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Abstract 
Oscillatory neural network models have been an increasing focus 

of study over the last several years.  These models consist of 

recurrent neural networks whose dynamics are characterized by 

persistent learned/designed rhythmic activity. Here we consider 

simple oscillatory memories for short-term retention of items 

occurring as temporal sequences. By incorporating decay as well 

as interference, we find that it is easy to match behavioral data 

from human subjects recalling temporal sequences under different 

situations by adjusting a single parameter in the model. These 

results suggest that simple oscillatory memories capture at least 

some key properties of human short-term memory, and might be 

used effectively in future biologically-inspired cognitive 

architectures. 

 Modeling Short-Term Memory 

Using Oscillatory Networks  

While neural networks using fixed-point attractor states 

can be effective as memory models and have generated 

substantial theoretical and experimental analysis, they are 

typically limited to maintaining only a single pattern at a 

time in short-term memory. Further, it is difficult to relate 

activity in these models to neurobiological systems where 

rhythmic activity, rather than fixed-point attractor states, is 

the rule (Buzsaki, 2006). In response to these and other 

concerns, a number of oscillatory memory models have 

been created and studied during the last several years. In 

these models, stored/recalled memory patterns are typically 

represented as rhythmic network activity in which multiple 

memory patterns are essentially simultaneously active over 

the same neural substrate. This is possible because the 

network’s activity oscillates between activity states 

representing different stored patterns. 

A remarkably diverse set of oscillatory memory models 

exists today. Some models are based on theories about the 

mechanisms underlying theta/gamma activity in specific 

brain regions such as the hippocampus or neocortex 
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(Hasselmo et al, 2002; Ingber, 1995; Koene and Hasselmo 

2007, Lisman & Idiart, 1995). Other models that use 

individual spiking neurons are based on more abstract 

architectures (Raffone & Wolters, 2001), while still others 

have adopted a higher-level approach such as Wilson-

Cowan oscillators (Chakravarthy & Ghosh, 1996; Hayashi, 

1994; Wang, 1995). 
Here we are specifically concerned with modeling short-

term memory, the human memory system that retains 
information over brief time intervals (on the order of 
seconds) and that has substantial capacity limitations, in 
contrast to the relatively limitless capacity of more 
permanent long-term memory (Baddeley, 2000; Cowan, 
2001). For example, current evidence suggests that human 
short-term memory capacity is approximately four items 
(Cowan et al, 2005). 

A particularly simple and elegant approach to creating 

oscillatory short-term memory models is based on 

minimally modifying Hebbian associative memories 

having fixed-point attractor states so that they become 

oscillatory. In the following, we will refer to all such 

models as simple oscillatory memories. For example, Horn 

and Usher (1991) produced a simple oscillatory memory 

by introducing “dynamic thresholds” into Hopfield 

networks (Hopfield, 1982; Amit, 1989). With this 

approach, whenever a node has a particular activity level 

±1, the threshold of that node gradually changes so that 

eventually the node switches its activity level to the 

complementary value. When such a network is presented 

with an input that is a superposition of multiple stored 

memories, it is found to oscillate between activity states 

that represent these individual memories, thereby 

indicating its recognition/recall of the memories in parallel. 

Similar behaviors have been produced based upon 

Hopfield networks modified to use “dynamic synapses” 

(Pantic et al, 2002) or negative feedback with asymmetric 

connection weights (Brown & Collins, 2000). 

Simple oscillatory memories derived from Hopfield 

networks are intriguing in their simplicity as models of 

short-term memory. In this paper, we present a simple 

oscillatory memory based on dynamic thresholds as used 

by Horn and Usher (1991), except that with our approach 
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the model is extended to include rapid decay of connection 

weights. This weight decay allows the network to have a 

dependency upon the order in which it sees input stimuli, 

something that is not the case with classical Hopfield 

networks. Further, it lets us examine the relative roles of 

interference and decay as mechanisms underlying 

forgetting. To evaluate the model, we used data that we 

collected from human subjects performing a running 

memory span task (Winder et al, 2009). This task involves 

rapidly presenting a sequence of stimuli that are to be 

recalled subsequently by the subject. We found that our 

model can demonstrate recall performance similar to the 

behavioral data that we obtained: a capacity limit of 

approximately three items, and a prominent recency effect. 

To our knowledge, no previous work has examined how 

the performance of simple oscillatory memories compares 

to real-world behavioral data collected from human 

subjects on a short-term memory task. We summarize our 

results in the followings and discuss their implications for 

biologically-inspired cognitive architectures. 
 

Model Formulation 

Short-term memory is modeled using a fully connected 

network of N linear threshold nodes similar to many past 

neural network models. There are two possible values for 

the activity state ai  of each node i, -1 and 1 (simplified 

from biology for computational convenience), and these 

values change over time as described below. Memory 

patterns to be stored are essentially arbitrary. We label 

each individual memory state   
r 
a   that is being stored with a 

specific letter (A – Z). 

   Connection strengths for this N node network are kept 

in an N x N weight matrix W, where each weight wij is a 

real-valued number. Connection strengths between two 

nodes are the same in both directions (wij = wji 

everywhere), so W is symmetric. Node activation levels ai 

are updated according to a stochastic linear threshold 

activation rule with the input hi to node i being a linear 

weighted sum of the activities of the other nodes minus �i , 

where �i  is the threshold associated with node i. Note that 

hi, ai , wij, and  �i  are all functions of time. 

Unlike in fixed-point attractor networks where after 

learning a node’s threshold is fixed, the threshold values 

here are “dynamic”, changing with each time step t. For 

example, when the activation level ai  = +1, this causes the 

threshold for node i to rise slowly, making it more likely 

that the node will become negative during the next time 

step. Similarly, when the value of the node is -1, the 

threshold drops, making it more likely that the node will 

become positive. This way, when the network is run for 

any length of time, the network state can oscillate and 

explore different patterns stored in its weight matrix.  

To simulate the presentation of a sequence of stimuli 

that are being consecutively stored in a subject’s short-term 

memory during a running memory span task, the N x N 

weight matrix W is initialized with wij = 0 for all i and j, 

and then a sequence of memory states corresponding to 

that sequence of stimuli is imposed on the network.  As 

each presented memory state is transiently present, the 

connection strengths wij are all concurrently updated 

according to the weight change rule 

           wij = (1� kd )wij
old

+
1

N
aia j (1��ij )  

where N is the number of nodes in the network, kd is a 

decay rate capturing how weights diminish over time 

( 0 � kd <1), and �ij is Kronecker’s delta (the latter insures 

wii = 0 for all i, so weights on self-connections are fixed at 

zero).  For the computational experiments that follow, we 

used N = 35, while kd values varied between different 

simulations.  The second term on the right side of this 

weight change rule implements Hebbian weight changes as 

in many past neural network models of memory. However, 

our weight change rule is unusual in explicitly 

incorporating a weight decay factor -kdwij that gradually 

reduces the influences of old memory patterns. It still 

produces a symmetric weight matrix W with zero entries 

on the main diagonal.  If relatively few memory patterns 

are in memory at any point in time and the decay rate is 

small, with more traditional Hopfield networks having 

constant thresholds the stored memories would typically 

tend to be fixed point attractor states (energy minima). 

Thus, when our model starts in an arbitrary initial state   
r 
a , 

its activity state would be expected to change until it 

reaches one of these stored memory states, but would then 

not remain fixed in that state due to the dynamic thresholds 

as explained above. This leads to oscillatory behavior. 

Assessment Methods 

To assess how well the network’s current activity state 

  
r 
a  matches the activity state   

r 
a �  corresponding to one of 26 

specific stimuli �, we first compute a measure of the 

distance d� between   
r 
a  and   

r 
a � . This measure is essentially 

the same as the Hamming distance between two binary 

numbers. The similarity s� of current state   
r 
a  to stimulus 

pattern   
r 
a �  is then computed based on this distance 

measure, such that the larger the distance the less the 

similarity (Winder et al, 2009).  Measure s� lies between 

0.0 and 1.0. A value s� = 1.0 at any time step indicates a 

perfect match between the current state   
r 
a  and the stimulus 

pattern   
r 
a � , while progressively lower values of s� indicate 

progressively worse matches.  

The process of testing for the retention of specific 

stimuli that have just been presented sequentially to the 

model is done as follows. The network is started in a 

random initial activity state   
r 
a , and then the network’s 

state is allowed to evolve according to the dynamics 

described above for a 200 time step test period. Because of 

104



the changing nature of the thresholds the network does not 

reach a fixed state during the test period, but instead 

typically oscillates between states that are at or close to 

some of the activity patterns   
r 
a �  that were shown to it 

during the simulated running memory span task. During 

this testing period, the similarity measure s� for each of the 

stimuli � that were in the just-seen test sequence is 

recorded at each time step.  

In the simulations that follow, we label a specific 

stimulus � that was presented to the network as being 

actively present in memory, and thus recalled by the 

model, only if s� reaches a value of 1.0 during the 200 time 

step testing interval. This means the stimulus must be 

perfectly recalled by the network during this testing period 

at least once. We use this strict criterion because the 

similarity measure of some stimuli that are similar to each 

other can tend to rise and fall synchronously. 
Finally, we used behavioral data that we collected 

previously on a running memory span task for comparison 
with the model’s performance, roughly following the 
designs of Pollack et al. (1959) and Bunting et al. (2006). 
Our human experimental data was obtained from 38 adult 
subjects (13 females, 25 males, mean age 25) who were 
shown a rapidly presented, two per second sequence of 12 
to 20 randomly ordered stimuli under computer control, 
and were asked to remember the most recent six items in 
the order of their presentation

3
. Subjects indicated the 

stimuli that they recalled by clicking on a subsequent 
graphical display of all possible stimuli.  Recall was 
measured by assessing accuracy of recall as a function of 
stimulus position.  A stimulus was counted as accurately 
recalled only if: 1. it was presented in the retention window 
(i.e., the last six items, depending on instructions), 2. it was 
correctly recalled by the participant; and 3. it was recalled 
in the same position as it was presented. Details of the 
behavioral data collection methodology are given in 
(Weems et al, 2009). 
 

Model Performance 

Following presentation of a sequence of stimuli, 

network activity measured using s� oscillates between 

memory states representing some of the presented stimuli, 

indicating the retention of those patterns in short-term 

memory. As an example, suppose that a decay rate of kd = 

0.2 is used and a randomly-selected sequence of stimuli M, 

L, X, N, E, F, H, and B, listed by their labels from first to 

last, serves as inputs. Typically the oscillations associated 

with earlier stimuli have relatively small amplitudes (only 

partial matches), while those of the more recently 

presented stimuli are more prominent. Figure 1 shows 

when the oscillations in s� values peaked at 0.8 or above 

for the eight stimuli of this example during just the middle 

of the testing period. Using our criteria that a stimulus � is 

retained in short-term memory (recalled) if and only if its 

activity pattern   
r 
a �  occurs exactly (s� = 1.0) during the test 

period, the input patterns E, H and B would be labeled as 

recalled. Peaks in the oscillations associated with the 

different recalled stimuli (E, H and B) alternate with each 

other, allowing the three remembered stimuli to be retained 

in short-term memory “simultaneously”, unlike with fixed 

point neural associative memories. Note that the 

oscillations are irregularly spaced and not periodic. 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 1: Plot over time of when the values of s� reached 

their peaks for the eight stimuli during an example run (see 

text). Solid black marks indicate when s� reached the 

maximum possible value of 1.0, while lighter gray marks 

indicate when s� exceeded 0.8 but did not reach 1.0. One 

can see that the oscillatory states rotate between the three 

recalled memory patterns for the 5
th

, 7
th

 and 8
th

 stimuli (E, 

H and B). Only the middle 100 time steps of the testing 

period are shown here, expanded horizontally.   

Figure 2 displays the fraction of stimuli recalled 

(maintained as oscillatory states in short-term memory) for 

stimuli in each position averaged over 1000 random input 

sequences of 8 different stimuli. When there is no decay (kd 

= 0), the fraction of input patterns recalled is largely 

independent of a stimulus’ position in the input sequence, 

resulting in a flat curve. This result can be related to fixed-

point attractor networks where the final weights, and hence 

network performance as an associative memory, is 

independent of the order in which the input patterns are 

stored. Further, recall of any observed stimulus in this case 

is quite poor as would be expected; for a network of the 

size used here the number of patterns used far exceeds the 

expected memory capacity of an equal size fixed-point 

attractor associative memory (Hopfield, 1982; Amit, 

1989). With no decay, the interference between the stored 

memory patterns is excessive, preventing almost all stimuli 

from being retained effectively in short-term memory. In 

contrast, when the decay rate is very large (kd = 0.5), a very 

steep curve is seen (Figure 2), with the single most recently 

presented stimulus always being retained. This occurs 

because the weight changes from previously stored 

stimulus patterns quickly dissipate, and even recently 

presented earlier stored patterns no longer interfere 

significantly with the final stimulus’s retention. In this 

case, the fraction of the first six presented patterns that are 

recalled is almost zero, reflecting that they have been 
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erased from memory. This can be contrasted with the 

roughly 20% recall rate of presented stimuli when there is 

no decay at all. Intermediate behaviors are seen for 

intermediate decay rates, as is shown in Figure 2. 

 

 

 

 

 

Figure 2: Fraction of stimuli recalled versus stimulus 

position using different decay rates kd (� = 0.0, � = 0.1, � 

= 0.5). Each curve plots the fraction of presented stimuli in 

each position of eight-stimulus sequences that were 

recalled correctly during a following test period averaged 

over 1000 trials using the same decay rate. Stimulus 1 was 

the first stimulus presented, and stimulus 8 the last.  

 

 

 

 

 

 

 

Figure 3: Mean number of stimuli recalled for different 

decay rates. This peaks at a memory capacity of roughly 

2.5 for intermediate decay rate values (around 0.15).   

Figure 3 shows, for each decay rate value used, the 

mean total number of stimuli recalled (memory capacity), 

averaged over the 1000 stimuli sequences tested. These 

results show that memory capacity is highest with 

moderate, intermediate decay rates. If decay is very low, 

older input stimuli are substantially retained and the 

attempt to store an excessive number of memory patterns 

results in too much interference. If decay is too high, even 

recently observed stimuli are lost. Maximum recall of 

observed stimuli occurs when there is a balance between 

information lost due to decay and interference.  

How does position-specific recall by the model compare 

with that exhibited by human subjects? We found that the 

model is able to approximate closely the position-specific 

recall rates found with the human subjects when it is run 

with a 0.1 decay rate with input sequences of length six 

(Winder et al, 2009). The mean total memory capacity for 

recall of six stimuli was 2.73 items for human subjects 

versus 2.69 items for the model. Thus, both the model’s 

total memory capacity, and its position-specific stimulus 

retention patterns, were in close agreement with those seen 

with the human subjects. 

Our human subject data was collected under conditions 

where the subjects were presented with stimulus sequences 

of 12 to 20 items, and were told to recall only the last 6, 

regardless of the actual sequence length. To explore how 

the model was affected by seeing more stimuli than were to 

actually be recalled, we repeated the simulations as above 

but now using a total of 20 stimuli in each sequence, even 

though recall of only the last 6 stimuli was of interest. The 

model’s performance in position-specific recall can, with 

an adjusted decay rate, still reasonably match the human 

subject results. The model results are again averaged over 

1000 different random sequences of stimuli. In this case we 

found that a modestly higher decay rate (0.185) provides 

an approximate match to the six-back human data. The 

model’s mean total memory capacity for recall of six 

stimuli was now 2.28 items (vs. 2.73 for human subjects).  

 
Discussion 

In this work we introduced a simple oscillatory memory 

model of short-term memory, examined some of its 

properties, and compared its behavior to that of human 

subjects on a running memory span task. Our model’s 

dynamics are intrinsically oscillatory due to the use of 

rapidly varying threshold values, and recall of an item is 

dependent upon the time elapsed since it was observed due 

to the use of rapidly decaying weights. Unlike with many 

past neural models of memory, we assessed recall by 

initializing the model’s activity to a random state, rather 

than by initializing it to a noisy/partial stored memory 

pattern, or by biasing the network’s dynamics by applying 

an external input pattern that represents a noisy/partial 

stored pattern. When moderate decay rates were used, this 

approach resulted in a short-term memory capacity of 

between two to three items, a value that is comparable to 

what has been observed in past experimental studies by 

others (Baddeley, 2000; Cowan, 2001; Cowan et al, 2005), 

and that matches the memory capacity that we observed in 

a group of human subjects performing a similar running 

memory task. The model also showed a prominent recency 

effect as would be expected given the use of weight decay, 

and as is also seen in human subjects. 

Our model is intended to simulate short-term memory 

processing only. It is not intended to address any processes 

by which semantic or other long-term memory information 

is accessed to aid storage or recall. It is well established 

that short-term memory capacity is higher for familiar 

items compared to novel stimuli (see Cowan, 2001 for 

review).  This is likely due to the fact that for novel 

stimuli, representations must be created before retention 

can successfully occur. While the results of our model are 
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promising in suggesting that oscillatory neural models can 

show similar capacity limitations as with humans, they do 

not allow us to make predictions regarding frequency 

specific contributions to EEG, especially as the model 

oscillations recorded are in terms of the extent to which a 

specific distributed memory pattern is present (quantity s�) 

and not in terms of amount of network activity.  

Our study adds to a rapidly growing literature on 

computational models of short-term memory by examining 

the role of weight decay on simple oscillatory memories. 

Many past models of short-term memory have employed 

lateral inhibition between representational units to establish 

competition between activated entities, and thus capacity 

limitations (e.g., Haarmann and Usher, 2001). Our 

approach differs in not explicitly building in such lateral 

inhibition (although inhibitory weights do occur during 

pattern storage), with competition between memory 

patterns arising in the dynamics due to the interference 

occurring between the non-orthogonal memory patterns. 

Other recent models of short-term memory, inspired by 

specific neuroanatomical structures, have used separate 

modules for memory representation, maintenance, and 

selective gating. For example, (Frank et al, 2001; O’Reilly 

& Frank, 2006) incorporate modules representing 

prefrontal cortex and basal ganglia. Our approach does not 

use a complex architecture or gating mechanisms, and thus 

shows that some basic behavioral properties of human 

short-term memory (limited memory capacity, recency 

effect, and shifts in position-specific stimulus recall) can 

be captured by a surprisingly simple neurocomputational 

mechanism. Still other recent short-term memory models 

have been based on modulation of persistent neuronal 

firing by rhythmic changes to membrane potential at theta 

frequencies (Koene and Hasselmo, 2008). Our approach is 

quite different in that storage is based primarily upon 

synaptic connectivity, and memory capacity limitations 

arise mainly due to synaptic decay and pattern interference.  

Perhaps the most interesting finding with the model is 

that, by adjusting just the weight decay rate, one can 

produce shifts in the model’s memory capacity and 

position-specific recall rates. This represents a prediction 

of the model that by adjusting the decay rate, one could 

reasonably match the shifts exhibited by human subjects 

who were instructed to recall different length stimuli 

sequences. This is remarkable, given the simplicity of our 

model and that it requires adjustment of only a single 

parameter. This prediction relates to long-standing issues 

in the cognitive science literature concerning the nature of 

forgetting. For example, one view of forgetting is that 

short-term memory is subject to decay (Brown, 1958), 

while an alternative view is that forgetting is due to 

interference between competing elements that are 

simultaneously vying for attention (Waugh & Norman, 

1965). Our model incorporates both interference and decay 

as mechanisms for forgetting, and shows that the latter can 

partially mitigate effects from interference, consistent with 

past behavioral studies (Altmann & Gray, 2002).  

The observation that adjustments to decay rate control 

not only the total short-term memory capacity (Figure 5), 

but also position-specific stimulus recall rates (Figure 4), 

raises the issue of whether altering decay rate might be a 

useful mechanism permitting a cognitive system to control 

short-term memory characteristics. Specifically, our model 

is consistent with the hypothesis that dynamic adjustments 

to activity decay rate may be an important aspect of the 

human attention mechanisms that control forgetting 

(Altmann & Gray, 2002).  

It is already well established that attention is a cognitive 

property that can be manipulated based on the needs of the 

task at hand (Broadbent, 1982; Downing & Pinker, 1985; 

Eriksen & St. James, 1986), and that attentional scope can 

be adjusted during visual search and memory recall, 

between being more focused or more diffuse (Engle, 2002; 

Kane & Engle, 2002).  Based on our modeling results, we 

hypothesize that altering the decay rate could serve as a 

means via which attentional mechanisms could act to 

manipulate attentional scope.  More focused attention is 

simulated in the model by a higher decay rate, so that 

attention is directed more intently on a smaller number of 

items.  In this way, decay is used as a means for combating 

proactive interference, with higher decay rates leading to 

more effective retention of recent information, but also at 

the expense of that which was presented before it. 

For the running memory span task used here involving 

rapid presentation of stimuli, human subjects attempt to 

hold presented stimuli in a limited capacity memory 

without the use of rehearsal (Bunting et al, 2006).  

Assuming that maintaining such stimuli depends on 

attentional resources, then changing instructions requiring 

subjects to retain varying numbers of stimuli (i.e., not just 

six as we did in our behavioral experiments) would be 

expected to have a great effect. Specifically, if attention is 

drawn sufficiently thin so that activation maintenance is 

small across all retained stimuli (a low decay rate in our 

model), then with longer stimulus sequences (e.g., a task 

requiring human subjects to recall 12 stimuli) few/none of 

the stimuli would be expected to retain activation levels 

above some cognitive threshold required for successful 

recall due to interference, although no doubt some 

attenuated recency effect will still be present. This is both a 

surprising and informative prediction from the model, and 

it suggests that overloading subjects’ attentional resources, 

i.e., drawing attention sufficiently thin, has a detrimental 

effect on retention. Future behavioral testing with varying 

length recall task could therefore either refute or strongly 

support the model we have presented here. Future 

computational studies will explore this issue as well as the 

ordered recall of stored stimuli. 
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