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Abstract

Thought is an essential aspect of mental function, but
remains very poorly understood. In this paper, we
take the view that thought is a response process – the
emergent and dynamic configuration of structured re-
sponse, i.e., ideas, by composing response elements,
i.e., concepts, from a repertoire under the influence of
afferent information, internal modulation and evaluative
feedback. We hypothesize that the process of gener-
ating ideas occurs at two levels: 1) The identification
of a context-specific subset – or workspace – of con-
cepts from the larger repertoire; and 2) The configu-
ration of plausible/useful ideas within this workspace.
Workspace configuration is mediated by a dynamic
selector network (DSN), which is an internal atten-
tion/working memory system. Each unit of the DSN se-
lectively gates a subset of concepts, so that any pattern
of activity in the DSN defines a workspace. The config-
uration of efficient and flexible workspaces is mediated
by dynamical structures termed graded attractors – at-
tractors where the set of active units can be varied in
systematic order by inhibitory modulation. A graded
attractor in the DSN can project a selective bias – a
“searchlight” – onto the concept repertoire to define a
specific workspace, and inhibitory modulation can be
used to vary the breadth of this workspace. As it expe-
riences various contexts, the cognitive system can con-
figure a set of graded attractors, each covering a domain
of similar contexts.
In this paper, we focus on a mechanism for configuring
context-specific graded attractors, and evaluate its per-
formance over a set of contexts with varying degrees
of similarity. In particular, we look at whether con-
texts are clustered appropriately into a minimal number
of workspaces based on the similarity of the responses
they require. While the focus in this paper is on seman-
tic workspaces, the model is broadly applicable to other
cognitive response functions such as motor control or
memory recall.

A cognitive system’s primary function is to continually
construct responses to afferent stimuli. These responses can
include percepts, recognitions, memories, thoughts, ideas,
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actions, etc. We postulate that all these responses are
constructed through structured configuration of response
elements from an appropriate repertoire. For example,
there is considerable evidence that complex movements are
constructed as combinations of motor synergies – coordi-
nated spatiotemporal activation patterns of motor neurons
(d’Avella, Saltiel, and Bizzi 2003). Similarly, ideas are com-
binations of concepts (Boden 1995; Iyer et al. 2009), which
are themselves combinations of features (Warrington and
Shallice 1984; McRae, de Sa, and Seidenberg 1997). The
search for appropriate responses is, therefore, the search for
the right combination of response elements, organized into
a structure by some self-organization process (e.g., sense-
making for episodic memories). Given the vast amount
of information encoded in the brain, this search can only
succeed if it is focused on a relevant subset of response
elements, and combines them only in potentially produc-
tive ways; random and/or exhaustive search is not an op-
tion. We call this relevant subset of response elements or-
ganized in a context-appropriate fashion a workspace – a
term also used by others (Dehaene and Naccache 2001;
Baars and Franklin 2003) in a somewhat different (but re-
lated) sense.

Once the workspace is identified, there must also be a
dynamic search process that generates structured responses
within it, as well as higher-level processes to modify the
search appropriately if needed. It is obvious that different
contexts can potentially require distinct workspaces, but it is
inefficient to maintain a separate workspace for every con-
text. A successful cognitive system must be able to infer
a minimal or optimal set of distinct workspaces based on
experience across many contexts – merging contexts requir-
ing similar responses into a single workspace, while creat-
ing distinct workspaces for contexts requiring qualitatively
different responses. For example, the workspace for assem-
bling a sandwich in one’s kitchen may be the same as that
for assembling one in a cafeteria, but distinct from one used
to decide what to wear to work. The configuration of such
context-dependent workspaces is the focus of this paper.

While the above framework should apply to all mental
processes, we focus in this paper on the generation of ideas,
which are seen as combinations of concepts. We do not con-
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sider the structural organization of such conceptual combi-
nations, which is a complex issue in its own right (van der
Velde and de Kamps 2006).

Thought, Ideation and Creativity
In this paper, we begin with the reasonable assumption that
thought – like perception, action and emotion – is an emer-
gent property of the material organism, and especially of
organisms with well-developed cortical structures. In this
view, what we recognize as “thought” – including creative
thought – arises from the natural dynamics of the nervous
system embedded within the body, and is part of a continuum
with perception and action, using the same structures, pro-
cesses and informational strategies as those subserving these
other mental processes. For example, just as actions arise
from the combination of motor synergies, thoughts may be
seen as combinations of “semantic synergies”, i.e., concepts.

This perspective is consistent with recent views of men-
tal function as a whole (Edelman and Tononi 2000; Fuster
2003), and especially with the “agents of mind” model pro-
posed by Houk (Houk 2005). Interestingly, our perspective
also implies that, since thought is not a unique mental pro-
cess, it is also not a uniquely human attribute. Rather, it
simply encompasses the internally grounded processes that
became possible as the brains of organisms grew larger and
more complex over the course of evolution.

Directed, context-specific thinking is usually seen as the
process of ideation, i.e., generating relevant ideas (which
may be trivial or profound), and has generally been studied
through behavioral experiments on brainstorming (Paulus
and Dzindolet 1993; Coskun et al. 2000; Paulus and Brown
2003; Dugosh and Paulus 2005; Nijstad and Stroebe 2006).
Only recently have there been attempts to determine the neu-
ral correlates of creativity and insight (Bowden et al. 2005;
Heilman, Nadeau, and Beversdorf 2003). Behavioral stud-
ies by Bowden, Jung-Beeman and colleagues suggest that
insight involves collaborative processing by left and right
hemispheres (Bowden et al. 2005), and fMRI data from
the same group shows that specific patterns of activity in
the right hemisphere (RH) are correlated with insight. A
useful body of data for understanding at least some types
of ideation comes from the literature on semantic cogni-
tion (Martin 2007), which has clarified how and where the
brain represents different types of information. In particular,
this work has shown that nouns and verbs are represented
in modal (Martin et al. 1996; Martin 2007) and amodal
(Patterson, Nestor, and Rogers 2007) ways, and that words
related to humans, animals, tools, etc., activate distinct re-
gions of the left hemisphere (LH) (Damasio et al. 1996;
Martin 2007), as well as regions in the RH (Damasio et
al. 1996; Bowden et al. 2005), which may play a critical
role in linking disparate concepts to generate creative ideas
(Bowden et al. 2005; Schilling 2005; Duch 2007). Another
important source of information on ideation is the exten-
sive literature on cognitive control (Miller 2000), elucidat-
ing the mechanisms of attentional switching (Graybiel 1995;
Houk 2005), working memory (Goldman-Rakic 1995), and
reward (Schultz 2000). These mechanisms are all critical in

the generation and recognition of novel emergent arrange-
ments of existing knowledge.

A Computational Model for Ideation
We have recently proposed a computational model for
ideation, which is described in more detail elsewhere (Iyer et
al. 2009). Here we just give a qualitative description to mo-
tivate the study of workspace formation. The core semantic
system is modeled as a two-level neural network represent-
ing concepts and features, where each concept is represented
both modally and amodally. The amodal representation for
a concept involves the activation of a specific concept unit
(corresponding to a cell assembly) in a neural system termed
the concept network (CN). Each concept also corresponds
to a pattern of activity across feature units in another neural
system called the feature layer (FL). This is the concept’s
modal representation, which allows similarities and differ-
ences between concepts to be encoded. Concept units are
connected with each other through excitatory connections
whose strength reflects their joint utility in previously expe-
rienced ideas. The CN as a whole is subject to global inhi-
bition, which makes the activity of concept units competi-
tive K-of-N . An activated unit can only remain active for
a finite duration, after which it enters a refractory period of
finite duration. This reflects the natural neural mechanisms
of resource depletion through activity, and the requirement
to replenish them.

Any K units of the CN active simultaneously represent
a set of concepts, i.e., a potential idea. However, this pat-
tern of activity can only persist in the face of competition
if these active units are mutually strongly linked, i.e., they
“make sense” together based on previous experience. Such
a persistent activity pattern can be seen as a metastable at-
tractor – precluded from true stability because of the limit
on the activity duration of concept units. Such a pattern of
activity is recognized as an idea. Non-persistent patterns are
regarded as cognitive noise. Thus, the dynamics of the CN
is an itinerant trajectory that pauses at metastable attractors
representing ideas before moving on. This is an example of
winnerless competition that has been proposed as a mecha-
nism for cognitive dynamics (Rabinovich et al. 2001).

The actual pool of concept units available at a time is de-
termined by a context input representing the current task or
problem situation, and is mediated by a highly flexible bi-
asing system called the dynamic selection network (DSN).
This is the system primarily responsible for configuring the
workspace, and is the main focus of this paper. It is de-
scribed in more detail below.

Context-Dependent Workspace Model
We assume that the concepts in the CN are grouped into
overlapping categories through a subspace clustering pro-
cess driven by experience. The DSN consists of a large
number of selector units organized into modules with dense
internal connectivity. Each selector unit, k, is tuned to a
specific category, Qk, and sends a gating signal to all the
concept units in its category. This set of concept units is
designated as the member set for the selector unit, and is de-
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noted by Γk. The activation of unit k, denoted by zs
k = 1,

causes all the concepts in its category to become available in
the workspace. The workspace at any time is thus defined as
W ≡

⋃
k|zs

k
=1 Γk.

Numerous selector units in the DSN are tuned to each cat-
egory, but are assumed not be repeated within the same mod-
ule. Since the number of units in each module is taken to
be significantly smaller than the total number of categories,
each module provides a subset of categories that can be seen
as defining a partial workspace, or a “building block” for the
overall workspace. We hypothesize that the rapid construc-
tion of efficient workspaces involves the selective activation
of modules whose component categories, taken as a whole,
define an appropriate set of concepts in the current context.

Context-dependent workspaces must be both efficient and
flexible. When needed, they must initially include only
the most relevant concepts so that good ideas can be found
quickly. However, if this does not happen, the workspace
should expand by including more concepts, albeit in a way
that still takes the context into account. This means that,
upon being stimulated by a context, only a small set of DSN
units should initially be activated, in turn selecting a small
set of highly relevant concept units. Then, if needed, more
DSN units should be added to the active set, gradually ex-
panding the set of available concept units, as illustrated in
Figure 1. We introduce a dynamical entity termed a graded
attractor to mediate this function.

Figure 1: Selection of context-dependent workspace by
DSN units. (a): A small workspace selected initially by a
few active DSN units (shown in white). (b): An expanded
workspace obtained when more DSN units are activated.

Graded Attractors
A graded attractor is defined over a population of neural
units, and like a normal attractor, comprises an activity pat-
tern that persists because of preferentially strong mutual ex-
citation among its active units. However, the number of ac-
tive units in a graded attractor can be varied by changing the
level of global inhibition in the system. When the inhibition
is highest, only a small core set of units is active after con-
vergence. Then, as inhibition is lowered, more units become
active until, at the lowest level of inhibition, the pattern has
the maximum number of active units, comprising the base
set for the attractor. This is illustrated in Figure 2. Crucially,
this pattern of widening activity is context-specific, ensuring

that the most potentially relevant categories (and concepts)
are activated earlier in the search process. The graded at-
tractor in the DSN can thus be seen as embodying a context-
specific ordering of categories (and, thus, concepts) to be
included in the workspace.

Figure 2: Graded attractor. (a) The activity pattern in the
DSN (white units are active, gray inactive); the number of
active units in the attractor increase with decreasing inhi-
bition level. (b): A figurative view of the graded attractor
indicating the activity width at each inhibition level.

The use of attractors rather than activity patterns gener-
ated by the feed-forward projection of the context is also cru-
cial because it ensures that the workspace is stable against
noise, and provides generalization across contexts requiring
similar workspaces. After experience with a large number
of contexts, the system should construct an efficient set of
graded attractors, each defining the workspace for a broad
but distinct contextual domain – a “frame of mind”, so to
speak. It is often noticed that, during the performance of
a task, the prefrontal and parietal cortical regions seem to
have units tuned to all relevant contingencies, stimuli and
decisions. This has led to the idea of task-specific functional
networks (Varela et al. 2001; Engel, Fries, and Singer 2001;
Bressler and Tognoli 2006) that emerge dynamically in a
given context and provide the scaffolding on which detailed
responses can be configured. Graded attractors represent a
mechanism for the formation of such functional networks.

System Implementation
The key issue of interest in this paper is the efficient con-
figuration of suitable graded attractors based on data. Our
approach exploits modularity, which is known to be a fun-
damental enabling feature for complexity in biological sys-
tems (Callebaut and Rasskin-Gutman (eds.) 2005). As with
all modularity-based approaches, the method trades a little
optimality for much greater efficiency of configuration.

We simulate a system with N selector units organized
into M modules. The CN is not simulated explicitly, but
it is assumed that the concepts (response elements) available
are organized into Nq categories with possibly overlapping
memberships, where N � Nq . Since each selector unit is
tuned to one of these categories, every module represents a
combination of a few unique categories. The set of all cate-
gories is denoted as Q.

The system is configured using a training set based onNx

contexts. Each context, χk, is represented as a mx-bit vec-
tor, Xk, where each bit represents an abstract feature (see
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(Iyer et al. 2009) for examples of concrete context features).
It is also associated with a characteristic category distribu-
tion (CCD), µk = [µk

1 µ
k
2 ... µ

k
Nq

] over the set Q, where µk
j

is the probability that an idea in context χk includes at least
one concept from category Qj . The categories for which
µq

j > 0 comprise the support set of context χk, and is di-
vided further into three parts: 1) Primary categories, with
µk

j > 0.8; 2) Secondary categories, with 0.8 ≥ µk
j > 0.3;

and 3) Tertiary categories, with 0.3 ≥ µk
j > 0.

To see whether contexts with similar CCDs (i.e., requiring
ideas constructed from similar categories) cluster together to
form unified workspaces, the contexts are clustered into sev-
eral groups by construction. Contexts within a group share
two primary categories and two secondary categories, while
one primary category for each is a secondary category for
the other. Contexts within a group also have similar feature
representations. In the current simulations, we use 11 con-
texts, grouped into one group of size 5, another of size 3,
and three contexts dissimilar to all others. Thus, the goal is
for the system to infer 5 workspaces.

For training, 100 Nq-dimensional binary vectors are gen-
erated as exemplars for each context, where each bit rep-
resents a unique category, indicating that the idea includes a
concept from that category. Thus, the probability of bit j be-
ing 1 in an exemplar for context χk is µk

j , i.e., the exemplars
conform with the CCD for their contexts. Each exemplar can
be seen as a category-level representation of an underlying
idea.

Network Configuration
The DSN comprisesN = 1137 selector units organized into
195 modules of 4 to 6 units each. Units within each mod-
ule have strong excitatory connections, while connectivity
across modules is relatively sparse. The category assign-
ments for selector units are made such that some modules
group the high probability categories for the given contexts,
ensuring that these modules would be tuned on strongly by
exemplars from those contexts. The remaining modules are
constructed as random combinations of these. Thus, the net-
work represents a broad repertoire of category combinations
across all its modules, including some tuned to the given
contexts.

Figure 3: Architecture of the graded attractor system.

The architecture of the simulated system is shown in Fig-
ure 3. Each DSN unit, i receives connections from three
sources: 1) A connection with fixed weight wsc

ij = 1 from
idea input Ij ; 2) Modifiable associative connections, wsx

ij
from the context bits, Xj ; and 3) Initially weak but modifi-
able real-valued connections, wss

ij , from other DSN units, j.
The dynamics of selector unit i is given by:

us
i (t) = (1− αs)us

i (t− 1) + αsys
i (t); 0 < αs < 1 (1)

where αs is an inertial parameter and ys
i is the current

input to the unit from all sources. As in the CN, selector
units fire competitively, with the K(t)units with the highest
us(t) > 0 activated at time t.

During training, the 1100 exemplars from all contexts are
presented in random order to the network, with the corre-
sponding context input clamped on. Each exemplar is pre-
sented for several consecutive steps termed a presentation
cycle. At the beginning of the presentation cycle, the DSN
activity is determined purely by the exemplar input. The
system is then allowed to relax through recurrent dynamics,
still without any influence from the context input. Only the
Ks most excited units are allowed to be active at a time,
where Ks represents the desired size of the base set for the
graded attractor. The activity pattern obtained at the end of
the presentation cycle is embedded auto-associatively in the
DSN, and hetero-associated with the context input. The key
element in this process is that the learning rates for both as-
sociations are modulated nonlinearly by the overall activity
of the module to which the postsynaptic unit belongs, i.e.,
η(t) = ηfixedS[

∑
k z

s
k(t)], where k indexes all units in the

module for unit i, zs
k is the activation of unit k, ηfixed is a

fixed number between 0 and 1, and S[.] is a highly nonlinear
sigmoid function. This soft-competitive learning process en-
sures that highly active modules learn much more than those
with low total activity. Essentially, each module acts as a
multi-unit representational element (Lin, Osan, and Tsien
2006) in a competitive learning network, and stores the re-
sulting activity pattern as a graded attractor with the most
activated modules forming its core. Each attractor becomes
associated with one or more contexts, and is activated from
the core outward (depending on the inhibition level) when a
similar context is presented.

Results
After training, the network was tested by probing it with
each of the 11 training contexts as well as several novel con-
texts similar to the original context groups. The resulting
dynamics was evaluated to see: 1) whether each context re-
called the correct graded attractor; 2) how close its pattern
of widening activity was to the optimal pattern with respect
to the CCDs for the contexts it was associated with; and 3)
how much of the CCD for the context was covered. The
evaluation was done as follows. First, each context, χk,
was presented to the system at progressively decreasing in-
hibition levels starting with the highest, and the system was
allowed to relax to convergence in each case. The set of
categories covered by activated units before relaxation and
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after convergence was noted. This gave a sequence of cov-
ered category sets, sk = {sk

1 , s
k
2 , ..., s

k
r}, where each sk

j

is a set of categories, and its cardinality is denoted by |sk
j |.

Only sets where the covered categories changed were stored,
since changing the inhibition level did not always result in a
change in active categories. For each sk

j , coverage was cal-
culated as, βk

j =
∑

i|Qi∈sk
j
µk

i , and a quality value obtained

as ζa
l = βk

j /ω
k
j , where ωk

j is the highest possible sum that
could be obtained from the CCD of context χk using |sk

j |
categories. Two metrics were calculated from these quanti-
ties:
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Figure 4: Average attractor quality for 11 learned and 7
novel contexts. The lighter bars show the initial value, and
the dark bars after relaxation. The Tx labels indicate learned
contexts and Nx labels novel ones. Context groups are sepa-
rated by spaces Top: Context-level metric; Bottom: Group-
level metric.

1. Average Attractor Quality, Ak, for context χk is de-
fined by the mean of βk

j over all j. This was calculated for
category sequences obtain both before and after relaxation.

2. Total Coverage, Bk, for context χk is defined as
Bk = βk

r /ν
k, where νk =

∑Nq

i=1 µ
k
i . This was evaluated

only for the category sequences obtained after relaxation to
convergence.

Since the clustering of multiple contexts onto one graded
attractor necessarily makes the attractor suboptimal for each
individual context, we evaluated two versions of each met-
ric. The first – termed the context-level metrics – were as de-
scribed above, while the second – called the group-level met-
rics – used a single combined CCD for each context group.
This combined CCD was obtained by taking the maximal
value of each CCD element across the group.

Figures 4 and 5 show the results for both versions of both
metrics. The system does very well for all contexts on both
quality and total coverage. As expected, the context-level
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Figure 5: Post-relaxation total coverage for 11 learned and
7 novel contexts. All labels and conventions are as in Figure
4 Top: Context-level metric; Bottom: Group-level metric.

metrics for the multi-context workspaces are not as good
as those for singleton contexts. However, when group-level
metrics are used, the attractors are all close to optimal. It
is interesting to note that auto-associative dynamics makes
only a slight difference to attractor quality, i.e., the pattern of
activity recalled initially by a context is already very good.
However, the recurrent activity is crucial for stabilizing the
attractor against noise. The figures also show that novel con-
texts are appropriately mapped to the workspaces for similar
contexts. As pointed out earlier, this can be supplemented
with mechanism for switching attractors if necessary, as de-
scribed in (Iyer et al. 2009).

Conclusion
In this paper, we have presented a modular recurrent net-
work model that can learn highly flexible dynamical objects
called graded attractors. These can be used to instantiate
context-depend workspaces or functional networks in many
cognitive tasks, including ideation. Our simulations show
that a simple unsupervised learning mechanism can config-
ure multiple graded attractors based on experience, and that
these attractors can be recalled in useful form when needed,
both by familiar and novel contexts. This model is still in
its early stages of development, but we believe that graded
attractors will prove to be useful in modeling response selec-
tion and working memory functions across many cognitive
tasks.
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