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Abstract

The Laplacian Eigenmap is a popular method for non-linear
dimension reduction and data representation. This graph
based method uses a Graph Laplacian matrix that closely ap-
proximates the Laplace-Beltrami operator which has proper-
ties that help to learn the structure of data lying on Riema-
niann manifolds. However, the Graph Laplacian used in this
method is derived from an intermediate graph that is built us-
ing local neighborhood information. In this paper we show
that it possible to encapsulate global information represented
by a Minimum Spanning Tree on the data set and use it for
effective dimension reduction when local information is lim-
ited. The ability of MSTs to capture intrinsic dimension and
intrinsic entropy of manifolds has been shown in a recent
study. Based on that result we show that the use of local
neighborhood and global graph can preserve the locality of
the manifold. The experimental results validate the simulta-
neous use of local and global information for non-linear di-
mension reduction.

Introduction

Dimensionality reduction is an important process that is of-
ten required to understand the data in more tractable and hu-
manly comprehensible way. This process has been exten-
sively studied in terms of linear methods such as Principal
Component Analysis (PCA), Independent Component Anal-
ysis (ICA), Factor Analysis etc. (Hastie, Tibshirani, and
Friedman 2001).

However, it has been noticed that many high dimensional
data such as a series of related images, lie on a manifold (Se-
ung and Lee 2000) and are not scattered throughout the fea-
ture space. This particular observation has motivated many
researchers to develop dimension reduction algorithms that
try to learn an embedded manifold in the high dimensional
space. ISOMAP (Tenenbaum, de Silva, and Langford 2000)
looks tries to learn the manifold by exploring geodesic dis-
tances. Locally Linear Embedding (LLE) is an unsupervised
learning method based on global and local optimization
(Saul, Roweis, and Singer 2003). Zhang et. al. proposed a
method of finding Principal Manifolds using Local Tangent
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Space Alignment (Zhang and Zha 2002). Belkin and Niyogi
in (Belkin and Niyogi 2003) proposed Laplacian Eigenmaps
(LEM), a method that approximates the Laplace-Beltrami
Operator which is able to capture the properties of any Rie-
maniann manifold. Donoho and Grimes have proposed a
method similar to LEM using Hessian Maps (Donoho and
Grimes 2003). Recently Shaw and Jebara (Shaw and Je-
bara 2009) proposed an embedding method that preserves
the structure of the data.

The motivation of our work derives from our experimental
observations that when the graph used in LEM is not well-
constructed (either it has lot of isolated vertices or there are
islands of subgraphs) the data is difficult to interpret after a
dimension reduction. This paper discusses how global in-
formation can be used in addition to local information in the
framework of Laplacian Eigenmaps to address such situa-
tions. We make use of an interesting result by Costa and
Hero that shows that Minimum Spanning Tree on a man-
ifold can reveal its intrinsic dimension and entropy (Costa
and Hero 2004). In other words, it implies that MSTs can
capture the underlying global structure of the manifold if it
exists. We use this finding to extend the dimension reduc-
tion technique using LEM to exploit both local and global
information.

LEM depends on the Graph Laplacian matrix and so does
our work. Fiedler initially proposed the Graph Laplacian
matrix as a means to comprehend the notion of algebraic
connectivity of a graph (Fiedler 1973). Merris has exten-
sively discussed the wide variety of properties of the Lapla-
cian matrix of a graph such as invariance, on various bounds
and inequalities, extremal examples and constructions etc.
in his survey (Merris 1994). A broader role of the Lapla-
cian matrix can be seen in Chung’s book on Spectral Graph
Theory (Chung 1997).

The second section touches on the Graph Laplacian ma-
trix. The role of global information in manifold learning
is then presented, followed by our proposed approach of
augmenting LEM by including global information about the
data. Experimental results confirm that global information
can indeed help when the local information is limited for
manifold learning.
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Graph Laplacian

In this section we will briefly review the definitions of a
Graph Laplacian matrix and Laplacian of Graph Sum.

Definitions

Let us consider a weighted graph G = (V, E), where
V = V (G) = {v1, v2, ..., vn} is the set of vertices (also
called vertex set) and E = E(G) = {e1, e2, ..., en} is the set
of edges (also called edge set). The weight w function is de-
fined as w : V × V → ℜ such that w(vi, vj)=w(vj , vi)=wij

.
Definition 1: The Laplacian (Fiedler 1973) of a graph with-
out loops of multiple edges is defined as the following:

L(G) =







dvi
if vi = vj

−1 if vi are vj adjacent,

0 Otherwise.

(1)

Fiedler (Fiedler 1973) defined the Laplacian of a graph as
symmetric matrix for regular graph, where A is an adjacency
matrix (AT is the transpose of adjacency matrix), I is the
identity matrix and n is the degree of the regular graph:

L(G) = nI − A. (2)

A definition by Chung (see (Chung 1997)) – which is
given below – generalizes the Laplacian by adding the
weights on the edges of the graph. It can be viewed as
Weighed Graph Laplacian. Simply, it is a difference be-
tween the diagonal matrix D and the W the weighted ad-
jacency matrix.

LW (G) = D − W, (3)

where the diagonal element in D is defined as dvi
=

∑n
j=1 w(vi, vj).

Definition 2: The Laplacian of weighted graph (operator) is
defined as the following:

Lw(G) =







dvi
− w(vi, vj) if vi = vj

−w(vi, vj) if vi are vj connected

0 otherwise.

(4)

Lw(G) reduces to L(G) when the edges have unit weights.

Laplacian of Graph Sum

Here we are primarily interested in knowing how to derive
Laplacian of a resultant graph derived from two different
graphs of same order (on a given data set). In fact we are su-
perimposing two graphs having same set of vertices together
to form a new graph. We do graph fusion as we are interested
in combining local-neighborhood graph and a global graph
which we will describe later on.

Harary in (Harary 1990) introduced a graph operator
called Graph Sum, the operator is denoted by ⊕ : G×H →
J , to sum up two graphs of the same order (|V (G)| = |V (H)|
= |V (J)|). The operator is quite simple – adjacency matrices
of each graph are numerically added to form the adjacency
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Figure 1: The top-left figure shows a graph G; top-right fig-
ure shows a MST graph H ; and the bottom-left figure shows
the Graph Sum J = G ⊕ H . Note how the graphs superim-
pose on each other to form a new graph.

matrix of the summed graph. Let G and H be two graphs
of order n, and the new summed graph be denoted by J as
shown in Figure 1. Furthermore, let AG, AH , and AJ be the
adjacency of each graph respectively. Then

J = G ⊕ H,

and

AJ = AG + AH .

From Definition 2, it is obvious that

Lw(J) = Lw(G) + Lw(H). (5)

Global Information of Manifold

Global information has not been used in manifold learning
since it is widely believed that global information may cap-
ture unnecessary data (like ambient data points) that should
be avoided when dealing with manifolds.

However, some recent research results show that that it
might be useful to to explore global information in a more
constrained manner for manifold learning. Costa and Hero
show that it is possible to use a Geodesic Minimum Span-
ning Tree (GMST) on the manifold to estimate the intrinsic
dimension and intrinsic entropy of the manifold (Costa and
Hero 2004).

Costa and Hero showed in the following theorem that is
possible to learn the intrinsic entropy and intrinsic dimen-
sion of a non-linear manifold by extending the BHH theorem
(Beardwood, Halton, and Hammersley 1959), a well-known
result in Geometric Probability.

Theorem 1 (Generalization of BHH Theorem to Embed-
ded manifolds: (Costa and Hero 2004)). Let M be a
smooth compact m-dimensional manifold embedded in R

d

through the diffeomorphism φ : Ω → M, and Ω ∈ R
d.
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Assume 2 ≤ m ≤ d and 0 < γ < m. Suppose that Y1,
Y2, ... are iid random vectors on M having a common den-
sity function f with respect to a Lebesgue measure µM on
M. Then the length functional T R

m

γ φ−1(Yn) of the MST

spanning φ−1(Yn) satisfies the equation shown below in an
almost sure sense:

lim
n→∞

T R
m

γ φ−1(Yn)

n
(d−1)

d

=







∞ d′ < m

βm

∫

M
[det(JT

φ Jφ)]f(x)αµMd(y) a.s., d′ = m

0 d′ > m

(6)

where α = (m − γ)/m, and is always between 0 < α < 1,
J is the Jacobian, and βm is a constant which depends on
m.

Based on the above theorem we use MST on the entire
data set as a source of global information. For more details
see (Costa and Hero 2004), and more background informa-
tion see (Yukich 1998) and (Steele 1997).

The basic principle of GLEM is quite straight forward.
The objective function that is to be minimized is given by
following (it is has the same flavor and notation used in
(Belkin and Niyogi 2003)):

∑

i,j

||y(i) − y(j)||22(W
NN
ij + WMST

ij )

= tr(YT L(GNN )Y + YT L(GMST )Y) (7)

= tr(YT (L(GNN ) + L(GMST ))Y)

= tr(YT L(J)Y).

where y(i) = [y1(i), ..., ym(i)]T , and m is the dimension of
embedding. WNN

ij and WMST
ij are weighted matrices of k-

Nearest Neighbor graph and the MST graph respectively. In
other words, we have

argmin
Y

YTDY=I

YT LY (8)

such that Y = [y1,y2, ...,ym] and y(i) is the m-
dimensional representation of ith vertex. The solutions to
this optimization problem are the eigenvectors of the gener-
alized eigenvalue problem

LY = ΛDY.

The GLEM algorithm is described in Algorithm 1.

Laplacian Eigenmaps with Global Information

In this section we describe our approach of using the global
information of the manifold which is modeled as a MST.
Similar to the LEM approach our method (GLEM) also actu-
ally builds an adjacency graph GNN by using neighborhood
information. We compute Laplacian of the adjacency graph
(L(GNN)). The weights of the edges of the GNN is deter-
mined by the Heat Kernel H(xi, xj) = exp(||xi − xj ||

2)/t

Algorithm 1: Global Laplacian Eigenmaps (GLEM)

Data: Data: Xn×p where n is the number of data points
and p is the number of dimensions. k: number of
fixed neighbors or ǫ − ball: using neighbors
falling within a ball of radius ǫ, and 0 ≤ λ ≤ 1

Result: Low-dimensional subspace; Xn×m where n is
the number of data points and m is then number
of selected eigen-dimensions such that m ≪ p.

begin1

Construct the graph GNN either by using local2

neighbor k or ǫ − ball. Construct the Adjacency
Graph A(GNN ) of graph GNN .
Compute the weight matrix (WNN ) from the3

weights of the edges of graph GNN using the Heat
Kernel function.
Compute Laplacian matrix L(GNN ) = DNN -4

WNN

/* DNN is the Diagonal Matrix of

the NN Graph. */

Construct the graph GMST . Construct the5

Adjacency Graph A(GMST ) of graph GMST .
Compute the weight matrix (WMST ) from the6

weights of the edges of graph GMST using the Heat
Kernel function.
Compute Laplacian matrix L(GMST ) = DMST -7

WMST

/* DMST is the Diagonal Matrix of

the MST Graph. */

L(G) = L(GNN ) + λL(GMST )8

return the subspace Xn×m by selecting first m9

eigenvectors of L(G)
end10

where t > 0. Thereafter compute the MST graph GMST on
the data set, and its Laplacian L(GMST ). Based on Lapla-
cian Graph summation as described earlier, we now com-
bine two graphs GNN and GMST by effectively adding their
Laplacians L(GNN ) and L(GMST ).

Experiments

Here we show the results of our experiments conducted
on two well-known manifold data sets: 1) S-Curve and 2)
ISOMAP face data set (ISOMAP 2009) using LEM which
uses the local neighborhood information, and GLEM which
exploits local as well as global information of the manifold.
For calculation of local neighborhood we use kNN method.
The S-Curve data is shown in Fig.2 for reference.

The MST on the S-Curve data is shown in Figure 3. The
top figure shows the MST of data, while the bottom figure
shows the embedding of the graph. Notice how the data is
embedded in tree-like structure, yet the local information of
the data is completely preserved. Figure 4 shows embedding
of the ISOMAP face data set using the MST graph. We use
a limited number of face images to clearly show the embed-
ded structure, the data points are shown by ‘+’ in embedded
space.
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Figure 2: S-Curve manifold data. The graph is easier to
understand in color.

LEM Results Figures 5-7 show the results after using
LEM for different values of k. As the value of k increases
from 1 to higher values we notice the spreading of the em-
bedded data. The bottom subplot shows the nearest neighbor
graph with k = 1 is shown in Figure 5. The right plot shows
the embedding of the graph. It is interesting to observe how
the embedded data loses its local neighborhood information.
The embedding practically happens along the second princi-
pal eigenvector (The first being Zero Vector.). As the value
of k is increased to 2, we observe that embedding happens
along the second and third principal axes. See Figure 5. For
k = 1 the graph is highly disconnected and for k = 2 the
graphs has much less isolated pieces of graphs. One interest-
ing thing to observe is that as the connectivity of the graph
increases the low-dimensional representation begins to pre-
serve the local information.

The graph with k = 2 and its embedding as shown in Fig-
ure 6. Increasing the neighborhood information to 2 neigh-
bors is still not able to represent the continuity of the orig-
inal manifold. The Figure 5 shows the graph with k = 3
and its embedding. Increasing the neighborhood informa-
tion to 3 neighbors better represents the continuity of the
original manifold. Figure 7 shows the graph with k = 5 and
its embedding. Increasing the neighborhood information to
5 neighbors better represents the continuity of the original
manifold. Similar results are obtained by increasing the the
number of neighbors, however, it should be noted that when
the number of neighbors are very high then the graph starts
to get influenced by ambient neigbhors.

We see similar results for the face images. The three plots
in Figure 8 show the embedding results obtained using LEM
when the neighborhood graphs are created using k = 1, k =
2, and k = 5. The top and the middle plot validate the
limitation of LEM for k = 1 and k = 2. As expected, for
k = 5 there is continuity of facial images in the embedded
space.

GLEM Results Figure 9-11 show the GLEM results for
k = 1, k = 2, and k = 5 respectively. Figure 9 shows
a graph sum of a graph with neighborhood of k = 1 and
MST; and its embedding. In spite of very limited neighbor-
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MST Graph

Laplacian Eigenmaps of Only MST 

Figure 3: The MST graph and the embedded representation.

Laplacian Eigenmaps of Faces using Only MST 

Figure 4: Embedded representation for face images using
the MST graph. The sign ‘+’ denotes a data point.

hood information GLEM preserves continuity of the origi-
nal manifold in the embedded representation and which is
due to the MST’s contribution. On comparing Figure 5 and
Figure 9 it becomes clear that addition of some amount of
global information can help to preserve the manifold struc-
ture. Similarly, in Figure 10, MST dominates the embed-
ding’s continuity. However, on increasing k = 5 (Figure.
11) the dominance of MST starts to decrease as local neigh-
borhood graph starts dominating. The λ in GLEM plays the
role of a simple regularizer. Figure 13 shows the effect of
different values of λ ∈ {0, 0.2, 0.5, 0.8, 1.0}.

The results of GLEM on ISOMAP face images are shown
in Figure 14 where the neighborhood graphs are created us-
ing k = 1, k = 2, and k = 5. The top and the middle plots
of Figure 14 reveal the contribution of MST for k = 1 and
k = 2, similar to Figures 9-10. For k = 5 we clearly see the
alignment of faces images in the bottom figure.
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Only Neigbhorhood Graph

Laplacian Eigenmaps of Only Neigboorhood, (NN=1)

Figure 5: The graph with k = 1 and its embedding using
LEM. Because of very limited neighborhood information
the embedded representation cannot capture the continuity
of the original manifold.

Conclusions

In this paper we show that when the neighborhood informa-
tion of the manifold graph is limited, then the use of global
information of the data can be very helpful. In this short
study we proposed the use of local neighborhood graphs
along with Minimal Spanning trees for the Laplacian Eigen-
maps by leveraging the theorem proposed by Costa and Hero
regarding MSTs and manifolds. This work also indicates the
potential for using different geometric sub-additive graphi-
cal structures (Yukich 1998) in non-linear dimension reduc-
tion and manifold learning.
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LEM. Increasing the neighborhood information to 5 neigh-
bors better represents the continuity of the original manifold.
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Laplacian Eigenmaps of Faces using Only Neigboorhood, NN=1

Laplacian Eigenmaps of Faces using Only Neigboorhood, NN=2

Laplacian Eigenmaps of Faces using Only Neigboorhood, NN=5

Figure 8: The Embedding of the face images using LEM.
The top and middle plots shows embedding using k = 1 and
k = 2 respectively. The bottom plot shows embedding for
k = 5. Few faces have been shown to maintain clarity of the
embeddings.
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Figure 9: The graph sum of a graph with neighborhood of
k = 1 and MST; and its embedding. In spite of very limited
neighborhood information the GLEM is able to preserve the
continuity of the original manifold and is primarily due to
MST’s contribution.
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Figure 10: GLEM results for k = 2 and MST; and its em-
bedding GLEM. In this case also, embedding’s continuity is
dominated by the MST.
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Laplacian Eigenmaps of Neighborhood with MST, (NN=5, λ=1)

Figure 11: Increase the neighbors to k = 5 and the neigh-
borhood graph starts dominating and the embedded repre-
sentation is similar to Figure.7
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Figure 12: Increase the neighbors to k = 5 and the neigh-
borhood graph starts dominating and the embedded repre-
sentation is similar to Figure.7
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Robust Laplacian Eigenmaps for λ=0, knn=2

Robust Laplacian Eigenmaps for λ=0.2, knn=2

Robust Laplacian Eigenmaps for λ=0.5, knn=2

Robust Laplacian Eigenmaps for λ=0.8, knn=2

Robust Laplacian Eigenmaps for λ=1.0, knn=2

Figure 13: Change in regularization parameter λ ∈
{0, 0.2, 0.5, 0.8, 1.0} for k = 2. In fact the results here show
that the embedded representation is controlled by the MST.

Laplacian Eigenmaps of Faces using Neighborhood with MST, (NN=1, λ=1)

Laplacian Eigenmaps of Faces using Neighborhood with MST, (NN=2, λ=1)

Laplacian Eigenmaps of Faces using Neighborhood with MST, (NN=5, λ=1)

Figure 14: The Embedding of face images using LEM. The
top and middle plots shows embedding using k = 1 and
k = 2 respectively. The bottom plot shows embedding for
k = 5. Few faces have been shown to maintain clarity of the
embeddings. In this figure we see how the MST preserves
the embedding.
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