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Abstract

To help realize the potential of complex systems models we
need new measures appropriate for capturing processes that
exhibit feedback, nonlinearity, heterogeneity, and emergence.
As part of a larger research project encompassing several cat-
egories of dynamical properties this paper provides formal
and general definitions of tipping point-related phenomena.
For each tipping concept this paper provides a probabilistic
definition derived from a Markov model representation. We
start with the basic features of Markov models and defini-
tions of the foundational concepts of system dynamics. Then
several tipping point-related concepts are described, defined,
measured, and illustrated with a simplified graphical exam-
ple. The paper finishes with several branches of future work
involving new measures for complex systems and the fusion
of research domains.

1. Introduction
The idea of tipping points has captured the public’s atten-
tion from topics as diverse as segregation, marketing, politi-
cal unrest, material science, ecosystem stability, and climate
change. However the concept of a tip has not been gener-
ally and formally defined and, as a result, the term’s uses
across these various applications are inconsistent. At times
a tipping point refers to a threshold beyond which a system’s
outcome is known. Other times a tipping point describes an
event that suffices to achieve a particular outcome, or an as-
pect of such an event, or the time of such an event. Another
use of the term ‘tipping point’ is to label the conditions to
which the system is most sensitive. The idea is frequently
tied up with processes such as positive feedback, externali-
ties, sustainable operation, perturbation, etc. but not in ways
that explicitly draw the connections. This paper aims to elu-
cidate the distinctions among these and other uses of the
term ‘tipping point’ based on features of system behavior
that are independent of the substantive domain.

To accomplish this conceptual analysis the paper puts
forth a formal definition for each concept to measure the as-
sociated property. The analysis utilizes Markov model rep-
resentations of systems constructed in a particular way. The
details of creating the necessary Markov representation are
explained in detail in other work (Bramson 2009) as are the
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formal definitions for familiar landmarks in system dynam-
ics. These features will be only briefly covered here. With
this foundation in place various tipping point-related con-
cepts are described, defined, and illustrated with simplified
graphical examples.

2. Background
Much previous work in finding and measuring properties of
system dynamics has focused on explanation - on answer-
ing the why questions. Not surprisingly since these discus-
sions were couched in scientific contexts where a particular
phenomenon required explanation. Each such jaunt into ex-
plaining tipping points was accompanied by a custom-suited
methodology capable of generating and detecting that prop-
erty within the model provided (to answer the how question).
Each such measure was designed to explain the dynamical
property within a particular model and domain. This ap-
proach is methodologically limiting because in order to ex-
plain how a process generates tipping behavior one has to
model that process explicitly and develop a new measure for
each model.

The current work is one of pure methodology: It is meant
to be completely abstract and general and therefore capable
of measuring these system properties in any system. This
paper provides techniques to answer the whether and how
much questions which are key to informing the how and
why questions. A general methodology provides a frame-
work through which all modelers (and some data analysts)
can determine whether and how much tippiness obtains . . .
and compare results across models regardless of the gener-
ating mechanisms. The ability to compare measures across
systems is achieved through a focus on scale-free measures -
measures that do not depend on the size of the system being
analyzed.

2.1 Tipping Points
The term ‘tipping point’ was first coined by Morton
Grodzins in 1957 (Grodzins 1957) to describe the thresh-
old level of non-white occupants that a white neighborhood
could have before “white flight” occurred. The term contin-
ued to be used in this context through the work of Eleanor
Wolf (Wolf 1963) and Thomas Schelling (Schelling 1971)
who also extended the concept to other similar social phe-
nomena. Though these researchers had a specific usage with
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narrow focus, the idea of a critical parameter value past
which aggregate behavior is recognizably different spread
across disciplines where its meaning and application varied
considerably.

Malcolm Gladwell’s pop sociology book The Tipping
Point (Gladwell 2000) has played a significant part in bring-
ing the term to the public’s awareness. The notion of tip-
ping point most frequently used by Gladwell is an event that
makes something unusual (such as Hush Puppy shoes) be-
come popular. More precisely this is a critical value for
producing a phase transition for percolation in certain het-
erogeneous social network structures. This form of tipping
point behavior also appears in the work of Mark Granovet-
ter (Granovetter 1978) and Peyton Young (Young 2003) for
the propagation of rioting behavior and technology respec-
tively. This version of tipping will play only a minor role in
what follows, however the fact that the expression has made
it into the everyman’s conceptual vocabulary boosts the im-
portance of establishing rigorous scientific definitions and
usage.

Tipping points have also appeared as a recent trend in re-
ports of climate change. James E. Hansen has claimed that
“Earth is approaching a tipping point that can be tilted, and
only slightly at best, in its favor if global warming can be
limited to less than one degree Celsius.” (Farrell 2006) This
usage reflects Hansen’s belief that “Humans now control the
global climate, for better or worse.” Gabrielle Walker states,
“A tipping point usually means the moment at which internal
dynamics start to propel a change previously driven by ex-
ternal forces.” (Walker 2006) It is unclear whether Walker’s
and Hansen’s comments are compatible; and even if their
usages are meaningful within their fields they fail as general
characteristics. Identifying tipping points (as a property of
system dynamics) should not depend on whether humans are
in control of system behavior or what is driving the dynam-
ics.

But not all heretofore definitions of the term ‘tipping
point’ have been loose or subject-matter specific. It is often
deployed as a semi-technical term in equation-based mod-
els of various sorts. For example, it can refer to an un-
stable manifold in a differential equation model, the set of
boundary parameters for comparative statistics (Rubineau
2007), or inflection points in the behavior of functional mod-
els. But not all models can be faithfully represented as sys-
tems of equations and this limits the usefulness of equation-
dependent definitions.

2.2 Markov Modeling, Network Theory, Graph
Theory, etc.

Markov modeling has a long history in mathematics, engi-
neering, and in applications to fields as diverse as condensed
matter physics, genomics, sociology, and marketing. Tech-
niques to use Markovian processes to uncover information
about system dynamics fall within the field of ergodic the-
ory. In their abstract form one can compute features such as
the equilibrium distribution, expected number of steps be-
tween two states (with standard deviation), reversibility, and
periodicity. These features gain added meaning when inter-
preted for the system being modeled, but this paper utilizes

them as part of defining general properties of system dynam-
ics.

Computer scientists have long been analyzing networks in
the form of actual communication networks as well as var-
ious abstractions from these problems. They have invented
several useful measures and exceptionally well-crafted algo-
rithms to calculate connectedness, load-bearing properties,
path switching, transmission speed, and packet splitting and
fusion to name a few. My analysis borrows heavily from
this work in terms of algorithms, though each has been re-
purposed to the abstract Markov model system representa-
tion. Hardware engineers and their physicist partners have
worked out several interesting measures for circuit design
problems. Multiple paths, variable resistance, flow injection,
capacitance and many other characteristics of electronic cir-
cuits have analogs in the Markov models presented below.

And finally graph theory offers a few useful measures
for our purposes, and moreover provides a wealth of defini-
tions for graph structure and node relationships. Structural
properties will play a larger role in future work addressing
changes of resolution and in establishing equivalence classes
of system dynamics (see future work).

3. Motivations and Applications
The measures defined here are meant to stand on their own
as improvements in our conceptual understanding of the in-
cluded features of system dynamics. By differentiating and
formally defining these properties of processes we gain both
a common vocabulary with which to discuss our models and
a detailed typography of behavior to include and detect in
our models. Many of the applications I have in mind are to
include these measures in constructive models across mul-
tiple disciplines where the models are iterated with multi-
ple initial settings and/or have stochastic parameters. These
include game theoretic models, network models, physical
models, and the whole gamut of models which may be con-
sidered agent-based. The application to agent-based mod-
els of complex adaptive systems is the most important since
this is where existing measuring techniques fall the short-
est of fulfilling basic needs. One major goal of complex
systems research is to identify common underlying mathe-
matical properties in a myriad of seemingly very different
phenomena. The Markov modeling technique used here al-
lows us to create a common representation of almost any
system’s dynamics and the measures developed here and
elsewhere thus provide immediate ways to compare the dy-
namical properties of systems across domains. In addition
to generative models and simulations certain static data sets
- the sorts collected by surveys - are also analyzable via this
methodology if the data satisfy certain criteria. Readers are
referred to (Bramson 2009) for more information about cre-
ating the Markov model from collected data.

4. Defining a Markov Model
In consideration of limited space and because a detailed ac-
count of how to create the Markov model representation is
provided elsewhere (Bramson 2009) I will only present a
brief overview of this mathematical structure to highlight
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those features which will be key to the tipping point anal-
ysis at the heart of the current paper. Fundamentally a
Markov model is simply a collection of states and a set of
transition probabilities between pairs of states. Different
applications of Markov models take different system fea-
tures as the states, but the nodes in the Markov models used
here represent a complete description of a state of the sys-
tem (see below). The transition probabilities represent ei-
ther observed system dynamics or theoretically posited state
changes. Given that states and transitions are defined this
way the set of states and their transition probabilities are
constant for the Markov models utilized in this paper.

A system state is a complete set of instantiations of the
aspects of the system (values for variables, existence for
agents, etc.). Throughout we will analyze systems with a
finite (but possibly arbitrarily large) number of states each
with a finite number of aspects.
Definition 4..1. A state in the Markov model is a complete
specification of the aspects of one configuration of the sys-
tem.
Definition 4..2. Two states are represented as one state of the
Markov model if all the aspects of the two states are identi-
cally valued.
Example 4..1. If our system is an iterated strategic-form game
played by six players

Pi ∈ {P1, P2, . . . , P6}
each with four possible actions

a(Pi) ∈ {a1, a2, a3, a4}
then each state of the system has six aspects and each aspect
takes on one of four values. That is

Si = {a(P1(i)), a(P2(i)), . . . , a(P6(i))}
and a particular state S3 might be {a3, a2, a3, a1, a4, a3}.
There are 64 = 1296 combinations of four actions for six
players, but the Markov model may not include all of them.
Recall that the model is expected to be built from either col-
lected data or a theoretical model so some combinations of
aspect values may be unobserved, theoretically impossible,
or simply irrelevant.

A set of n states is demarcated with boldface type: S =
{S1, S2, . . . Sn}. The set of all the states in the Markov
model is N which has size |N| = N ; thus N is also the
number of nodes in the graph representation. The state of
the system at time t (denoted st) changes to st+1 in discrete,
homogenous time intervals. State transitions are probabilis-
tic and specified by the system’s transition diagram or ma-
trix. We write the probability of transitioning from state Si

to state Sj as Pij := P (st+1 = Sj |st = Si). It will later be
useful to denote the set of transitions E and the size of this
set as |E|.

5. Special States and Sets
To use a Markov diagram to represent system dynamics we
will need to define various types of system behaviors in
terms of system states, sets of states, and state transitions.
As a preliminary to the common features of system behav-
ior I will present definitions of some structural features that
will be utilized.

5.1 Paths
In graph theory a path (of length `) is typically de-
fined as a set of vertices and edges satisfying the schema
v0, e1, v1, e2, . . . , v`−1, e`, v` where the edge ei links the
vertex vi−1 to vi (Lint 1992). Self-transitions, which rep-
resent both a lack of change and a change too small to count
as a state change, are an important feature of Markov model-
ing and hence both nodes and edges may be repeated along
paths. So ‘path’ as it is used here is the broader notion some-
times called a ‘walk’ in the graph theory literature. A path
in a Markov model could be defined as a set satisfying the
same schema used in graph theory, but we will use a slightly
different definition to make the probabilistic aspects explicit.

Definition 5..1. A path is an ordered collection of states and
transitions such that from each state there exists a positive
probability to transition to the successor state within the col-
lection. A path from Si to Sj is denoted S̃(Si, Sj) or S̃i Sj

To specify intermediate states (markers) for the system to
pass through we can write ˜Si Sj Sk to denote a path from
Si to Sk that passes through (at least) Sj . To specify a
long sequence of path markers this paper uses the notation
S̃(S0, S1, . . . , ST ).

To completely specify each state along a path we
adopt the notation

−−−−−−→
Si . . . Sj for short sequences and

~S(S0, S1, . . . , ST ) for long ones.

Definition 5..2. The length of a path is the number of transi-
tions taken between the first and last states.

`(~S(Si, . . . , Sj)) :=
T−1∑
t=0

|{−−−−→st st+1}|

This (possibly overly complicated) formal definition of
length simply uses features of the definition of path above,
but it is equivalent to the number of edges traversed along
the path.

Definition 5..3. A cycle is a path that starts and ends with the
same state.

S̃i Si

Graph and network theorists have developed a great many
algorithms for finding paths, calculating their lengths, and
measuring properties germane to their application in those
fields. Some of those will come up later in measuring prop-
erties of system dynamics, but the definitions and theorems
presented above will suffice to move forward in examining
our Markov models.

5.2 Landmarks in System Dynamics
This subsection provides definitions for common structural
properties of Markov models used to represent system dy-
namics. Many of these features have existing definitions in
terms of matrix operations or limiting distributions, but this
paper will present probabilistic definitions based on the fi-
nite state transition representation. My motivation for the
alternative definitions is to facilitate clear intuitions about a
system’s processes and how to measure them precisely.
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Definition 5..4. A system state that always transitions to itself
is called an equilibrium or stable state.1 An equilibrium ei

is a state Si such that

P (st+1 = Si|st = Si) = 1.

In some cases a set of states plays a role similar to that of
an equilibrium.

Definition 5..5. An orbit is a set of states such that if the
system enters that set it will always revisit every member of
the set and the system can never leave that set. S is an orbit
if

∀i @h P (st+h = Si ∈ S|st ∈ S) = 0

and
∀i ∀h > 0 P (st+h = Si 6∈ S|st ∈ S) = 0.

Definition 5..6. An oscillator is an orbit that is also a cycle.

Definition 5..7. An Attractor (denoted Ai) is either an equi-
librium state or an orbit of the system.

The choice of a resolution determines whether an orbit ap-
pears as an equilibrium or vice versa. In cases where attrac-
tor avoidance is the aim of the model (as is often the case for
complex systems) we can collapse orbits into a single attrac-
tor state without loss of information. For this reason I will
use ‘Ai’ as if it were a single state except in cases where it
being an orbit affects the analysis.

For many systems an equilibria analysis is inappropriate.
It is not the case that these systems fail to have attractors, it’s
just that the goal of such systems is to remain in continual
flux and avoid equilibria and other “point attractors” (i.e. at-
tractors that incorporate a small percentage of the total num-
ber of states). Given the definitions established above every
Markov model must have some set of states satisfying the
conditions for being an attractor, but this may be the whole
set of states seen in the dynamics. In many cases the im-
portant concept is that of a core (see below) which can be
thought of as quasi-attractors.

Definition 5..8. Those states from which the system will
eventually move into a specific attractor are said to be in that
attractor’s basin of attraction. The basin of Ai or B(Ai) is
a set of states S such that

∃h ≥ 0 P (st+h = Ai|st ∈ S) = 1

Some systems may spend a great deal of time in a basin
of attraction before reaching the attractor located within it
thus making system behavior in the basin similar to an orbit
itself. In such cases it is sometimes helpful to utilize the
following property to describe and make inferences about
system behavior.

Observation 5..1. Once in a basin of attraction the system
can never leave it.

∀h P (st+h ∈ B|st ∈ B) = 1

1As is defined formally in the paper on robustness measures
(Bramson 2009), stability refers to a tendency to self-transition.
Hence an equilibrium is equivalent to a fully stable state.

Definition 5..9. The support of a state (also known as its in-
component) is the set of states which have a path to it. The
support of Si or S(Si) is the set of states such that

∀j Sj ∈ S(Si)⇒ (S̃j Si).

We can expand this definition to the support of a set of
states S as the union of the supports of the members of S.

Figure 1: Attractors, Basins of Attraction, and Support

The indeterminate states of a system, ones that are not
members of a basin of attraction, convey a wealth informa-
tion about the system’s dynamics and its future states. Recall
that the whole system may be a single orbit and there may
be no indeterminate states. But if there are multiple attrac-
tors, then the indeterminate states are the ones in multiple
attractors’ supports.

Definition 5..10. The overlap of a collection of states
(whether attractors or not) is the set of states in all of their in-
components (i.e. the intersection of supports). The overlap
of {Si, . . . , Sj}, written Ω(Si, . . . , Sj), is the set of states
in ⋂

Sg∈{Si,...,Sj}

S(Sg)

Figure 2: Supports and Their Overlap

The overlap states are of interest because these are the
states with positive probabilities for ending up in each of the
attractors for which the supports are overlapping.

Observation 5..2. If no attractors’ supports overlap then ev-
ery attractor’s support is just its basin of attraction and the
system has a deterministic outcome.
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Definition 5..11. A state’s out-degree is the number of dis-
tinct successor states (states that may be immediate transi-
tioned into). The out-degree ki of state Si equals

|{Sj : P ( st+1 = Sj |st = Si) > 0}|

Sk will be used to denote a neighboring state and Sk the
set of neighboring states.

Definition 5..12. The reach of a state (also called its out-
component) is the set of states that the system may enter
by following some sequence of transitions; i.e. all possible
future states given an initial state. The reach of Si or R(Si)
is the set of Sjs such that

∃h > 0 P (st+h = Sj |st = Si) > 0

Theorem 5..3. Every successor state’s reach is less than or
equal to the intial state’s reach.

∀i, j
−−−→
Si Sj ⇒ ‖R(Si)‖ ≥ ‖R(Sj)‖

Theorem 5..3 generalizes to all paths (which is just a se-
quence of transitions) so that reach never increases as the
systems transitions along any path. This property relies on
the fact that the transition structure is fixed for the Markov
models used in this methodology.

A strongly connected component of a directed network is
a set of vertices such that there is a path from every vertex
in the set to every vertex in the set (including itself). We
will find the same concept useful, but this paper adopts a
different name for it.

Definition 5..13. A core of a set is a subset wherein every
member of the subset is in the reach of every member of the
subset. The core of some set S is written CS and is a subset
satisfying the condition⋂

Si∈S

⋂
Sj∈S

Sj ∈ R(Si)

Some sets will have multiple cores – the set of S’s cores
can be called S’s mantle.

Observation 5..4. Every state in a core has the same reach.

Figure 3: The Cores of an Arbitrary Set

The states on the boundary of a set are a useful set of
states to identify.

Figure 4: The Perimeter States of an Arbitrary Set

Definition 5..14. The perimeter of a set, P(S), is a collection
of those states in the set that may transition to states outside
the set. That is, P(S) is the set of states such that

P (st+1 6∈ S|st ∈ S) > 0
In keeping with the core and mantle analogy, the perime-

ter states of the mantle of S will be referred to as S’s crust.
Perimeter states themselves, without further specification,
describe one commonly deployed (though weak) concept
of tipping points, although we will see in the next section
that specifying different base sets produces different types
of tips.

In the next section we apply the above definitions in dif-
ferent combinations and different contexts to identify vari-
ous system behaviors. Most extant systems analysis focuses
on equilibria, but a lot of interesting behavior happens away
from equilibrium. In the indeterminate states of a system we
cannot know precisely which states the system will reach or
which state it will be in at a given time in the future, we
only know probability distributions over the future states.
But by understanding a system’s behavior we might know
whether some particular change facilitates a specific out-
come or path through the dynamics - this may be helpful
information. Discerning these sorts of facts about system
dynamics can increase one’s information about the system
(in both the technical and colloquial senses). Considerations
such as these are the building blocks of the formal theory of
tipping point-related phenomena immediately to follow.

6. Tipping Phenomena and Related Concepts
Using Markov models and the states and sets defined above
as a springboard, this section defines and briefly describes
several terms related to the concept (or more to the point,
concepts) of tipping points. Critical phenomena and tipping
points of various kinds share the defining feature that (for
whatever reason) behavior is different before and after some
transition. Behavior in this analysis is just the properties of
system dynamics. There are, of course, many ways in which
the properties of system dynamics can differ and each way
is a different kind of tipping phenomenon.

6.1 Levers
Recalling that state changes occur if and only if there is a
change in some aspect of the initial state, our analysis of
tipping phenomena starts with state aspects.
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Definition 6..1. The levers of a state are the aspects of a state
such that a change in those aspects is sufficient to change the
system’s state. The levers of Si, denoted L(Si), is

k⋃
j=1

Q⋃
h=1

Xh(i) 6= Xh(j).

So given a state in the Markov model, the levers are those
aspects of the state that are different in any neighboring state
and each such aspect Xh is a distinct lever. In some cases
neighboring states will differ by more than one aspect. In
those cases the respective element of the set L(Si) will be a
list of all the aspects that need to change as one lever.
Definition 6..2. A lever point is a transition resulting from a
change in a particular aspect (or set of aspects). An aspect’s
lever points is the collection of transitions that a change in
that aspect (or those aspects) alone generates. The lever
points of Xh is the set of transitions created by

E⋃
−−−→
Si Sj

Xh(i) 6= Xh(j)

Levers and lever points work complementarily: for levers
we pick a state and find the aspects that change and for lever
points we pick the aspect change and find the state changes
it produces.

It is occasionally helpful to refer to the aspect change(s)
that generate a specific transition.

Definition 6..3. L(
−−−→
Si Sj) symbolizes the lever set of

−−−→
Si Sj :

the aspect or aspects that differ between Si and Sj .
In some applications we will be interested in how many

aspects change for a transition.
Definition 6..4. The magnitude of the lever set of a specific
transitions is |L(

−−−→
Si Sj)|.

Though levers as they are defined here do not depend on
the ability to control that aspect, the choice of ‘lever’ for this
concept is motivated by the realization that in some models
control of some aspects is available. One may be perform-
ing a tipping point analysis precisely because one is choos-
ing levers to bring about one state versus another (or agents
within the model may be choosing).
Example 6..1. Imagine a model wherein each aspect is a vari-
able representing some part of a policy (e.g. amount of
money spent on each line item). Each aspect change has an
associated cost (legal, bureaucratic, time, etc.). The modeler
may be trying to determine the lowest cost, feasible route
from the current policy to some desired policy; or perhaps
to determine how far policy can be changed on a specific
budget. The cumulative magnitudes of lever sets along a
path may adequately approximate such a cost measure. In
general the sum of the magnitudes along a path is a rough
measure of how difficult it is for the system to behave that
way. Techniques from circuit design applied to the Markov
model may be gainfully applied to such models.

In some contexts we may wish to know how much change
an aspect is responsible for across the system’s dynamics.

Definition 6..5. The strength of a lever is the sum of the prob-
abilities of all transitions that result from changing that lever.
The strength of Xh is equal to

E∑
−−−→
Si Sj

P (
−−−→
Si Sj |Xh(i) 6= Xh(j)).

This measure is not scale-free since the sum depends on
the number of transitions in the Markov model, but it is use-
ful for comparing levers within a system. The strength mea-
sure could be used, for example, to determine which aspects
to control to maximize (or minimize) one’s ability to manip-
ulate the system. It could also be associated with a cost of
letting that aspect vary over time. We will revisit levers be-
low in other forms as they apply to other measures of system
dynamics.

6.2 Thresholds
In some cases we are interested not just in which aspects
change through a transition but also in the values2 of levers
at transitions.

Definition 6..6. A threshold or threshold point is a particular
value for a lever such that if the value of the aspect crosses
the threshold value it generates a transition. So x is a thresh-
old value of

−−−→
Si Sj if

Xh(i) = x and Xh(j) 6= x.

This definition can be applied mutatis mutandis for a set
of values {x} for a lever set which can be distinguished by
the name threshold line when appropriate.

If there are multiple states with transitions crossing the
same threshold value then knowing that information refines
our understanding of the lever’s role in system dynamics.
Thus determining the threshold value for one transition is
merely a means to the end of determining the strength of the
levers with that threshold.

Definition 6..7. The threshold strength of x is the strength of
the levers for which x is the threshold value:

E∑
−−−→
Si Sj

P (
−−−→
Si Sj |Xh(i) = x and Xh(j) 6= x.

If a particular value for a particular aspect plays a large
role in system dynamics then crossing that threshold is an-
other oft-used version of tipping point behavior.

These definitions of threshold and threshold strength only
require that the end state’s value be different from the start
state’s value. In common usage, however, thresholds estab-
lish different and separate boundary values for ascending
and descending values. If a threshold only affects system
dynamics in one direction then we can determine that from
the Markov model using the following definitions.

2Recall that many of the things that can be included as as-
pects of states are not numeric parameters and so what counts as
a “value” for that aspect is meant to be interpreted broadly.
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Definition 6..8. An upper bound threshold of
−−−→
Si Sj is a value

x such that
Xh(i) = x and Xh(j) > x.

Definition 6..9. A lower bound threshold of
−−−→
Si Sj is a value

x such that
Xh(i) = x and Xh(j) < x.

The threshold strength measure can be adapted to these
ascending and descending definitions in the obvious ways.
Sets satisfying these definitions can tell us how frequently
crossing that threshold in that direction acts as a lever. If
there are multiple states with transitions crossing the same
threshold value then knowing that information refines our
understanding of the lever’s role in system dynamics.
Example 6..2. This general definition admits examples from
many different kinds of systems and can even apply to parts
of systems (such as agents). In Granovetter’s model of riot
spreading (Granovetter78) we can talk of each agent having
its own threshold - the number of rioting agents necessary to
make each agent join the riot. This is just the same threshold
definition applied to a lever set where the levers happen to
be the same feature of each agent. In Granovetter’s model
the threshold value is the same in both directions.

We can also talk of thresholds in the properties of the sys-
tem dynamics that track how the system transitions through
states. Instead of being a value for an aspect within the
model, it would be a value for one of the measures defined
for properties of system dynamics.

6.3 Critical Behavior
In some system analyses the property of interest is what is
available for the future . . . in the most general terms. If one
does not know much about a system’s dynamics then even
knowing how many states could potentially be transitioned
to (i.e. the size of the reach) provides an informational ben-
efit. The measures below become increasingly refined and
detailed, but we start with some simple measures that may
suffice for some applications (and may be the best available).
Definition 6..10. A state’s stretch is the number of states in
its reach. So the stretch of Si equals

|R(Si)|.
Definition 6..11. A system dynamic (i.e. a particular state
transition) is considered critical behavior if and only if it
produces a decrease in stretch; that is, critical behavior is
any
−−−→
Si Sj such that

|R(Si)| > |R(Sj)|.
In addition to identifying the transitions that limit the sys-

tem’s future states, we can also measure how critical the
transition is. Subtracting the end state’s stretch from the
start state’s stretch provides such a measure, but it is not
scale-free (because both the range of values and the partic-
ular value for this measure depends on the total size of the
system) and so cannot be readily compared across different
systems. We can normalize the stretch difference with the
size of the system to which it is being applied to produce a
percentage measure.

Definition 6..12. The stretch-gap of a transition is the change
in the percent of the total number of states that can be
reached. This quantity equals

|R(Si)|
N

− |R(Sj)|
N

.

Because this measure includes the total number of states
in the system it clearly is not scale-free either. However de-
spite this limitation it does provide information about the
system’s future and is an intuitive way to compare transi-
tions within the same system - even at different resolutions.
As example 6..3 below demonstrates the stretch-gap reports
how much of the system’s state space is cut off by each tran-
sition and this information could be used, for example, to
manipulate system dynamics to prolong system longevity.
We also have an alternative, fully scale-free, measure of the
drop in reach across a transition.

Definition 6..13. A transition’s criticality is one minus the
ratio of the start and end states’ stretch. The criticality of
−−−→
Si Sj equals

1− |R(Sj)|
|R(Si)|

.

Recall from theorem 5..3 that from any initial starting point,
as the system transitions through its states the sizes of the
states’ reach are monotonically decreasing. As a result of
that theorem we have the following corollary regarding the
range of values for the ratio of reaches.

Corollary 6..1. A transition’s criticality will be between zero
and one.

Proof. Let a = |R(Sj)| and b = |R(Si)| for transition
−−−→
Si Sj . From theorem 5..3 a ≤ b. a = b produces a

b = 1
which yields a criticality of zero. For a < b we can decrease
a or increase b to find the other bound, but since a and b are
natural numbers increasing b is the better approach. Using a
well-known mathematical fact suffices for finding the other
bound: ∀a limb→∞

a
b = 0.

Observation 6..2. Transitions within a cycle (which in-
cludes self-transitions) always have zero criticality and zero
stretch-gap.

The concept of criticality agrees with this measure inso-
far as any transition that has no affect on what states may
be visited in the future should not be a critical transition.
Critical transitions, or the states preceding them, are another
oft-used tipping concept.
Example 6..3. The system represented as figure 5 has thirty-
three states in total. Each one is coded by its stretch. Com-
pare the patterns in shading to the attractors, basins, and sup-
port in figure 1 and the overlap in figure 2. Stretch alone,
though a rather simplistic measure, works decently to par-
tition the system dynamics into regions of similar behav-
ior. Stretch-gap performs well as a discriminator that groups
states into these regions in a way similar to spectral analy-
sis for detecting community structure in networks (Clauset
2008). To wit, stretch drops between zero and four states
within any basin or overlap, but drops four to eighteen states

8



Figure 5: Stretch-Gap and Criticality Measures

crossing a boundary (in this example). This is not com-
pletely reliable, of course, but for many systems this simple
technique may provide all the information required; and it
may be the best one can do with available data.

S21 has a stretch of 21, S25 has a stretch of 6, and S28

has a stretch of 2. There are 33 states in this system so
the stretch-gaps of

−−−−→
S21 S25 and

−−−−→
S25 S28 are 45.45% and

12.12% respectively. That means that 45.45% fewer of the
system’s states can be reached after the

−−−−→
S25 S28 transition.

We can also use this to determine the stretch-gap of S̃21 S28

as 57.58% regardless of the particular path taken. Only the
start and end states’ stretches are necessary to calculate this,
but the result is always equal to the sum of the stretch gaps
of each transition taken.

Let’s compare these figures to the criticality of the same
transitions. The criticality of

−−−−→
S21 S25 is 0.714 and the criti-

cality of
−−−−→
S25 S28 is 0.667. That means that the system only

has 71.5% of the possible future states in state S25 as it did
in S21. A composite measure is also possible for the criti-
cality of S̃21 S28. It can be calculated just using the start and
end states’ stretches, using the standard percentage of a per-
centage of a percentage . . . calculation.3 So the criticality of
S̃21 S28 = 0.714 + 0.667 · (1− 0.714) = 0.905.

These measures above are intended to be just rough mea-
sures useful in certain limited contexts and when informa-
tion about the system is limited. For starters, these mea-
sures consider only the structure of the Markov models, not
the probabilities. Also, they apply to transitions rather than
states. Both limitations are now overcome with richer defi-
nitions of the relevant dynamical properties.
Definition 6..14. The criticality of a state is the probabilis-
tically weighted sum of the criticality of all the transitions
from that state. So to find the criticality of Si we calculate

k∑
j=1

Pij

(
1− |R(Sj)|
|R(Si)|

)
where by convention of the use of k that is the sum over Si’s
neighbors.4

3The value equals the iterated sum of the previous transition’s
criticality and the product of the transition criticality with the pre-
vious transition’s criticality’s complement

4In this case it does not matter whether the sum is limited to

Because by definition of a Markov model the sum of the
exit probabilities sum to one, state criticality will also be a
scale-free measure with values between zero and one. All
these criticality measures quantify the constriction of future
possibilities on a state-by-state basis which is useful if we
want “to keep our options open”. Sometimes that is exactly
what we want to measure, but sometimes we will want to
measure system dynamics with reference to some particular
features and that is what the following definitions for tipping
points allow us to measure.

Critical Levers As a refinement of levers from definition
6..1 we can apply the lever concept to critical states to identify
another feature of system dynamics.

Definition 6..15. A state has a critical lever if a change in that
aspect (or those aspects) of the state will reduce the reach.

This merely combines the concept of a lever with the con-
cept of critical behavior (definition 6..11). By looking more
deeply at the aspects driving the state changes and calculat-
ing the magnitude and strength of different critical levers we
can gain a better understanding of how microfeatures gener-
ate the macrobehavior of the model.

6.4 Tipping Behavior
As mentioned in the section introduction, the common fea-
ture of the measures in this section is that some states or
transitions mark a shift in the properties of a system or of
its states. For the criticality measures above the difference
was the number of reachable states. The following measures
generalize to any sets distinguished by a chosen characteris-
tic. Given states exhaustively compartmentalized (i.e. parti-
tioned) by the property (or properties) of interest the follow-
ing techniques can find where shifts occur and measure their
magnitude.

Tipping Points For some models we are interested in the
achievement of a particular state (e.g. an equilibrium) or a
particular system behavior (e.g. a path linking two states).
We denote the particular state (or set) of interest as the ref-
erence state (or reference set). Below we will see examples
of specific reference states (e.g. attractors and functional
states) but first the general case. There are many ways in
which behavior may change with respect to a reference state
or set (e.g. probability of reaching it, probability of return-
ing to it, or probability of visiting an intermediate state):
each property may partition the states into different equiva-
lence classes (groups with the same value of the property).
It is the movement between equivalence classes that counts
as tipping behavior.

Definition 6..16. A tipping point is a state which is in the
perimeter of an equivalence class for some property.

Recall from definition 5..14 that perimeter states are those
from which the system’s dynamics can leave the specified
set. Because the sets here are determined by the properties
of system behavior, leaving a set implies a change in that

span over neighbors or all the vertices because Pij = 0 for Sj

that are not neighbors. This convention will be used throughout -
including cases where limiting an operation to neighbors matters.
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behavioral property - and that is a tip. This definition does
not preclude that the system could tip back into a previously
visited set: that possibility depends on what property is es-
tablishing the equivalence classes.
Example 6..4. A climate change model that relates the CO2
content of the atmosphere to global temperature may have
states that are grouped together according to a shared prop-
erty of those states (e.g. sea level, precipitation, glacial
coverage). Due to feedback mechanisms in the system it
is likely the case that these qualitative features change in
punctuated equilibria thus producing equivalence classes for
some states of the system. Ex hypothesi people can manip-
ulate the level of CO2 to higher or lower values. The values
at which the property shifts happen may differ for the in-
creasing and decreasing directions, but the point is that CO2
levels could raise temperatures to the point where glaciers
disappear and then later lower past the point where glaciers
will form again. For some systems behavior can tip out of
an equivalence class and then later tip back in. Phase tran-
sitions in condensed matter physics are another example of
reversible tipping behavior. So while some have posited that
tipping points are points of no return for system behavior,
that turns out to be true only for certain systems and is not
properly part of the definition.

Dynamics of staying, leaving, returning, and avoiding a
specified set of states are covered in a separate paper on ro-
bustness (Bramson 2009). Here we continue with ways to
quantify changes in what is possible for system dynamics
for different states and transitions. These measures apply
for any reference state or reference set, but for convenience
and intuition pumping the following presentation will adopt
the notation of attractor (Ai) for a reference state and set and
A for a collection of reference states. So A is a collection of
independent reference states and sets each of which satisfies
a property while Ai may be a set of states that collectively
satisfies a particular dynamical property (such as an orbit as
a whole satisfies the dynamical property of an equilibrium).
Definition 6..17. The energy level of a state is the number of
reference states within its reach. We write this as E(Si) and
it equals

|
A⋃
Ai

Ai ∈ R(Si)|

Energy level quantities partition the system’s states into
equivalence classes.
Definition 6..18. The equivalence class mapping created by
states’ energy levels is called the system’s energy plateaus.
Each energy plateau is a set

N⋃
i,j

E(Si) = E(Sj).

Definition 6..19. The change in energy across a transition is
called an energy precipice or energy drop. We can measure
the magnitude of an energy precipice in the obvious way:

4E(
−−−→
Si Sj) = E(Si)− E(Sj)

Figure 6: Energy Plateaus

Theorem 6..3. An energy precipice is never negative:
4E(

−−−→
Si Sj) ≥ 0.

Proof. From definition 6..17 the energy level of any state Si

is the number of attractors in R(Si). By theorem 5..3 for
any
−−−→
Si Sj R(Sj) ⊆ R(Si). This decreasing reach property

implies

|
A⋃
Ai

Ai ∈ R(Sj)| ≤ |
A⋃
Ai

Ai ∈ R(Si)| ⇒ E(Sj) ≤ E(Si)

Since the end state of a transition always has a lower or equal
energy level, E(Si)−E(Sj) is always greater than or equal
to zero.

We now can measure the degree to which a state is likely
to be the site of a tip (in a similar fashion to definition 6..14 of
state criticality above).
Definition 6..20. The tippiness of a state is the probabilisti-
cally weighted proportional drops in energy of its immediate
successors:

1−
k∑

j=1

Pij

(
E(Sj)
E(Si)

)
Theorem 6..4. Tippiness ranges from zero to one.

Proof. The lower bound occurs when all neighbors can
reach the same number of reference states: ∀k E(Si) =
E(Sk). In this case tippiness equals 1 −

∑k
j=1 Pij · 1 = 0

since exit probabilities must sum to one. By theorem 6..3
E(Si) ≮ E(Sk). When E(Si) > E(Sk) the upper bound
occurs when a state has every attractor and only attractors
as neighbors. We know by definition that

∑k
j=1 Pik = 1.

Attractors have an energy level of one and the energy level
of Si in this case is |A| so Si’s tippiness is 1−

∑k
j=1

Pij

|A| =
1− 1

|A| . Thus the upper bound of Si’s tippiness goes to 1 as
|A| → ∞.

Note that tippiness uses the ratio of energies rather than
the difference; this makes tippiness a dimensionless metric
and thus comparable across any state or system. Sometimes
one will be more interested in minimizing the magnitude of
energy drops, or avoiding states with the highest expected
magnitude of energy drops, which have obvious formula-
tions given the above definitions.
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Tipping Levers As another refinement of levers from def-
inition 6..1 we can apply the lever concept to tipping points to
relate tips to the individual aspect changes that drive them.

Definition 6..21. A state has a tipping lever with respect to
some specified set of states if a change in that aspect (or
those aspects) of the state will take the system out of that set
of states.

This merely combines the concept of a lever with the gen-
eral concept of tipping behavior. So while all states ex-
cept equilibria have levers, only perimeter states have crit-
ical levers. Identifying the tipping levers of certain sets of
states is precisely what we’d like a “tipping point” analysis
to reveal because it is just the aspects of a tipping point that
actually change when the system tips out of a set of states.
These ideas are further refined in the analysis of robustness
and related concepts elsewhere (Bramson 2009).

7. Conclusions and Future Work
These tipping point measures may succeed in many cases
to provide the insight necessary to understand the dynamics
of complex systems, but certainly there is more work to do
in refining, distinguishing, and improving these definitions.
There are other dynamical properties in need of definition
and improved algorithms to run the analyses on actual data.
Good methodology exists as a facilitator to good science, so
the first and perhaps most important extension of this project
is to apply these measures to models within substantive re-
search projects. All of these are in progress and collabora-
tion is welcome.

As noted above, one major goal of complex systems re-
search is to uncover the similarities across seemingly very
different phenomena in a wide array of substantive domains.
We can use the Markov representation to identify network
motifs (repeated patterns in the graph structure) and establish
cross-disciplinary equivalence classes of system behavior.

There are two potential non-trivial objections to the
above-given probabilistic accounts of properties of system
dynamics. The first is that probabilistic definitions are inad-
equate because we aim to understand these features as prop-
erties that systems possess rather than dynamics they might
have. As long as the above definitions reveal useful distinc-
tions and patterns of system behavior the project was a suc-
cess, but still better (or at least different and also useful)
measures may be available if built from a different formal
foundation. I will, naturally, continue to pursue other and
hugely different measures of system dynamics and strongly
encourage input from others working on similar projects.

The other objection to the probabilistic definitions pro-
vided is that a person may insist that for many of these
concepts the definition is incomplete without the causal ex-
planation for how it comes about. Like all other statistics-
like approaches these measures may be realized by many
different micro-level dynamics. Some of those dynamics
may not seem proper candidates for tipping behavior even
if the data they generate reveals it as such from this anal-
ysis. But if this were to happen then I would consider the
project a huge success. This would be similar to discovering
scale-free degree distributions in many different networks

from disparate research fields. Finding that common prop-
erty urged researchers to pursue more deeply the phenomena
and they eventually uncovered several different mechanisms
by which a scale-free network may be created. Our under-
standing of each of those systems greatly increased because
we had a common yardstick with which to measure them.
The probabilistic measures presented here are not intended
to replace or make unnecessary the deeper scientific analysis
- they are supposed to foster it.
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