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Abstract

Face recognition under variable lighting conditions is
recognized as one of the most problematic are of the
recognition domain by various authors. Previous work
suggested that image variations caused by parameters
such as illumination, can be modeled by low dimen-
sional subspaces. In this work, we propose a new
scheme for recognition under a single variation. Us-
ing a generic manifold learning technique like LPP, we
are able to construct coordinate systems for the under-
lying subspace with the help of an optimization step.
We performed experiments with face recognition under
changing illumination conditions.

1. Introduction
Appearance-based methods have been commonly used to
achieve recognition in the literature (Zhao et al. 2003), (Turk
and Pentland 1991). These methods simply try to find a low
dimensional subspace in which face images can be separated
easily depending on their identities. Original input images
arem × n matrices that can be represented as a point in a
d = m × n dimensional space. It is unreasonable to work
in this d-dimensional space because of the high dimension-
ality. Methods likeeigenfaces (Turk and Pentland 1991) try
to find an orthogonal basis for the face space, and represent
each face by coordinates in this space. Since onlyk ≪ d
of the basis faces are used, the new dimensionality is much
less than that of the original pixel space. In general, face im-
ages include large amount of information generated by vari-
ous factors. Different images of same person may be altered
extremely in different conditions depending on changes in
these factors. Thus, appearance-based methods may suffer
from uncontrolled environments.

To realize the robustness of the face recognition system,
one must deal with the variations in the lighting conditions
since illumination changes cause multimodality in the im-
age space. Images of different people in the original data
space are more closely located to each other than those of the
same person under changing illumination conditions (Kim
and Kittler 2005).

Illumination robust face recognition has been exhaus-
tively studied by various authors (Shashua and Riklin-Raviv
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2001), (Zhou and Chellappa 2003), (Georghiades, Bel-
humeur, and Kriegman 2001), (Zhang and Samaras 2006).
Shashua and Riklin-Raviv proposed the quotient image as
an lightning insensitive identity signature. The approach
may fail when the probe image has an unpredictable shadow;
however, it has the ability of recognizing probe images with
illuminations different than that of gallery images. Tech-
nique only requires one gallery image per subject while us-
ing several images during the bootstrap phase. Zhou and
Chellappa used extra constraints on albedo and surface nor-
mal to remove the shadow constraint. Georghiades et al.
proposed anillumination cone model. They argued that set
of images of an object in a fixed pose but under all lightning
changes define a convex cone. They require a few images
of a test identity to estimate its surface geometry and albedo
map. After the estimation is completed, synthetic images
with different illumination conditions can be rendered. All
sets of Lambertian reflectance functions, which can be used
to generate all kind of illumination conditions for Lamber-
tian objects, were defined in (Basri and Jacobs 2003) and
(Ramamoorthi 2002). They showed that by using only nine
spherical harmonics, a wide variety of illumination can be
approximated. In (Basri and Jacobs 2003), a methodology
for recognition was also proposed. Zhang and Samaras ex-
ploited those spherical harmonics and represented excellent
results for recognition.

Spherical harmonics approach may be stated as one of the
most promising approaches to model the illumination vari-
ations (Zhang and Samaras 2006), (Lee, Ho, and Kriegman
2001). Yet, the main disadvantage of the approach is that
it requires 3D scans of faces for the bootstrap phase. 3D
imaging needs special equipments which can be very ex-
pensive. To get the coordinates in the harmonics space,
they also need 2D images under various lightning conditions
which is another problem with this approach. Most of the
above techniques are specialized for illumination differences
which may not be applied to other kind of parameter alter-
ations like pose and expression. Usually, morphable models
are employed to introduce viewpoint invariance.

Previous studies suggested that parameter changes like
lighting constitute low dimensional subspaces (Chang, Hu,
and Turk 2003), (Shashua, Levin, and Avidan 2002), (Seung
and Lee 2000), (He et al. 2005). Manifold learning meth-
ods, that are superior to the linear dimensionality reduction
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techniques like PCA (Turk and Pentland 1991) when data
lies on non-Euclidean geometries, can be utilized to work
on these subspaces. He et al. developed an approximation
to the Laplace-Beltrami operator defined on a manifold to
construct linear maps which can be favored to get local co-
ordinates for a nonlinear manifold.

In this paper, we propose a novel approach based on the
nonlinear manifold embedding to define a linear subspace
for illumination variations. This embedding based frame-
work utilizes an optimization scheme to calculate the bases
of the subspace. Since the optimization problem does not
rely on any physical properties, the framework can also be
used for different types of factors such as pose and expres-
sion. The main advantage of the approach is that it only
requires 2D images for bootstrap. We do not even need im-
plicit 3D rendering.

In the bootstrap step, reduced coordinates for the face im-
ages under different lighting conditions are calculated by us-
ing LPP (He et al. 2005). After finding coordinates cor-
responding to illumination conditions, subspace bases are
calculated by an optimization step. For each individual, a
different subspace is defined. Details for this procedure are
given in the Section 2..

A Statistical model for subspace bases is learned in the
bootstrap step and this model is used during training for ba-
sis recovery. For each training individual which may be or
not in the bootstrap gallery, basis images are recovered by
computing the maximum a posteriori (MAP) estimate. To
calculate the illumination coordinates of a novel face, the
mapping coming from LPP is applied. Basis recovery is ex-
plained in Section 3..

Testing is applied by calculating the nearest subspace to
the novel test image. Each test image is tried to be synthe-
sized in subspaces belonging to different individuals and the
distance between the real image and the synthetic one is used
as a decision measure. Testing step is represented in Section
4..

Some final thoughts and concluding remarks are accessi-
ble in Section 5.

2. Subspace Analysis for Illumination
In this section, details on how to construct the illumination
subspace is proposed. We need 2D images of several peo-
ple under various illumination conditions to get basis statis-
tics. Some example images used in the bootstrap are given
in Figure 1. First step is to calculate the reduced coordinates
corresponding to illumination variations. After coordinates
are calculated, we need to learn a basis set for each identity.

2.1 Subspace coordinates
Following the previous works, we use a nine dimensional
subspace; although, a more exhaustive work can be done to
choose the number of dimensions. LPP is a manifold learn-
ing algorithm which can be run in a supervised mode. Given
a set of images under a number of variations, it determines a
subspace in which those variations are modeled by a coordi-
nate system. The output of LPP is a mappingM that is used
to compute the reduced coordinatesc of a novel imagex by

Figure 1: Example images used during the bootstrap

c = Mx

When the supervised mode is applied, LPP provides a
common mappingM for different identities. The columns
of the matrixM are regarded as the orthonormal basis of
the subspace. In this work, we do not treatM as a basis
set but only a mapping for coordinates. Instead of having
a common mappingM, we assume unified coordinates for
each illumination type and different basis sets for each iden-
tity. The method for computing bases is given in the next
section.

Since the supervised mode is used, coordinates of differ-
ent individuals for the same illumination conditions are very
close. In another words, images of different identities un-
der same lighting have approximatec values. Average co-
ordinates for each illumination condition are taken as global
coordinates; therefore, there is only one unique reduced co-
ordinate for each illumination condition. Figure 2 illustrates
reduced coordinates in 2-dimensional subspace.

2.2 Subspace bases
The second step is to calculate basis images for each iden-
tity. We used the following design: for each identity there
is a separate 9-dimensional subspace; coordinate systems
for these different subspaces are same. Since we have all
required coordinates from LPP but no basis for those sub-
spaces, we are challenged to solve an inverse problem: given
the basis coefficients, determine the basis images which will
result the minimum reconstruction error.

Consider we are givenN input images of a single person
for N different lighting conditions under a fixed pose. As-
suming a 1-dimensional subspace, the total reconstruction
error is defined as

E =
N

∑

i=1

‖xi − c1,iϕ1‖ (1)

wherexi is the input image underith lighting condition,c1,i

is the first coordinate term of theith image, andϕ1 is the first
basis image we trying to calculate. To reduce the condition
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Figure 2: Global coordinates in 2-dimensional subspace for
illumination variations. Coordinates of same lighting condi-
tions through different identities are considered to be same

number related to the problem, we introduce a normaliza-
tion constraint asϕT

1 ϕ1 = 1. By re-arranging the terms
and writing the minimization problem in the Lagrange Mul-
tiplier form, we get

L = −2cT
1 Xϕ1 + ϕT

1 ϕ1c
T
1 c1 + λ(ϕT

1 ϕ1 − 1) +

N
∑

i=1

xT
i xi

(2)
here the matrixX includes imagexi as itsith row. c1 is
the vector of the first coordinate terms, andλ refers to the
Lagrange multiplier. The last term

∑N
i=1 xT

i xi can be omit-
ted since it does not depend on the optimization variableϕ1.
Minimization of this cost functional yields the following re-
sult.

ϕ1 =
XT c1

√

cT
1 XXT c1

(3)

To calculate the second basis image, a similar formula-
tion with an extra constraintϕT

1 ϕ2 = 0 can be used. The
minimization of the following functional

L =

N
∑

i=1

‖xi−c1,iϕ1−c2,iϕ2‖+λ1(ϕ
T
2 ϕ2−1)+λ2(ϕ

T
2 ϕ1)

yields

ϕ2 =
YT c2 − αϕ1

√

cT
2 YYT c2 − α2

where Y = X − c1ϕ
T
1 andα = cT

2 Yϕ1. Following the
same procedure, thenth basis becomes

ϕn =
YT cn −

∑n−1
i=1 αiϕi

√

cT
nYYT cn −

∑n−1
i=1 α2

i

(4)

and similarlyY = X −
∑n−1

i=1 ciϕ
T
i while αi = cT

nYϕi.
This formulation can be utilized to get basis images for

each identity (a person in the bootstrap gallery). As men-
tioned before, for each identity, we get a different set of ba-
sis images to construct different subspaces. Since the co-
ordinate vectorsci are identical for each identity, these ba-
sis images reflect similar aspects of illumination variations
through identities. Figure 3 represents examples of basis
sets. After all bases are determined, statistics like mean vec-
tors and covariance matrices are computed.

Figure 3: Example basis sets calculated by reconstruction
error minimization

3. Recovery of Basis Images During Training
When we need to introduce a new person during training,
the basis set for this individual is needed to be recovered.
For basis recovery, we apply the same procedure defined in
(Zhang and Samaras 2006) except for the part where basis
coefficients are calculated. The governing equation for re-
covery is

x(k) = ϕ(k)T c + e(k, c) (5)

which can be read as the pixel intensityx(k) at the pixel po-
sition k can be generated by a linear combination of basis
images plus an error term. One should be careful on realiz-
ing the meaning of the vectorsϕ(k) andc. Hereϕ(k) is a 9-
dimensional vector including intensities of nine basis images
at the pixel positionk. Similarly,c is another 9-dimensional
vector corresponding the coordinates of the imagex in the
illumination subspace. The error term depends on the pixel
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positionk and the coordinates. Re-writing the equation in
matrix form, we getx = Bc + e wherex is d-dimensional
image vector,B is the(d×9)-dimensional matrix including
basis images as its columns, andc is again 9-dimensional
coordinate vector. Every row of the matrixB corresponds
to a vectorϕ(k).

During the bootstrap, we compute mean vectorsµϕ(k)
and covariance matricesCϕ(k) at each pixel positionk for
bases calculated by the optimization scheme.

The error terms for images in the bootstrap gallery, can be
calculated by

e(k, c) = x(k) − ϕ(k)T c

which is c dependent. For eachc in the bootstrap gallery,
statisticsµe(k, c) andσ2

e(k, c) are computed through iden-
tities. There exists only a finite number ofc vectors depend-
ing on the number of illumination conditions since we have
a unified coordinate system.

The method for the basis recovery requires only one im-
age for each novel identity, and this fact simplifies the con-
struction of an identity database in a real life application.
Given a novel training image, one can calculate the basis
images corresponding to its identity by amaximum a poste-
riori (MAP) estimate based on equation (5).

3.1 MAP estimate for basis recovery
Considering we already have coordinates for the novel im-
age and statistics for the error term, the MAP estimate for
image bases can be written as

ϕMAP (k) = argmaxϕ(k) P (ϕ(k)|x(k))

Using Bayes’ rule we get

ϕMAP (k) = argmaxϕ(k) P (x(k)|ϕ(k)) × P (ϕ(k))

here the denominator termP (x(k)) is omitted since it
is constant. We assume both the basis vectorϕ(k) and
the error terme(k, c) are GaussiansN(µϕ(k),Cϕ(k))
and N(µe(k, c), σ2

e(k, c)). Therefore, the probability
P (x(k)|ϕ(k)) is another GaussianN(ϕ(k)T c + µe, σ

2
e).

Then, MAP estimate becomes

ϕMAP (k) = argmaxϕ(k) N(ϕ(k)T c + µe, σ
2
e)

× N(µϕ(k),Cϕ(k)) (6)

Finally, the MAP estimate forϕ(k) is the solution to the
following set of linear equations

Aϕ(k) = b (7)

whereA = 1
σ2

e

ccT + C−1
ϕ andb = (x−µe)

σ2
e

c + C−1
ϕ µϕ

The main attribute that recovered bases should have is
that they should be invariant to illumination changes. In
other words, using two images of the same identity under
different lighting conditions must produce same or at least
very similar set of basis. By this attribute, we try to pre-
vent the decrease on the recognition rate depending on what

kind of image is used during training. This fact can be ex-
amined on Figure 4. During testing, we realized that the ba-
sis sets are almost invariant to lighting except some extreme
cases. When lighting causes severe shadowing effects, re-
covery process only generates images with an average iden-
tity which disturbs the performance of recognition.

For the MAP estimate, we assume that the coordinates of
the novel image are already known. The next section explain
how we get this coordinates along with the error statistics.

Figure 4: Recovered bases of same identity under variable
lighting. The change in the basis depending on the lighting
seems to be minimum

3.2 Coordinate estimation
Given a novel training image, the mappingM of LPP can be
used to get coordinates. AfterM is applied, novel coordi-
nates are determined by an weighted average in the subspace
as follows:

cnew =

∑kn
i=1 wici

∑kn
i=1 wi

(8)

where the coordinate vectorsci are from the bootstrap
gallery. Weightswi are determined by‖Mxnew−ci‖ where
xnew is the training image. HavingM in hand is a big ad-
vantage over previous works since it eliminates the need of
calculating weights in image space as in (Zhang and Sama-
ras 2006).

In equation (7), we also needµe(k, cnew) and
σ2

e(k, cnew) which both depend on new coordinates. Same
weights can be used to calculate those values as weighted av-
erages of previousµe(k, ci) andσ2

e(k, ci) determined dur-
ing bootstrap.

3.3 Recognition scheme
In the training, subspace bases are derived for each identity
and stored in the database. Since there is no constraint for
orthogonality of the basis images during recovery, recovered
basis do not establish an orthogonal set. Therefore, we apply
singular value decomposition (SVD) after the recovery.

When a test image is arrived, it is tried to synthesized
in each subspace corresponding to different identities. Dis-
tance between synthesized image and the real one is used as
a decision measure. The image synthesis is simply accom-
plished as
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xs = QQTxt

wherext andxs are testing and synthesized images, respec-
tively. Q is the orthonormal basis set. The identity with the
minimum distance‖xs − xt‖ is assigned as the recognition
result.

4. Experimental Results

The Extended Yale Face Database B (Georghiades, Bel-
humeur, and Kriegman 2001), (Lee, Ho, and Kriegman
2005) is used as the bootstrap gallery. There are 28 peo-
ple with 45 different illumination variations in this database.
We used 41 types of illumination since there are several cor-
ruptions during image acquisition for the excluded 4 lighting
conditions. Whole data set is processed with LPP to get uni-
fied coordinates for those 41 illumination type.

The basis images for 28 identities are computed using the
optimization scheme defined in Section 2.. The mean vectors
µϕ(k) and covariance matricesCϕ(k) are calculated along
with statistics for the error term depending on each illumi-
nation type.

The training and the testing is applied using The Yale Face
Database B which includes 10 people with again 45 lighting
conditions. These 10 people are not included in the boot-
strap gallery. This database is commonly used in the litera-
ture for testing purposes. There are 4 sets of images grouped
according to lighting conditions. Four subsets cover lighting
angles betweenOo − 12o, 13o − 25o, 26o − 50o, 51o − 77o

respectively. The last subset includes severe conditions with
extreme shadowing. Figure 5 shows some example images
from each subset. We used all 45 illumination types during
training and testing.

During training, we randomly select one image for each
identity from subsets 1-2. Then the testing is applied with
images from all subsets. We repeated this process 10 times,
and averages were taken. Final error rates are given on Table
1 along with previous results from the literature. Our error
rates are comparable with other methods considering their
extensive bootstrap and/or training requirements. There are
several important advantages that should be emphasized.
Only our method and the harmonics approach can work with
single images of training identities. Other methods require
several images of a person which causes scalability prob-
lems in real life applications. The harmonics approach along
with the illumination cone method need 3D images of the
bootstrap gallery explicitly or implicitly. Our method only
need 2D images under several lighting conditions. Coor-
dinate values calculated by the manifold learning step are
more reliable compared to kernel regression in the image
space. Finally, both the harmonics and the cone approaches
are constructed over some physical aspects of the lighting
that makes them applicable only for illumination variations.
We use a general subspace analysis that can be used for all
kind of variations which are known to be lie on nonlinear
manifolds.

Table 1: Face recognition error rates of previous methods
compared with our method. Previous values are taken from
(Zhang and Samaras 2006)

Methods Subset 1-2 Subset 3 Subset4
Correlation 0.0 23.3 73.6
Eigenfaces 0.0 25.8 75.7

Linear Subspaces 0.0 0.0 15.0
Cones-attached 0.0 0.0 8.6

Cones-cast 0.0 0.0 0.0
9PL 0.0 0.0 2.8

Spherical Harmonics 0.0 0.3 3.1
Our Method 0.0 1.3 6.5

Subset 1 Subset 2

Subset 3 Subset 4

Figure 5: Some example images of four subsets used dur-
ing testing. Illumination conditions in subset 4 cause severe
shadowing

5. Conclusion
In this study, we propose a new scheme for face recogni-
tion under a single variation. The main advantage of the
proposed approach is its ability of working with only one
single image during training. The approach does not require
3D scans of faces to accomplish this task. Using a generic
manifold learning technique like LPP, we are able to con-
struct coordinate systems for the underlying subspace with
the help of an optimization step.

We performed some tests with changing illumination con-
ditions. Initial results are not better than the previous ones;
however, considering their requirements like 3D scans and
multiple training images, the results seem promising. The
performance can be improved by introducing a more com-
plex optimization scheme. We also examined that the size
of bootstrap gallery greatly affects the error rates.

The proposed method can be used for any kind of varia-
tion which has an underlying non-linear manifold describing
the behavior of the corresponding parameter.
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