
On ALSV Rules Formulation and Inference

Grzegorz J. Nalepa and Antoni Ligęza
Institute of Automatics,

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl, ligeza@agh.edu.pl

Abstract

In this paper knowledge representation and inference issues
for rule-based systems are discussed. The paper deals with
improving the logical calculus of Set Attributive Logic found-
ing an expressive rule language XTT2. Representation exten-
sions are introduced, and practical inference rules provided.
The original includes an extended state specification, as well
as interpreter design. Examples of rule analysis are given. Vi-
sual design tool HQed assuring rule quality is also presented.

Introduction

The expressiveness of knowledge representation is crucial
for intelligent systems (van Harmelen, Lifschitz, and Porter
2007). Hence research on novel representation techniques
still remains an active area. Decision rules and other log-
ically equivalent formalisms, such as decision trees and ta-
bles play a crucial role in a number of knowledge-based sys-
tems (Giarratano and Riley 2005; Morgan 2002). One of the
strongest aspects of rules, is their formal description, that
allows for a formalized analysis and refinement.
This paper continues the research discussed in (Ligęza

and Nalepa 2008). Basing on some advances in Set Attribu-
tive Logic (SAL) introduced in (Ligęza 2006), recently ex-
tended through the Attribute Logic with Set Values (ALSV)
in (Nalepa and Ligęza 2008), it provides a proposal of de-
cision rules formalization that has an extended expressive
power. The ALSV calculus extends the classical Relational
Database (Connolly, Begg, and Strechan 1999) knowledge
representation capabilities with complex attribute descrip-
tion, allows for the representation and inference with non-
atomic values of attributes (the so-called set-valued at-
tributes). Based on ALSV a rule language called XTT 2

(eXtended Tabular Trees) is considered. It is a development
of the XTT language discussed in (Nalepa and Ligęza 2005).
It this paper the basic introduction to ALSV(FD) is given

(ALSV over Finite Domains). The rule language formula-
tion, along with state representation needed for the inference
process is the main contribution of this paper. An algebraic
text-based rule representation is presented, as well as the
visual representation with XTT tables. Inference with this
structured rulebase is discussed, with selected elements of

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the design of a hybrid inference engine is considered. The
future work, including implementation issues as well as pos-
sible extensions of the rule language is provided.

Motivation
Using logics based on attributes is one of the most popular
approaches to define knowledge. Not only it is very intu-
itive, but it follows simple technical way of discussion where
the behavior of physical systems is formalized by providing
the values of system variables. This kind of logic is om-
nipresent in various applications. It constitutes the bases for
construction of relational database tables, attributive deci-
sion tables and trees (Klösgen and Żytkow 2002), attributive
rule-based systems (Ligęza 2006) and is often applied to de-
scribe state of dynamic systems and autonomous agents.
While a number of new rule-based solutions, such as Jess

or Drools, provide new high-level features, such as Java-
integration, network services, etc., the rule representation
and inference methods remain essentially the same. The
rule languages found in these tools tend to be logically triv-
ial, and conceptually simple. They mostly reuse some ba-
sic logic solutions, combined with new language features,
mainly borrowed from Java, built on top of classic inference
approaches, e.g. the Rete algorithm (Forgy 1982).
While these systems integrate well with today business

application stacks, they provide little or no improvement in
the areas of formalized analysis, visual design, or gradual
refinement. This gives motivation to tackle these problems
by introducing novel knowledge representation tools.

Set Attributive Logic (SAL) Development
The very basic idea is that attributes can take atomic or set
values. After (Ligęza 2006) it is assumed that an attribute Ai

is a function (or partial function) of the form Ai: O → Di.
Here O is a set of objects and Di is the domain of attribute
Ai. A generalized attribute Ai is a function (or partial func-
tion) of the form Ai:O → 2Di , where 2Di is the family
of all the subsets of Di. The atomic formulae of SAL can
have the following three forms: Ai(o) = d, Ai(o) = t or
Ai(o) ∈ t, where d ∈ D is an atomic value from the domain
D of the attribute and t = {d1, d2, . . . , tk}, t ⊆ D is a set
of such values. If the object o is known (or unimportant) its
specification can be skipped; hence we writeAi = d, Ai = t
or Ai ∈ t, for simplicity.

396

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

The semantics of Ai = d is straightforward – the attribute
takes a single value. The semantics of Ai = t is that the
attribute takes all the values of t while the semantics of Ai ∈
t is that it takes one or some of the values of t (the so-called
internal disjunction).
In this paper an improved and extended version of SAL

is presented in brief. For simplicity no object notation is in-
troduced. The formalism is oriented towards Finite Domains
(FD) and its expressive power is increased through introduc-
tion of new relational symbols. The main extension consists
of a proposal of extended set of relational symbols enabling
definitions of atomic formulae. The values of attributes can
take singular and set values over Finite Domains (FD).

ALSV(FD) Syntax and Semantics

The basic element of the language of Attribute Logic with
Set Values over Finite Domains (ALSV(FD) for short) are
attribute names and attribute values. Let us consider: A – a
finite set of attribute names, D – a set of possible attribute
values (the domains). Let A = {A1, A2, . . . , An} be all the
attributes such that their values define the state of the system
under consideration. It is assumed that the overall domain
D is divided into n sets (disjoint or not), D = D1 ∪ D2 ∪
. . . ∪ Dn, where Di is the domain related to attribute Ai,
i = 1, 2, . . . , n. Any domain Di is assumed to be a finite
(discrete) set. The set can be ordered, partially ordered, or
unordered; in case of ordered (partially ordered) sets some
modifications of notation is allowed.
As we consider dynamic systems, the values of attributes

can change over time (or state of the system). We consider
both simple attributes of the form Ai: T → Di (i.e. taking a
single value at any instant of time) and generalized ones of
the form Ai: T → 2Di (i.e. taking a set of values at a time);
here T denotes the time domain of discourse.
Let Ai be an attribute ofA and Di the sub-domain related

to it. Let Vi denote an arbitrary subset of Di and let d ∈
Di be a single element of the domain. The legal atomic
formulae of ALSV along with their semantics are presented
in Tables 1, 2 for simple and general attributes.
More complex formulae can be constructed with conjunc-

tion (∧) and disjunction (∨); both the symbols have classi-
cal meaning and interpretation. There is no explicit use of
negation. The proposed set of relations is selected for conve-
nience and as such is not completely independent. For exam-
ple, Ai = Vi can perhaps be defined as Ai ⊆ Vi ∧ Ai ⊇ Vi;
but it is much more concise and convenient to use “=” di-
rectly. Various notational conventions extending the basic
notation can be used. For example, in case of domains being
ordered sets, relational symbols such as >, >=, <, =< can
be used with the straightforward meaning.
The semantics of the proposed language is presented be-

low in an informal way. The semantics of A = V is
basically the same as the one of SAL (Ligęza 2006). If
V = {d1, d2, . . . , dk} then A = V is equivalent to

A ⊇ {d1} ∧ A ⊇ {d2} ∧ . . . ∧ A ⊇ {dk},
i.e. the attribute takes all the values specified with V (and
nothing more). The semantics of A ⊆ V , A ⊇ V and A ∼
V is defined as follows: A ⊆ V means A = U where U ⊆

Syntax Description Relation
Ai = d the value is precisely defined eq
Ai ∈ Vi any of the values d ∈ Vi satisfies

the formula
in

Ai
= d shorthand for Ai ∈ Di \ {d}. neq
Ai
∈ Vi is a shorthand for Ai ∈ Di \ Vi. notin

Table 1: Simple attribute formulas syntax

Syntax Description Relation
Ai = Vi equal to Vi (and nothing more) eq
Ai
= Vi different from Vi (at at least one

element)
neq

Ai ⊆ Vi being a subset of Vi subset
Ai ⊇ Vi being a superset of Vi supset
A ∼ V having a non-empty intersec-

tion with Vi or disjoint to Vi

sim

Ai
∼ Vi having an empty intersection
with Vi (or disjoint to Vi)

notsim

Table 2: Generalised attribute formulas syntax

V , i.e. A takes some of the values from V (and nothing
outside of V), A ⊇ V means A = W, where V ⊆ W , i.e.
A takes all of the values from V (and perhaps some more),
and A ∼ V means A = X, where V ∩ X
= ∅, i.e. A takes
some of the values from V (and perhaps some more). As it
can be seen, the semantics of ALSV is defined by means of
relaxation of logic to simple set algebra.

Inference Rules for ALSV(FD) Formulas

Since the presented language is an extension of the
SAL (Ligęza 2006), its simple and intuitive semantics is
consistent with SAL and clears up some points of it. The
summary of the inference rules for atomic formulae with
simple attributes (where an atomic formula is the logical
consequence of another atomic formula) is presented in Ta-
ble 3. The table is to be read as follows: if an atomic formula
in the leftmost column holds, and a condition stated in the
same row is true, the to appropriate atomic formula in the
topmost row is a logical consequence of the one from the
leftmost column. The inference rules for atomic formulae
with generalized attributes is presented in Table 4.
In Table 3 and Table 4 the conditions are satisfactory ones.

However, it is important to note that in case of the first rows
of the tables (the cases of A = di and A = V , respectively)

|= A = dj A �= dj A ∈ Vj A �∈ Vj

A = di di = dj di �= dj di ∈ Vj di �∈ Vj

A �= di _ di = dj Vj =
D \ {di}

Vj =
{di}

A ∈ Vi Vi =
{dj}

dj �∈ Vi Vi ⊆ Vj Vi∩Vj =
∅

A �∈ Vi D \ Vi =
{dj}

Vi = {dj} Vj =
D \ Vi

Vj ⊆ Vi

Table 3: Inference for atomic formulae, simple attributes

397

|= A = W A �= W A ⊆ W A ⊇ W A ∼ W A �∼ W

A = V V = W V �= W V ⊆ W V ⊇ W V ∩ W �= ∅ V ∩ W = ∅
A �= V _ V = W W = D _ W = D _
A ⊆ V _ V ⊂ W V ⊆ W _ W = D V ∩ W = ∅
A ⊇ V _ W ⊂ V W = D V ⊇ W V ∩ W �= ∅ _
A ∼ V _ V ∩ W = ∅ W = D _ V = W _
A �∼ V _ V ∩ W �= ∅ W = D _ W = D V = W

Table 4: Inference for atomic formulae, generalized attributes

�|= A = W A ⊆ W A ⊇ W A ∼ W

A = V W �= V V �⊆ W W �⊆ V V ∩W �=
∅

A ⊆ V W �⊆ V V ∩W =
∅

W �⊆ V W ∩ V =
∅

A ⊇ V V �⊆ W V �⊆ W _ _
A ∼ V V ∩W �=

∅
W �⊆ V _ _

Table 5: Inconsistency conditions for atomic formulae pairs

all the conditions are also necessary ones. The interpreta-
tion of the tables is straightforward: if an atomic formula in
the leftmost column in some row i is true, then the atomic
formula in the topmost row in some column j is also true,
provided that the relation indicated on intersection of row i
and column j is true. The rules of Table 3 and Table 4 can
be used for checking if preconditions of a formula hold or
verifying subsumption among rules.
For further analysis, e.g. of intersection (overlapping) of

rule preconditions one may be interested if two atoms cannot
simultaneously be true and if so — under what conditions.
For example formula A ⊆ V ∧A ⊆ W is inconsistent if V ∩
W = ∅. Table 5 specifies the conditions for inconsistency.
The interpretation of the Table 5 is: if the condition spec-

ified at the intersection of some row and column holds, then
the atomic formulae labelling this row and column cannot
simultaneously hold. Note, that this is a satisfactory condi-
tion only. Table 5 can be used for analysis of determinism,
i.e. whether satisfaction of precondition of a rule implies
that the other rules in the same table cannot be fired.

Rules in ALSV(FD)

ALSV(FD) has been introduced with practical applications
for rule languages in mind. In fact, the primary aim of
the presented language is to extend the notational possibil-
ities and expressive power of the XTT-based tabular rule-
based systems (Ligęza 2006). An important extension con-
sist in allowing for explicit specification of one of the sym-
bols =,
=,∈,
∈, ⊆, ⊇, ∼ and
∼ with an argument in the
table (Nalepa and Ligęza 2008).
Consider a set of n attributes A = {A1, A2, . . . , An}.

Any rule is assumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols in
ALSV(FD), and RHS is the right-hand side of the rule cov-
ering conclusion; for details see (Ligęza 2006).

State Representation and Inference
When processing information, the current values of at-
tributes form the state of the inference process. The values of
attributes can, in general, be modified in the following three
ways: 1) by an independent, external system, 2) by the in-
ference process, and 3) as some clock-dependent functions.
The first case concerns attributes which represent some pro-
cess variables, which are to be incorporated in the inference
process, but depend only of the environment and external
systems. As such, the variables cannot be directly influenced
by the XTT system. Values of such variables are obtained as
a result of some measurement or observation process. They
are assumed to be put into the inference system via a black-
board communication method. The second case concerns
the values of attributes obtained at certain stage of reason-
ing as the result of the operations performed in the RHS of
the XTT. The new attributes values can be asserted to global
memory, or kept as values of internal process variables.
The current state of the system is considered as a com-

plete set of values of all the attributes in use at a certain
instant of time. The concept of the state is similar to the
one in dynamic systems and state-machines. The representa-
tion of the state should satisfy the following requirements, it
should be: internally consistent, externally consistent, com-
plete, deterministic, and concise. The first postulate says
that the specification itself cannot be inconsistent at the syn-
tactic level. For example, a simple attribute cannot take two
different values at the same time. In general, assuming in-
dependence of the attributes and no explicit negation, each
value of an attribute should be specified once. The sec-
ond postulate says, that only true knowledge (with respect
to the external system) can be specified in state. In other
words, facts that are syntactically correct but false cannot
occur in the state formula. The third postulate says, that
all the knowledge true at a certain instant of time should be
represented within the state. The fourth postulate says that
there can be no disjunctive knowledge specification within
the state. Finally, the fifth postulate says that no unneces-
sary, dependent knowledge should be kept in the state. In
databases and many knowledge bases this has a practical di-
mension: only true facts are represented explicitly.
The current values of all the attributes are specified with

the contents of the knowledge-base (including current sen-
sor readings, measurements, inputs examination, etc.). From
logical point of view it is a formula of the form:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn)
where Si = di (di ∈ Di) for simple attributes and Si = Vi,
(Vi ⊆ Di) for complex.

398

In order to cover realistic cases some explicit notation for
covering unspecified, unknown values is proposed; this is
so to deal with the data containing the NULL values im-
ported from a database. The first case refers to unspecified
value of an attribute as a consequence of inappropriateness.
A formula of the form A = ⊥ means that the attribute A
takes an empty set of values (no value at all) at the cur-
rent instant of time (or forever) for the object under con-
sideration. For example, the attribute Maiden_Name or
The_Year_of_Last_Pregnancy for a man is not ap-
plicable and hence it takes no value for all men. The second
case refers to a situation that the attribute may be applied
to an object, but it takes no value. This will be denoted
as A = ∅. For example, the formula Phone_Number=∅
means that the considered person has no phone number. The
third case is for covering the NULL values present in rela-
tional databases. A formula of the form A = NULL means
that attribute A takes an unspecified value.
In order to fire a rule all the precondition facts defining its

LHS must be true within the current state. The verification
procedure consists in matching these fact against the state
specification. A separate procedure concerns simple (single-
valued) attributes, and a separate one is applied in case of
complex attributes. The following tables provide a formal
background for preconditions matching and rule-firing pro-
cedure: Table 6 defines when a precondition of the form
A ∝ d is satisfied with respect to given state, and Table 7 de-
fines the principles for matching precondition defined with
set-valued attributes against the state formula.

Representation and Inference with Tables

Knowledge representation with eXtended Tabular Trees
(XTT) incorporates extended attributive table format. Simi-
lar rules are grouped within separated tables, and the whole
system is split into such tables linked by arrows representing
the control strategy. Consider a set of m rules incorporating
the same attributes A1, A2, . . . , An. In such a case the pre-
conditions can be grouped together and form a regular ma-
trix, forming a table. Every cell in the table corresponds to a
ALSV(FD) formula. The visual table representation can be
observed in the tool screenshot in Fig. 1.
Having a table with defined rules the execution mecha-

nism searches for ones with satisfied preconditions. This
satisfaction is verified in an algebraic mode, using the de-
pendencies specified in the first row of Table 3 for simple
attributes and the first row of Table 4 for the complex ones.
The rules having all the preconditions satisfied can be

fired. For the following analysis we assume the classical,
sequential model, i.e. the rules are examined in turn in the
top-down order and fired if the preconditions are satisfied.
Various mechanisms can be used to provide a finer inference
control mechanism (Ligęza 2006).
In order to avoid repeated checking of preconditions a

propagation mechanism is proposed for satisfaction and fal-
sification of atomic formula within the table. Let c(i, j) de-
note the atomic formula related to the cell located in row i
and column j. The idea can be summarized as follows:

• once the table is defined it is searched top-down (off-

line) for establishing dependencies between any atomic
cell c(i, j) of rule i and all the cells c(k, j) (in the same
column) of any rule k, where k > i;

• in case some two cells c(i, j), c(k, j) satisfy a condition of
logical consequence as specified in Table 3, a positive link
p(i, k, j) is established; all the links are kept in memory;

• in case some two cells c(i, j), c(k, j) satisfy a condition
of logical inconsistency as specified in Table 4, a nega-
tive link n(i, k, j) is established; all the links are kept in
memory;

• during execution phase, if a cell c(i, j) is checked and
the related atomic formula is satisfied, the truth value is
propagated for the transitive closure defined with use of
the positive links; the respective atoms are marked true
and do not need to be checked in this turn;

• during execution phase, if a cell c(i, j) is checked and
the related atomic formula is true, the false value is prop-
agated for the transitive closure defined with use of the
negative links; the respective atoms are marked false and
the corresponding rules are eliminated from this cycle.

This mechanism saves computational effort corresponding
to repeated precondition checking and saves time in case
some preconditions are logically dependent (one is logical
consequence of the other or they are mutually exclusive).

Rule Analysis Examples

The advantage of tabular rule-based systems defined with
ALSV(FD) is that rule analysis becomes simpler and can be
performed with algebraic tools. As an example consider two
typical cases, e.g. detection of subsumption and overlapping
preconditions which may lead to conflict or indeterminism.

Subsumption: Consider two rules given by two rows of
a table; the rules are of the form introduced previously. for
being some i1 and i2. For simplicity we consider that the
RHSi1 = RHSi2, the conclusions are identical. Rule i1
subsumes rule i2 if always when i2 can be fired i1 can be
fired as well. The analysis for subsumption cane be per-
formed with help of Table 3 and 4. In order to conclude
that subsumption holds one is to check that Aj ∝j Vi2,j |=
Aj ∝j Vi1,j , for j = 1, 2, . . . , n. In case it is true, rule i2
can be eliminated.

Indeterminism and Inconsistency: A first step to dis-
cover indeterminism is two check if the rules can be fired
together i.e. if their preconditions can be satisfied simul-
taneously. The analysis for subsumption can be performed
with help of Table 4. In order to conclude that the precon-
ditions cannot be satisfied at the same time one has to check
that
|= Aj ∝j Vi2,j ∧ Aj ∝j Vi1,j , for at least one value of
j ∈ {1, 2, . . . , n}. If it is true, the set of rules is determinis-
tic, i.e at any time during execution only a single rule can be
fired. If not, the pairs (or bigger groups) of rules should be
further analyzed to eliminate potential inconsistency.

Inference Engine Design

The presented rule and inference formalization issues are an
important part of the XTT2 inference engine design specifi-
cation. XTT2 is a redesign of the original XTT (Nalepa and

399

|= A = dj A �= dj A ∈ Vj A �∈ Vj A = _ A = �
A = d d = dj d �= dj d ∈ Vj d �∈ Vj true false
A = ⊥ false false false false false true
A = ∅ false false false false true false

A = NULL false false false false false false

Table 6: Inference principles for firing rules, case of single-valued attributes

|= A = W A �= W A ⊆ W A ⊇ W A ∼ W A �∼ W A = _ A = �
A = S S = W S �= W S ⊆ W S ⊇ W S ∩ W �= ∅ S ∩ W = ∅ true false
A = ⊥ false false false false false false false true
A = ∅ W = ∅ W �= ∅ true W = ∅ false true true false

A = NULL false false false false false false false false

Table 7: Inference principles for firing rules, case of general attributes

Ligęza 2005) using ALSV(FD) as the formal foundation.
The new XTT Prolog engine includes the support for the
ALSV(FD) logic, but is also integrated with the C/C++/Java
runtime to provide a flexible runtime solution.
The XTT inference engine, or rule meta-interpreter, also

known as HeaRT (HeKatE RunTime) goals are interpret-
ing XTT logic encoded in the Hekate Meta Representation
(HMR), analyze XTT rules in XTT tables, provide inference
control by interpreting links, manage the attributes by the
Blackboard Architecture, by synchronizing attribute values
between the system and the environment, Extended func-
tions, provide: on-line formal verification with refinement
capabilities, a bridge to the HQed editor, OO bridge to Java
in the MVC pattern (Model-View-Controller), (HeaRT=
Model, Java=View), and a standalone logic server with TCP.
Several interpreter types are considered. These try to ad-

dress issues such as how to control the inference (an infer-
ence control strategy) both at the level of a single table and
the inter-tabular level. Further, if cycles are necessary, how
many times is the interpreter to repeat a single run. Here
only the simplest one is described. The Single Pass inter-
preter is the simplest scenario: the interpreter is executed
externally by the user, system, etc. input attribute callbacks
provide input facts the inference is run, output attribute val-
ues can be sent by callbacks. For simplicity, it should be
assumed, that no attributes input/communication attributes
are updated during the inference.

Rule Algebraic Notation (HMR)

The interpreter accepts XTT2 rules in the following tex-
tual algebraic representation, Hekate Meta Representation
(HMR). It is to be generated by the design tool (e.g. HQed)
and directly run by HeaRT. Table scheme (logically also rule
prototype), and rule encoding are:
xschm TAB: [A1,...,An] ==> [H1,...,Hm].
xrule Table/Id:

[C1,...,Cn] ==> [D1,...,Dm]
**> [X1,...,Xs] : OutTab/Id.

The symbol ==> separates condition from decision, and the
symbol **> separates the actions in the decision.
A simple example of a table scheme and a rule is:

xschm ms: [month] ==> [season].

xrule ms/3:
[month in [june,july,august]] ==>
[season set winter] **> [write(month)]
:os/3.

HMR provides a human readable XTT2 description.

XTT Communication Issues

The assumptions for system modeling with ALSV rules
are: the system is modeled with the use of attributes (state
variables), the state is fully described with attribute values,
rule firing can possibly change system state by changing at-
tribute values, rules can execute actions external to the sys-
tem (these actions do not change system state), and the state
can be changed from the outside. So it could be summarized,
that “communication” between the system and the world is
conducted using attributes and their values.
In the proposed Blackboard Architecture attributes are

considered shared resources. The XTT logic system (S) can
access the attribute values in the tables. The values can be
accessed from the outside of the system (environment(E)),
and updated by both the environment and the system simul-
taneously. A simple locking approach is exercised. The ac-
cess and update policy depends on the attribute class consid-
ered: input (S ← E), output (S → E), internal (S → S), and
communication (S ↔ E). The actual value modification is
provided by a middle layer of attribute callbacks, predicates
run by the interpreter to pull or push attribute values.
In this approach the communication is a simple issue so

does not require an in-depth discussion. However, the prac-
tical engine integration with other runtime environments on
the architectural level is crucial (see Drools+JBoss).

XTT Design Tool Support

One of the main features of the XTT2 method is the com-
pact visual representation. From the designer point of view
it needs to be supported by a CASE tool in order to be ef-
fective. The HQed (Kaczor and Nalepa 2008) tool (Fig. 1)
uses the rule prototypes generated in the conceptual design,
and supports the actual visual process of the logical design
of XTT2 tables. It is available under the the GNU GPL from
ai.ia.agh.edu.pl/wiki/hekate:hqed. One of
the most important editor features is the support for XTT

400

Figure 1: HQed editing session, the XTT rulebase structure with anomalies detected

rulebase quality assurance, provided in several aspects:
condition specification constraints, structured rulebase syn-
tax, gradual model refinement, with partial simulation logi-
cal rule model quality. The first aspect is provided by num-
ber of editing features providing strict user data verification.
Every attribute value entered into XTT cells (corresponding
to the ALSV(FD) formulas) is checked against the attribute
domain. On the other hand the user is hinted during the edit-
ing process, with feasible attribute values.
The rulebase syntax may be checked against anomalies,

e.g. incomplete rule specification, malformed inference
specification, including missing table links. The editor al-
lows for a gradual rules refinement, with an online checking
of attribute domains, as well as simple table properties, such
as inference related dead rules. In case of simple tables it is
possible to emulate and visualize the inference process. The
output from HQed is a rulebase encoded in HMR, that can
be executed using a Prolog-based inference engine.

Conclusions and Future Work

This paper presents extensions of Set Attributive
Logic (Ligęza 2006). In the proposed logic both atomic and
set values are allowed and various relational symbols are
used to form atomic formulae. The proposed rule language
provides a concise and elegant tool of significantly higher
expressive power than in case of classical rule systems.
In the paper new inference rules specific for the intro-

duced logic are examined. They constitute a challenge for
efficient precondition matching, so algebraic solutions are
proposed. The original contribution also includes enhanced
state representation, and interpreter design. Built on the
ALSV(FD) XTT2 allows for a compact visual representa-
tion, with the rule inference formally described.
Future work includes practical inference engine imple-

mentation with the plugin framework, integrated on the ar-
chitectural level with the Java runtime.

Acknowledgements The paper is supported by the
HeKatE Project funded from 2007–2009 resources for sci-
ence as a research project.

References

Connolly, T.; Begg, C.; and Strechan, A. 1999. Database
Systems, A Practical Approach to Design, Implementation,
and Management. Addison-Wesley, 2nd edition.
Forgy, C. 1982. Rete: A fast algorithm for the many pat-
terns/many objects match problem. Artif. Intell. 19(1):17–
37.
Giarratano, J. C., and Riley, G. D. 2005. Expert Systems.
Thomson.
Kaczor, K., and Nalepa, G. J. 2008. Design and imple-
mentation of hqed, the visual editor for the xtt+ rule design
method. Technical Report CSLTR 02/2008, AGH Univer-
sity of Science and Technology.
Klösgen, W., and Żytkow, J. M., eds. 2002. Handbook of
Data Mining and Knowledge Discovery. New York: Ox-
ford University Press.
Ligęza, A., and Nalepa, G. J. 2008. Granular logic with
variables for implementation of extended tabular trees. In
Wilson, D. C., and Lane, H. C., eds., FLAIRS-21: Proceed-
ings of the twenty-first international Florida Artificial In-
telligence Research Society conference: 15–17 may 2008,
Coconut Grove, Florida, USA, 341–346. Menlo Park, Cal-
ifornia: AAAI Press.
Ligęza, A. 2006. Logical Foundations for Rule-Based Sys-
tems. Berlin, Heidelberg: Springer-Verlag.
Morgan, T. 2002. Business Rules and Information Systems.
Aligning IT with Business Goals. Boston, MA: Addison
Wesley.
Nalepa, G. J., and Ligęza, A. 2005. A graphical tabular
model for rule-based logic programming and verification.
Systems Science 31(2):89–95.
Nalepa, G. J., and Ligęza, A. 2008. Xtt+ rule design using
the alsv(fd). In Giurca, A.; Analyti, A.; and Wagner, G.,
eds., ECAI 2008: 18th European Conference on Artificial
Intelligence: 2nd East European Workshop on Rule-based
applications, RuleApps2008: Patras, 22 July 2008, 11–15.
Patras: University of Patras.
van Harmelen, F.; Lifschitz, V.; and Porter, B., eds. 2007.
Handbook of Knowledge Representation. Elsevier Science.

401

