition 2. Our
complexity results allow us to show the following theorem
at the end of Section 7; the case of SROIQ remains open.
Theorem 4. No DL LV with ELV ⊆ LV ⊆ SHOIQV is
normalizable.

5 Domain Size Matters
Several of our results are based on transforming a knowledge
base by using fresh individuals to represent classes. For ex-
ample, for a concept Car, we can introduce an individual
cCar and express a fact Car(a) as type(a,cCar). However,
DLs that support nominals can interfere with this encoding.
Example 1. Consider a knowledge base KB contain-
ing the TBox axiom > v {a,b} and the ABox axioms
A(a),¬B(a),¬A(b),B(b),C(a),C(b). Clearly, KB is satis-
fiable. If we represent classes by individuals as above,
we obtain the knowledge base KB′ with ABox ax-
ioms type(a,cA),¬type(a,cB),¬type(b,cA),type(b,cB),
type(a,cC),type(b,cC). Since every model I of KB′ has to
map any of cA,cB,cC to either aI or bI , KB′ is unsatisfiable.

To address this obstacle, we show how an L reasoning
problem can be transformed in such a way that it is legiti-
mate to focus attention on models with unbounded domains.
The following notion will come handy for this.
Definition 4. We call a knowledge base KB unbounded if,
for every model I of KB, there is a model J of KB with
infinite domain such that I |= α iff J |= α for every atomic
concept assertion α .

Unboundedness is guaranteed in some situations. For ex-
ample, every SRIQ knowledge base not using the univer-
sal role is unbounded (Mehdi and Rudolph 2011, Lemma 1),
and every Horn-SROIQ knowledge base that has a model
with a domain size > 1 is unbounded as well. In the re-
mainder of this section, we show how to transform bounded
knowledge bases into unbounded ones. We can then focus
on unbounded knowledge bases in the rest of the paper.

Concept expressions of the form ∀U.C complicate the
conversion of a knowledge base into an unbounded one, es-
pecially if the availability of other modeling features cannot
be assumed. However, one can remove such expressions in a
way that (next to using the universal role U which is present
anyway) only requires features of EL.

Definition 5. Let remuniv(KB) be the knowledge base ob-
tained from KB by performing the following steps for each
concept expression of the form ∀U.C contained in KB, where
A∀U.C and Aux∀U.C are fresh concept names:

• substitute all occurrences of ∀U.C by A∀U.C

• add the following axioms to KB:

∃U.A∀U.C v C (4)
> v ∃U.Aux∀U.C (5)

∃U.(Aux∀U.C uC) v A∀U.C (6)

Lemma 5. remuniv(KB) is a conservative extension of KB.

Proof. First, we show that every model of remuniv(KB)
is a model of KB by observing that remuniv(KB) |=
A∀U.C ≡ ∀U.C for all the replaced expressions ∀U.C. To
this end, we make a detour via first-order logic. We
start with the Axiom (4) and obtain ∃U.A∀U.C v C ⇒
∀x.(∃y.(A∀U.C(y))→C(x)) ⇒ (∃y.(A∀U.C(y))→∀x.C(x)) ⇒
∀y.(A∀U.C(y)→∀x.C(x))⇒ A∀U.C v ∀U.C.

For the other direction, we start from Axiom (6),
∃U.(Aux∀U.CuC) v A∀U.C, translate it into first-order logic:
∀x.(∃y.(Aux∀U.C(y)∧C(y))→ A∀U.C(x)), transform it into
∀x.(∀y.(¬Aux∀U.C(y)∨¬C(y))∨A∀U.C(x)), and further into
∀y.(¬Aux∀U.C(y)∨¬C(y)∨∀x.(A∀U.C(x))) to finally arrive at
∀y.(Aux∀U.C(y)→(¬C(y)∨∀x.(A∀U.C(x)))). Since the FOL
version of Axiom (5) is simply ∃y.Aux∀U.C(y), we can use
this to instantiate the premise of the last rule and thus obtain:
∃y.(¬C(y)∨∀x.(A∀U.C(x))) ⇒ ∀x.(∃y.(¬C(y))∨A∀U.C(x))
⇒ ∀x.(¬∀y.(C(y))∨A∀U.C(x))⇒ ∀x.(∀y.(C(y))→A∀U.C(x))
⇒∀U.C v A∀U.C.

Next, we have to show that every model I of KB can be
extended to a model J of remuniv(KB) by providing ap-
propriate extensions for the fresh concept names. This can
be achieved via AJ

∀U.C := (∀U.C)I and by letting AuxJ∀U.C :=
>I if (¬C)I = /0 and AuxJ∀U.C := (¬C)I otherwise.

Since remuniv is clearly polynomial, we do not have to
consider expressions ∀U.C below. Our next transformation
to produce an unbounded knowledge base is reminiscent of a
technique used to allow the introduction of new individuals
for metamodeling (Glimm, Rudolph, and Völker 2010).

Definition 6. Let KB be an L knowledge base for a stan-
dard DL L, without expressions of the form ∀U.C. We define
unbound(KB) as follows, where Top is a fresh concept:

1. Recursively, outside-in, we replace all concept subex-
pressions C in all axioms by TopuC.

2. If L allows for universal quantification, we add a GCI
>v ∀r.Top for every (possibly inverse) role r 6=U in KB.

3. For every individual name a in KB, we add Top(a); if no
individual occurs, we introduce a fresh one anew.
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Example 2. Consider our knowledge base KB from Ex-
ample 1; unbound(KB) contains the axioms Top v Topu
{a,b}, Top(a), Top(b), Topu A(a), Topu¬(Topu B)(a),
Topu¬(TopuA)(b), TopuB(b), TopuC(a), TopuC(b).

Obviously, the described transformation can be computed
in polynomial time and outputs a knowledge base of poly-
nomial size. Moreover, for any standard DL L, and any L
knowledge base, unbound(KB) is an L knowledge base.
Lemma 6 (Properties of unbound).
1. For any knowledge base KB and any model J of

unbound(KB), there is a model I of KB such that I |=
A(a) if and only if J |= TopuA(a) for every atomic con-
cept assertion A(a).

2. For any model I of a knowledge base KB, there is a
model J of unbound(KB) with an infinite domain such
that I |= A(a) if and only if J |= TopuA(a) for every
atomic concept assertion A(a).

3. unbound(KB) is unbounded.
4. KB |= A(a) if and only if unbound(KB) |= TopuA(a).

Proof. Claim (1). We provide a construction of I. Given
a model J = (∆J , ·J ) of unbound(KB) we define I =
(∆I , ·I) as follows: ∆I := TopJ (note that nonemptyness
is guaranteed since TopJ contains at least one named indi-
vidual by definition of unbound), aI := aJ for all a ∈ NI ,
AI := AJ ∩∆I for A ∈ NC, and rI := rJ ∩ (∆I ×∆I) for
r ∈ NR. We can now show by induction on the structure of
the concept expressions that CI = topbound(C)J for any
concept expression C occurring in KB, where topbound(C)
denotes the result of replacing, recursively and outside-in,
all concept subexpressions D of C (including C itself) by
TopuD. Base cases and induction steps are straightforward
for all cases except for universal quantification.

Thus, consider C = ∀r.D, with topbound(C) = Top u
∀r.topbound(D) and assume DI = topbound(D)J holds
by induction hypothesis. Since C occurs in KB, the latter
must be formulated in a DL supporting universal quantifica-
tion, thus unbound(KB) must by definition contain the ax-
iom > v ∀r.Top. Hence y ∈ TopJ for all 〈x,y〉 ∈ rJ . Now
we observe equivalence of the following statements: x ∈CI

⇐⇒ x ∈ (∀r.D)I ⇐⇒ x ∈ ∆I and ∀y with 〈x,y〉 ∈ rI holds
y ∈ DI ⇐⇒ x ∈ TopJ and ∀y with 〈x,y〉 ∈ rJ ∩ (∆I ×∆I)
holds y∈ topbound(D)J ⇐⇒ x∈ TopJ and ∀y with 〈x,y〉 ∈
rJ ∩ (TopJ × TopJ ) holds y ∈ topbound(D)J ⇐⇒ x ∈
TopJ and ∀y with 〈x,y〉 ∈ rJ holds y∈ topbound(D)J ⇐⇒
x ∈ (Topu∀r.topbound(D))J ⇐⇒ x ∈ topbound(C)J .

Having established that CI = topbound(C)J , we can
show that satisfaction of all axioms from unbound(KB) in
J directly ensures satisfaction of all axioms from KB in I.
We also find, for any individual name a and concept name A,
that: I |= A(a)⇐⇒ aI ∈ AI ⇐⇒ aI ∈ AJ ∩∆I ⇐⇒ aJ ∈
AJ ∩TopJ ⇐⇒J |= TopuA(a) as claimed.

Claim (2). We assume a model I = (∆I , ·I) of KB and
construct J = (∆J , ·J ) as follows: ∆J := ∆I ∪N; aJ := aI
for all a ∈ NI , where aJ

new ∈ ∆I if anew has been intro-
duced in unbound(KB); AJ := AI for all A∈NC interpreted
by I; TopJ := ∆I ; and rJ := rI for r ∈ NR. Again, we
can use induction to show that the correspondence CI =

topbound(C)J holds and conclude that all axioms from
unbound(KB) are valid in J . Clearly, J has an infinite do-
main. We also obtain for any concept name A and individ-
ual name a the following equivalence: J |= TopuA(a)⇐⇒
aJ ∈ AJ ∩TopJ ⇐⇒ aI ∈ AI ∩∆I ⇐⇒I |= A(a).

Claim (3). This is a direct consequence of the preceding
two. For an arbitrary model J of unbound(KB) we create
the model I of KB as in the proof of Claim (1). From I, we
then construct a model J ′ of unbound(KB) as in the proof
of Claim (2). Then we know that J and J ′ satisfy the same
atomic concept assertions and J ′ has an infinite domain.

Claim (4). This is equivalent to the statement that KB 6|=
A(a) iff unbound(KB) 6|= Top u A(a). This can be easily
shown by seeing that any model of KB not satisfying A(a)
can be turned into a model of unbound(KB) not satisfying
TopuA(a) (by Claim (2)) and vice versa (by Claim (1)).

Example 3. Referring to Example 2, we find that
unbound(KB) is satisfiable and, unlike KB, it even has a
model J with infinite domain ∆J = {aJ ,bJ } ∪N. More-
over we find, e.g., the correspondence between KB entailing
AvC and unbound(KB) entailing TopuAv TopuC.

6 Data Complexities
From Theorem 1 and the known complexity results for
various DLs, we obtain the following upper bounds for
the data complexity: P for ELV++ (Baader, Brandt, and
Lutz 2005), EXPTIME for SHOIV , SHOQV , and Horn-
SHOIQV (Hladik 2004; Glimm, Horrocks, and Sattler
2008; Ortiz, Rudolph, and Simkus 2010), NEXPTIME for
SHOIQV (Tobies 2001), 2EXPTIME for Horn-SROIQV
(Ortiz, Rudolph, and Simkus 2010), and N2EXPTIME for
SROIQV (Kazakov 2008).1 We can obtain matching hard-
ness results in many cases, even for much simpler DLs.

Theorem 7. 1. The data complexity of ELV is P-hard.
2. The data complexity of Horn-ALCV is EXPTIME-hard.
3. The data complexity of ALCIFV is (co)NEXPTIME-

hard.

For ELV , this already follows from the hardness of data
complexity for EL. To prove the other cases, we apply a
generic method of expressing TBoxes as ABoxes.

Definition 7. Consider a DL L with EL ⊆ L ⊆ SROIQ
and an L TBox axiom α = C v D. The template for α , de-
noted tmpl(α), is defined as follows. Let σ1, . . . ,σn be a list
of all individual names and concept names in α . Let Aα be a
fresh concept name, and let gci, type, and symbi (1≤ i≤ n)
be fresh role names. Then tmpl(α) is the LV axiom

∃gci.(Aα u∃symb1.{x1}u . . .usymbn.{xn})uC′ v D′

where C′ and D′ are obtained from C and D, respectively,
by replacing each concept name σi by ∃type.{xi} and each
individual name σ j by x j.

1Most complexity upper bounds for DLs above ALCOIN are
only known to hold when assuming unary coding of numbers; our
results inherit this restriction.
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The template instance for α , denoted tins(α), is the fol-
lowing set of ABox assertions:

{Aα(cα),symb1(cα ,cσ1), . . . ,symbn(cα ,cσn)}

where cα and cσ1 , . . . ,cσn are fresh individual names.
We extend temp and tins to sets of axioms by taking the

union of the results, and to ABox axioms A(c) and r(c,d) by
expressing them as TBox axioms {c} v A and {c} v ∃r.{d},
respectively. For an unbounded knowledge base KB with
ABox A, TBox T , and RBox R, we define tt(KB) as the set
{> v ∃gci.{x}}∪ temp(A∪T )∪ tins(A∪T )∪R, where
we assume that the same individuals cσ for representing a
symbol σ in any translation.

It is easy to verify the following correctness property,
where the axiom>v∃gci.{x} ensures that the template in-
stantiation individuals cα are universally reachable via gci.

Lemma 8. KB |= A(c) iff tt(KB) |= ∃type.{cA}(c).
This yields a polynomial reduction from one reasoning

problem to another. We can improve this to obtain a reduc-
tion where the size of the TBox of tt(KB) is not affected by
the size of NI , NC, or the TBox of KB. Indeed, since tmpl(α)
contains only role names and variable names, we only need
one template for each variant of α obtained by uniformly re-
naming concepts and individuals. In particular, if the given
DL admits a finite number of normal forms, then it is enough
to include one template for each axioms that can be obtained
by uniform renaming of roles in some normal form. If NR is
fixed, this yields a fixed TBox and also a fixed RBox (since a
fixed NR only allows for a bounded number of RBox axioms
in normal form). Summing up, all standard reasoning prob-
lems for a normalizable DL L that can be expressed with a
fixed, finite set of role names NR can be expressed in LV
using a fixed, finite TBox and RBox.

Lemma 9. Let L[NR] be the DL L restricted to signatures
that use a fixed, finite set NR of role names. If L[NR] is nor-
malizable using only roles from NR, and its combined com-
plexity is hard for a complexity class C that includes P, then
so is the data complexity of LV .

This allows us to show Theorem 7. Indeed, the known
hardness proofs for Horn-ALC (Krötzsch, Rudolph, and
Hitzler 2013) and ALCOIF (Tobies 2000) are based on
constructing a sequence of knowledge bases that use a fixed,
finite set of role names. Hence, the respective complexities
are the claimed lower bounds for the data complexities of
Horn-ALCV and ALCIFV .

Interestingly, Lemma 9 is not applicable to SROIQV ,
since the known N2EXPTIME-hardness proof for SROIQ
relies on an unbounded set of role names (Kazakov 2008).
Indeed, it turns out that our N2EXPTIME upper bound
for the data complexity of SROIQV can be improved to
NEXPTIME, which is tight according to Theorem 7. With a
very similar argument one can establish an EXPTIME upper
bound for data complexity of Horn-SROIQV .

Theorem 10. The data complexity of SROIQV is in
NEXPTIME, assuming unary coding of numbers. The data
complexity of Horn-SROIQV is in EXPTIME.

Proof. In order to show our claim, we deploy a two-step re-
duction and analyze its effects on the knowledge base. Start-
ing from the SROIQV knowledge base KB = (A,T ,R),
we obtain the SROIQ knowledge base KB′ = (A,T ′,R)
by grounding KB. Next, we obtain the ALCHOIQ knowl-
edge base KB′′ = (A,T ′′, /0) by applying the RBox re-
moval transformation introduced by Kazakov (2008). An-
alyzing the grounding step, we find that size(T ′) ≤
size(T ) + size(A)size(T ). Moreover, for the RBox removal
step, we obtain size(T ′′) ≤ 2size(R) · size(T ′). Therefore we
get size(KB′′) = size(A) + size(T ′′) ≤ size(A) + 2size(R) ·
size(T ′) ≤ size(A) + 2size(R) · (size(T ) + size(A)size(T )).
Since T and R are fixed, we find that KB′′ is polynomial
in the size of A. Since the combined complexity of standard
reasoning in ALCHOIQ is in NEXPTIME for unary cod-
ing of numbers (Tobies 2001), we have proven our claim.
The same size argument as above holds for the transforma-
tion of Horn-SROIQV into Horn-SROIQ (via ground-
ing) and further into Horn-ALCHOIFb, which has a com-
bined complexity of EXPTIME (Ortiz, Rudolph, and Simkus
2010). This shows the claim for Horn-SROIQ.

7 Combined Complexities
We already know the combined complexities of ELV
(EXPTIME, cf. Section 4) and SROIQV (N2EXPTIME).
The N2EXPTIME argument for SROIQV (Krötzsch et al.
2011) can be directly applied to Horn-SROIQV (Ortiz,
Rudolph, and Simkus 2010) to establish 2EXPTIME com-
bined complexity. From Theorem 1 and the known com-
plexity results we further obtain that the upper bound for
the combined complexity of SHOIV , and SHOQV is
2EXPTIME (Hladik 2004; Glimm, Horrocks, and Sattler
2008). The upper bounds Theorem 1 yields for SHOIQV
and Horn-SHOIQV coincide with those of SROIQV
and Horn-SROIQV , respectively. It turns out that these
bounds are tight: reasoning in DLs above Horn-ALCV is
2EXPTIME-hard, and reasoning in DLs above ALCIFV is
(co)N2EXPTIME-hard.

To show these results, we employ a general technique
of encoding “axiom templates” that can encode an expo-
nential number of concept inclusion axioms in polynomial
space. We call this expressive feature GCI iterator since
it iterates over a list of indexed concept names to pro-
duce concrete axioms. For example, the GCI iterator A[i]v
A[i+1] [i= 1, . . . ,n] encodes n axioms of the form Ai v
Ai+1. We will show that GCI iterators can be expressed poly-
nomially using nominal schemas, even when assuming bi-
nary coding of the number n. This allows us to encode ex-
ponentially large knowledge bases using polynomially many
axioms with nominal schemas. In particular, we will do this
for the specific knowledge bases that have been used to show
the known hardness results for Horn-ALC and ALCOIF ,
thus boosting the complexity by one exponential.
Definition 8. Consider a DL signature 〈NI ,NC,NR〉. A GCI
iterator over this signature is an expression

C v D [i= 1, . . . ,n]

where n ≥ 1 and C v D is a general concept inclusion over
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〈NI ,NC ∪{A[1], . . . ,A[n+1],A[i],A[i+1] | A ∈ NC},NR〉.
Note that i is a literal part of the syntax, not a placeholder
for a specific number. The additional concept names A[. . .]
are assumed to be distinct from all concepts in NC.

The expansion of a GCI iterator is the set of GCIs over
〈NI ,NC ∪{A[1], . . . ,A[n+1] | A ∈ NC},NR〉 obtained by re-
placing, for each i ∈ {1, . . . ,n}, all concepts A[i] by A[i],
and all concepts A[i+1] by A[i+1].

For a DL L, we let LGI be L extended by GCI iterators
as axioms. The semantics of an LGI knowledge base KB is
given by the translation into L through replacing all GCI
iterators by their expansions, denoted expand(KB).

Note that, assuming binary encoding of the value n, GCI
iterators allow for an exponentially more succinct represen-
tation of their expansion.

Next, we will show that standard reasoning in a DL LGI
without nominal schemas can be polynomially reduced to
standard reasoning in LV . We restrict attention to the case
where the upper bound n in all GCI iterators is of the form
2` for some `≥ 1. Arbitrary n could be supported with some
additional effort, but this is not relevant for our proofs.
Definition 9. Consider ` ≥ 1, role names bit1, . . . ,bit`,
and individual names 0 and 1. For a list b1, . . . ,b` with bi ∈
{0,1} ∪NV , we define Bits(b1, . . . ,b`) :=

d`
i=1∃biti.{bi}.

Consider additional role names num, this, and next.
KBnum consists of the following axioms, for all 1≤ i≤ `:

>v ∃num.∃this.Bits(0, . . . ,0)
∃this.Bits(x1, . . . ,xi,0,1, . . . ,1)≡ ∃next.Bits(x1, . . . ,xi,1,0, . . . ,0)
∃num.∃next.Bits(x1, . . . ,x`)≡ ∃num.∃this.Bits(x1, . . . ,x`)

Given a GCI iterator γ of the form C v D [i= 1, . . . ,2`],
we define vexpand(γ) to be the axiom N uC′ v D′, where
N = ∃num.(∃this.Bits(x1, . . . ,x`)u∃next.Bits(y1, . . . ,y`))
and C′ and D′ are obtained from C and D, respectively, by
the following replacements:
• A[i] is replaced by ∃type.(A′uBits(x1, . . . ,x`)),
• A[i+1] is replaced by ∃type.(A′uBits(y1, . . . ,y`)),
• A[k] is replaced by ∃type.(A′ u Bits(b1, . . . ,b`)) where

b1, . . . ,b` is the binary encoding of k,
where A′ is a fresh concept name for each A ∈ NC.

For an unbounded LGI knowledge base KB = 〈A,T ,R〉
where all GCI iterators range from 1 to 2`, the LV knowl-
edge base itov(KB) is obtained by adding the axioms KBnum
and replacing each GCI iterator γ ∈ KB with vexpand(γ).
Theorem 11. For any DLL, itov provides a polytime reduc-
tion from standard reasoning in LGI to standard reasoning
in LV: for every unbounded LGI knowledge base KB and L
axiom A(c), we have KB |= A(c) iff itov(KB) |= itov(A(c)).

Proof. We write bin(k) for the list of ` bits of a number
k < 2` in binary encoding. The minimal model for KBnum
is one where every individual has one num-successor in con-
cept ∃this.Bits(bin(k)) for each number 0≤ k < 2`. More-
over, if k < 2`−1 (i.e., bin(k) contains a 0), the correspond-
ing successor also is in the class ∃next.Bits(bin(k+1)).

Now every model I |= expand(KB) with I 6|= A(c) can
be transformed into a model I ′ |= itov(KB) with I ′ 6|=

itov(A(c)). By unboundedness, we can assume that the do-
main of I contains infinitely many individuals. We can thus
find distinct individuals to represent bits and numbers, and
we interpret num, this, next, and biti according to the
minimal model. Moreover, for all A ∈ NC and 0 ≤ k < 2`,
we add an element δA[k] with δA ∈ (A′ u Bits(bin(k)))I

′
,

and we set 〈δ ,δA[k]〉 ∈ type iff δ ∈ A[k]I . Roles and con-
cepts that are not of the form B[k] are interpreted as in I.
It is easy to see that I ′ has the claimed properties. For the
converse, note that the minimal model of KBnum is indeed
found in every model of itov(KB). Thus, if I ′ |= itov(KB)
with I ′ 6|= itov(A(c)), then there is more general interpre-
tation I ′′ |= itov(KB) with I ′′ 6|= itov(A(c)) where KBnum
is interpreted as in the minimal model. Using similar cor-
respondences as before, we can construct a suitable model
I |= expand(KB) with I 6|= A(c).

We now use Theorem 11 to show additional hardness re-
sults by using GCI iterators to re-encode known hardness
proofs for exponentially large knowledge bases.

Theorem 12. The combined complexity of Horn-ALCV is
2EXPTIME-hard.

Proof. The known EXPTIME-hardness result for Horn-ALC
is based on reducing the problem of deciding if a word w is
accepted by an alternating Turing machine (ATM) in poly-
nomial space to the problem if a Horn-ALC knowledge base
entails a GCI, where both knowledge base and GCI are of
polynomial size w.r.t. |w| (Krötzsch, Rudolph, and Hitzler
2013). One can generalize this construction to arbitrary (pos-
sibly non-polynomial) space bounds s, leading to knowledge
base of size polynomial in s. We modify the encoding to be
able to express this knowledge base in Horn-ALCGI, so that
the resulting knowledge base is logarithmic in the size of s.
Thus, we can simulate exponential space ATM runs with a
polynomial Horn-ALCGI knowledge base.

Let s be an arbitrary space bound. To encode an s-space
ATM 〈Q,Σ,∆,q0〉, the original encoding uses the following
concept names: Aq for q ∈ Q (ATM is in state q), Hi for
i = 1, . . . ,s (ATM head is at position i), Cσ ,i with σ ∈ Σ

and i = 1, . . . ,s (tape position i contains symbol σ ), and A
(ATM accepts this configuration). Accordingly, we use con-
cepts Aq, H[i], Cσ [i], and A. Roles Sδ encode δ -successor
configurations. The original encoding of ATM transitions
δ = 〈q,σ ,q′,σ ′,r〉 can then be expressed as follows:

AquH[i]uCσ [i]v∃Sδ .(Aq′uH[i+1]uC′σ [i]) [i=1, . . . ,s]

Transitions with leftwards head movement are expressed
analogously. To apply Theorem 11, we use the same range
for all GCI iterators. This has the side effect that the tape
has cells 1, . . . ,s+ 1, while i ranges over 1, . . . ,s and i+1
ranges over 2, . . . ,s+ 1; thus, when using i in axioms that
refer to all tape positions, we generally assume that there is
also one one more axiom for covering s+1 as well.

The accepting conditions are modelled by Aq u∃Sδ .A v
A (for existential states q) and Aq u H[i] u Cσ [i] ud

δ∈∆̃
(∃Sδ .A) v A [i=1, . . . ,s] (for universal states q with
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possible transitions ∆̃ for symbol σ ). To ensure preserva-
tion of the ATM memory between configurations, the orig-
inal proof uses axioms H j uCσ ,i v ∀Sδ .Cσ ,i for all i 6= j.
This cannot be expressed with GCI iterators. Instead, we
introduce new concepts L[i] (cell i is left of the head) and
R[i] (cell i is right of the head), which we can axioma-
tize using GCI iterators H[i] v R[i+1], R[i] v R[i+1],
H[i+1]v L[i], and L[i+1]v L[i], all with the same range
as before. The rules of memory preservation can now be ex-
pressed with the GCI iterators L[i]uCσ [i]v ∀Sδ .Cσ [i] and
R[i]uCσ [i]v ∀Sδ .Cσ [i], for all δ ∈ ∆ and σ ∈ Σ.

Finally, the initialization of the tape in the original proof
simply defines the tape contents for each position. To initial-
ize the s−|w| many blank cells after the input word, we use
concepts B[i] and axioms B[i]v B[i+1] and B[i]vC�[i].
The initial configuration is now described with the concept

Iw := Aq0 uH1uCσ1 [1]u . . .uCσ|w| [|w|]uB[|w|+1].

Let KBM,w be the knowledge base that contains all of the
above GCIs. It is a direct consequence from (Krötzsch,
Rudolph, and Hitzler 2013) that KBM,w |= Iw v A if the
ATM M accepts w in space s. Since GCI iterators can en-
code the range [i=1, . . . ,s] in space logarithmic in s, reason-
ing with a polynomially large KBM,w can solve the word
problem of exponential space ATMs, which is 2EXPTIME-
hard. The claim thus follows from Theorem 11.

Theorem 13. The combined complexity of ALCIFV is
(co)N2EXPTIME-hard.

Proof. We proceed with the case ofALCOIF . We build on
the proof of Tobies (2000), which reduced the tiling prob-
lem for exponential grids to ALCOIF consistency check-
ing. To construct an exponential grid, one encodes coor-
dinates of tiles in binary numbers, represented by concept
names X1, . . . ,X` (horizontal position) and Y1, . . . ,Y` (verti-
cal position), respectively. We will express these by indexed
concepts X [i] and Y [i]. Horizontal neighbours are connected
by a role h, vertical ones by a role v. Functionality restric-
tions and inverse functionality restrictions on h and v ensure
uniqueness of neighbours. The concept with the maximal
coordinates (right upper corner) is subsumed by a nominal,
ensuring that the potentially diverging structure of h and v
successors collapses into one grid.

We need to express that the encoded position of the right
(and upper) neighbour is the successor. For numbers of lin-
ear length, this can be done as in Definition 9; to allow for
numbers of exponential length, we use auxiliary concepts
X̂ [i] to express that all bits up to position i−1 are set to true,
i.e., that the conjunction

di−1
j=1 X [ j] holds. Ŷ [i] plays the same

role for vertical positions. The propagation of X-coordinates
can now be expressed with the following GCI iterators, all
of which we assume to have range [i= 1, . . . ,`] for some `:

>v ∃h.>u61h.>u61h−.> (7)

>v X̂ [1] X̂ [i]uX [i]≡ X̂ [i+1] (8)

X̂ [i]v (X [i]u∀h.¬X [i])t (¬X [i]u∀h.X [i]) (9)

¬X̂ [i]v (X [i]u∀h.X [i])t (¬X [i]u∀h.¬X [i]) (10)
X [i]v ∀v.X [i] ¬X [i]v ∀v.¬X [i] (11)

Axiom (7) ensures a chain of h successors. Axioms (8) ex-
press the relation of X̂ [i] and X [i] explained above. Axioms
(9) and (10) characterize the binary increment of numbers.
Axioms (11) ensure that horizontal positions are preserved
among vertical neighbours. We assume the same formula-
tion for the vertical propagation, swapping h with v and X
with Y , respectively. Note that i+1 only occurs in (8); in-
deed, the bits X [`+ 1] and Y [`+ 1], which exist due to our
uniform choice of range, have no significance in our mod-
elling. To “start” the grid, we assert that there is a lower left
corner: {a} v ¬X [i]u¬Y [i]. To “close” the grid, we add a
nominal to the upper right corner: X̂ [`+1]uŶ [`+1]v {o}.
Note that the grid will continue to have successors beyond
this point, due to axiom (7), but these do not need to form a
grid and will not affect whether the tiling problem has a so-
lution (one can always ensure that there are tiles to continue
in non-grid structures only).

Formally, a tiling problem is given by a set of tiles
D= {D1, . . . ,Dn} together with horizontal and vertical com-
patibility relations V,H ⊆ D ×D. Using concept names
Di (which are not iterated over), we can axiomatize cor-
rect tilings by the axioms > v

⊔
1≤i≤d

(
Di u

d
j 6=i¬D j

)
,

Di v∀v.
⊔
〈Di,D j〉∈V D j, and Di v∀h.

⊔
〈Di,D j〉∈H D j. It is easy

to see that this construction reduces the tiling problem on
a grid of size 2` × 2` to checking the consistency of an
ALCOIFGI knowledge base of size polynomial in log(`)
(since ` is encoded in binary in GCI iterators). Since the
double-exponential tiling problem is N2EXPTIME-hard, the
claim follows from Theorem 11.

Proof of Theorem 4. As the number of nominal schemas in
normalized axioms is bounded, a normalized knowledge
base can be grounded polynomially. Thus, the combined
complexity of any normalizable DL LV coincides with the
combined complexity ofL. It is known that P ( EXPTIME (
2EXPTIME and that NEXPTIME ( N2EXPTIME. Together
with our previous results, this shows the claim.

8 An Alternative Semantics
As discussed in Section 3, our semantics of nominal
schemas depends on the given set NI of individual names. If
we allow NI to be empty, then this can even affect the entail-
ment of standard DL axioms. For example, > v ∃r.{x} 6|=
> v ∃r.> if NI = /0. However, in most cases, only entail-
ments of axioms with nominal schemas are affected, as dis-
cussed for (1) in Section 3. Such a dependence on the set of
“known” symbols might be considered to be in conflict with
the open-world assumption. The ontology language OWL
considers a potentially infinite signature of URIs (W3C
OWL Working Group 27 October 2009).2

To address this problem, one could modify the semantics
of nominal schemas by assuming the set NI to be infinite
and fixed. A severe practical consequence of this sugges-
tion is that ground(α) and ground(KB) become infinite if
they contain any nominal schemas. While this does not pose
problems for any of the definitions as such, we seem to lose

2On the other hand, OWL also provides ways to explicitly de-
clare a finite set of signature symbols in an ontology.
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the upper complexity bounds of Theorem 1. However, we
will show that the alternative semantics does not actually af-
fect reasoning complexities, and in fact agrees with the stan-
dard semantics in many cases.

In the rest of this section, we assume NI to be infinite, and
use N̄ for a set N̄ ⊆ NI that corresponds to our earlier finite
signature. We use |=N̄ to denote standard entailment w.r.t. N̄,
and |=∞ to denote entailment w.r.t. the infinite NI .

Theorem 14. For any standard DL L, any LV knowledge
base KB, any LV axiom and any finite set N̄ which contains
more individual names than the sum of the number of indi-
vidual names used in KB∪α and the number of variable
names in α , we have KB |=N̄ α iff KB |=∞ α .

Proof. “If.” Assume KB |=∞ α . We pick a function ψ : NI→
N̄ such that ψ(a) = a for all a ∈ N̄. Note that such a ψ al-
ways exists since N̄ is nonempty by assumption. Lifting ψ to
concept expressions, axioms and sets of axioms in the usual
way, we observe that ψ(ground∞(KB)) = groundN̄(KB),
as well as ψ(ground∞(α)) = groundN̄(α). Moreover,
from ground∞(KB) |= β follows that ψ(ground∞(KB)) |=
ψ(β ) for all β ∈ ψ(ground∞(α)). Hence we obtain
groundN̄(KB) |= groundN̄(α) and therefore KB |=N̄ α .

“Only if.” Assume KB |=N̄ α . Let V = {x1, . . .xn} be the
set of nominal variables occurring in α . Then, by assump-
tion, we find n distinct individuals {a1, . . . ,an} ⊆ N̄ not oc-
curring in KB ∪ α . Let α ′ = α[x1/a1, . . . ,xn/an]. Clearly
KB |=N̄ α ′. Then also KB |=∞ α ′, since the grounding of KB
with individuals from N̄ is contained in the grounding of KB
with all individuals. In order to show ground∞(KB) |=α , we
will show that ground∞(KB) |= β for all β ∈ ground∞(α).
So, given such a β and the variable assignment val of
V = {x1, . . .xn} to NI that produces β from α , we pick a
surjective mapping ϕ : NI→ NI such that ϕ(a) = a for every
individual name mentioned in KB∪α and ϕ(ai) = val(xi)
(this is possible since NI is infinite). Lifting ϕ to con-
cept expressions, axioms and sets of axioms in the usual
way, it is obvious that KB |=∞ α ′ =⇒ ground∞(KB) |=
α ′ =⇒ ϕ(ground∞(KB)) |= ϕ(α ′) =⇒ ground∞(KB) |=
ϕ(α ′) =⇒ ground∞(KB) |= β =⇒ KB |=∞ β . Note that
ϕ(ground∞(KB)) = ground∞(KB) by construction.

The previous proof requires that the unique name assump-
tion (UNA) is not made, as is standard for all DLs considered
in this paper. Moreover, imposing the unique name assump-
tion in our setting would enforce all models to have an in-
finite domain, which makes domain-restricting axioms such
as >v {a,b,c} unsatisfiable.

Theorem 14 asserts that the two semantics coincide when-
ever the finite individual set is “large enough” for the consid-
ered knowledge base and tested consequence. For the special
case of entailment of axioms without nominal schemas, it
suffices if there is at least one individual name.

Corollary 15. For any standard DL L, LV-reasoning com-
plexities (both data and combined) for |= and |=∞ coincide.

We have shown that entailment checking w.r.t. |=∞ can be
reduced to entailment checking w.r.t. |=N̄ for a suitable N̄.
On the other hand, any such reasoning task w.r.t. |=N̄ can

be reduced to reasoning w.r.t. |=∞ if disjunction is available,
since KB |=N̄ α iff KB∪{{x} v

⊔
a∈N̄{a}} |=∞ α .

The alternative semantics also comes handy when analyz-
ing expressivity, since one cannot finitely express nominal
schemas using grounding. We can use this to show that LV
is generally more expressive than L extended with DL-safe
rules. Consider the axiom

{x} v ∃r.∃r.∃r.{x}. (12)
Now, suppose there exists a SROIQ knowledge base KB
and a set RB of DL-safe rules (where w.l.o.g. all used con-
cept expressions are concept names) such that KB∪RB is
a conservative extension of the above axiom. Now we pick
an individual name a not mentioned in KB∪RB and define
two interpretations I = (∆I , ·I) and J = (∆J , ·J ) as fol-
lows: ∆I = ∆J = {b1,b2,b3 | b ∈ NI} ∪N, bI = bJ = b1
for all b ∈ NI , rI = {(b1,b2),(b2,b3),(b3,b1) | b ∈ NI},
and rJ = rI \ {(a1,a2),(a2,a3),(a3,a1)}. Note that I is a
model of the above axiom while J is not. Consequently,
by assumption there must be an extension I ′ of I satis-
fying KB∪RB |= I ′ but any extension J ′ of J must not
be a model of KB∪RB. Now we pick a bijective function
ϕ : NI \ {a} → NI with ϕ(b) = b for all b mentioned in
KB∪RB and use it to define a renaming ρ of ∆I′ as follows:
ρ(bi) := ci with c=ϕ(b) for all b∈NI \{a} and i∈{1,2,3},
ρ(ai) := i for all i ∈ {1,2,3} and ρ(i) := i+3 for all i ∈ N.
Now let K be the interpretation obtained from I ′ via the re-
naming ρ . It is easy to check that K is an extension of J .
We also find that K must be a model of KB since K and
I ′ are isomorphic as far as the used signature is concerned.
Moreover, K is a model of RB since assuming, for a rule
R∈RB, a violating variable assignment var, ϕ− ◦var would
be a violating assignment for I ′. Thus we have found an ex-
tension of J that is a model of KB∪RB, which contradicts
our initial assumption. Therefore, the above axiom cannot
be expressed by SROIQ extended by DL-safe rules.

9 Conclusion and Future Work
We have clarified the data and combined complexities
for nominal-schema-extensions of all DLs between EL
and SROIQ. The techniques developed for this pur-
pose (TBox-to-ABox internalization and GCI iterators) are
generic and directly applicable to DLs outside this range.
For example, it is an obvious consequence of our findings
and the results from (Rudolph, Krötzsch, and Hitzler 2008b)
that adding arbitrary Boolean role constructors on simple
roles to any DL above ALCIFV does not increase data
or combined complexity; the same holds if conjunctions on
simple roles are added to ELV++. Adding the concept prod-
uct × (Rudolph, Krötzsch, and Hitzler 2008a) does not im-
pact complexities either. Likewise, it is trivial to establish
EXPTIME completeness (data) and 2EXPTIME complete-
ness (combined) for ZOQV and ZOIV (Calvanese, Eiter,
and Ortiz 2009).

The most obvious avenue for future work is the investiga-
tion of the complexities for conjunctive query answering.
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