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Abstract 

In discussions about the physical support of conscious 
experience, a recent trend has been introduced (by Tononi 
and various colleagues) that measures the capacity of a 
network to discriminate among different states and integrate 
the information generated by this discrimination. This 
capacity to generate and integrate information can be used 
to understand the information processing in a network and 
Tononi has claimed that it is also linked to conscious 
experience. This paper describes experiments in which 
networks of weightless neurons were used to explore how 
different connection patterns and architectures affected the 
effective information generated by a network. The training 
of these networks using easily recognizable images made it 
easy to monitor their internal states, and this supports the 
interpretation of the system using the mental stance, which 
is described in a companion paper. By applying the same 
training to different architectures we were also able to study 
how the informational relationships depended on a
combination of training and other dynamic effects. 

Introduction  
When a system enters a particular state, the amount of 
information associated with that state depends on the 
number of other states that are available to the system. For 
example, when a person looks at a landscape, they 
distinguish between that particular landscape and all of the 
other landscapes that they have seen, and they also 
distinguish the landscape from the enormous number of 
non-landscape perceptions that they are capable of. 
However, when a simple photodiode is exposed to light 
from a landscape it switches on in exactly the same way 
that it does when it is exposed to a light bulb or any other 
source of light. One difference between the person and the 
photodiode is that the person generates a lot of information 
when they rule out the large number of non-landscape 
states, whereas the photodiode generates very little 
information because it only ever rules out one state – the 
state of no light being present. A second difference is that a
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person experiences a landscape as a single integrated 
scene, whereas an array of photodiodes in a camera employ 
no such integration – leaving this to the observer of the 
image.  
 The measurement of the information that is generated 
and integrated by a system can help us to understand the 
relationships between its mental states (Gamez and 
Aleksander, 2009). For example, one partial state might be 
representing the presence of red in the environment and 
another partial state might be representing the presence of 
a cube. If these states are integrated together, then the 
system can be said to ‘be aware of’ the presence of a red 
cube, but if the states are not integrated together, then the 
system can only be said to be independently aware of 
redness and cubeness. The link between information 
integration and consciousness (Tononi, 2008) also makes it 
possible to generate predictions about the phenomenal 
states of a system by calculating its areas of maximum 
information integration (Gamez, 2008), and Tononi (2008) 
has made some proposals about how this approach could 
be used to understand the qualitative character of 
phenomenal states. 
 Over the last 15 years a number of algorithms have been 
put forward to measure the information generated by a
system and the extent to which this information is 
integrated. One of the first of these measures was neural 
complexity (Tononi, Sporns and Edelman, 1994), which 
calculates the difference between the sum of the entropies 
of the individual components of a system considered 
independently and the entropy of the system considered as 
a whole. Tononi and Sporns (2003) put forward an 
algorithm that measures the mutual information between 
two halves of a subset of a system when one half is in a 
state of maximum entropy. This procedure is repeated on
all possible bipartitions and subsets to find the most 
integrated parts of the system. More recently Balduzzi and 
Tononi (2008) have developed a way of calculating the 
generation and integration of information on the basis of 
the a priori and a posteriori repertoires of a system’s
current state. This approach is summarized in detail in the 
next section. 
 In this paper we focus on the first aspect of the 
information integration problem: the amount of 
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information that is generated when a system enters a 
particular state – what Balduzzi and Tononi (2008) call the 
effective information. This has some overlap with 
information integration, both because the effective 
information is the result of causal interactions within the 
system and because we consider the effective information 
that is generated over several time steps through 
interactions between different neurons. To study the 
generation of effective information we simulated a number 
of different networks of weightless neurons and trained 
them using images of famous faces. By monitoring the 
evolution of these networks towards a stable state it was 
possible to evaluate the effect of connection patterns and 
architecture on the effective information generated by the 
networks, and the discussion at the end of this paper makes 
some speculative suggestions about their information 
integration. A theme that permeates this paper is that there 
is a distinction between the information generated by 
learned states and that generated by the spurious effects 
due to the connection patterns of the network.
 The first section of this paper covers Balduzzi and 
Tononi’s (2008) algorithm for measuring effective 
information and explains how this can be extended to 
calculate the information integrated by a particular state. 
The next part sets out the experimental set up that was 
used, covering both the weightless neurons and the training 
with a set of images. The subsequent sections describe 
experiments that explored how different connection 
patterns and architectures affect the effective information 
generated by a network. The paper then concludes with a 
discussion and suggestions for future work.

Effective and Integrated Information 

According to Balduzzi and Tononi (2008), when a system, 

X, enters a state, x1, the information generated by x1 is a 

function of the size of the system’s repertoire of possible 

states and how much the uncertainty about the repertoire is 

reduced by entering state x1. Balduzzi and Tononi suggest 

that the information generated by x1 can be measured by 

comparing the a priori and a posteriori repertoires of the 

system. The a priori repertoire, pmax
(X0), is the probability 

distribution of the states of the elements when they are in 

maximum entropy and each state is equally likely. Under 

these conditions a system with n binary elements will have 

2
n
 possible states and the probability of each state is 1/2

n
.

The a posteriori repertoire, p(X0→x1), is the probability 

distribution of the states of the elements that could have led 

to the system entering x1. The effective information, ei, of 

state x1 is defined by Balduzzi and Tononi as the relative 

entropy of the a posteriori and a priori repertoires, as 

expressed in Equation 1: 

)](||)([)( 0

max

1010 XpxXpHxXei ��� (1)

Since the maximum entropy is constant, Equation 1 can be 

rewritten as Equation 2: 
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The effective information in equations 1 and 2 could be 

the result of interactions between all of the elements in the 

system, or it could be the sum of the effective information 

generated by independent groups of elements. To measure 

a system’s information integration it is necessary to 

consider the relationship between the information 

generated by the system as a whole and the information 

generated by groups within the system. If the information 

generated by the system as a whole is the same as the sum 

of the information generated by its parts, then the system 

as a whole is not generating or integrating any information. 

To measure this relationship, Balduzzi and Tononi put 

forward a measure of integrated information, which is the 

relative entropy between the a posteriori repertoire of the 

system as a whole and the combined a posteriori
repertoires of the parts of the system, as expressed in 

Equation 3:
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where ei(X0→x1/P) is the effective information of a

particular partition, P, of the system into two or more parts, 

Mk is a part of the system, and µk is a state of Mk. To 

calculate ei(X0→x1/P), each part is considered as a system 

in its own right and the a posteriori repertoires are 

calculated by treating inputs from the other parts as noise.  

From the point of view of information integration, the 

most important partition of a system is the one that 

decomposes it into maximally independent parts. This 

partition is called the minimum information partition 

(MIP) of the network, and it can be understood to be a 

‘natural’ way of dividing the system ‘along its joints’. For 
example, the minimum information partition of the 

elements in Figure 1 is shown by the dotted line. With this 

partition ei(X0→x1/P) is zero because the information 

integrated by the parts is the same as the information 

integrated by the system as a whole. 

Figure 1: Minimum information partition of a network. 

The minimum information partition is found by dividing 

up the network in all possible ways and identifying the 

partition in which the normalized value of ei(X0→x1/P)

reaches a minimum. When the partition is equal to the 
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entire system Equation 3 always yields zero because the a
posteriori repertoire of the parts equals the a posteriori
repertoire of the entire system. To fix this problem the 

effective information of the whole system is calculated 

from the a priori and a posteriori repertoires using 

Equation 1. Once the minimum information partition has 

been found, the information integration of a state of the 

network, Φ(x1), can be calculated from the effective 

information of the minimum information partition, as 

shown in Equation 4: 
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 While Balduzzi and Tononi (2008) calculate the 
effective information on the basis of states that are the 
direct cause of the current state, in this paper the effective 
information is calculated on the basis of an indirect causal 
relationship between an initial state of the network and its 
final stable state. This is a convenient way of dealing with 
recurrent networks that settle into a small set of stable 
states and a similar approach could be used to investigate 
the relationship between events at the brain’s sensors and 
the appearance of these events in consciousness 500 ms 
later (Libet, 1982, 1993), after the brain has moved through 
a number of different states. 

Networks of Weightless Neurons 

Weightless Neurons 

The experiments in this paper were carried out using 
weightless neurons, which compare stored patterns in their 
lookup tables with the N inputs that they receive from other 
neurons (see Figure 2). When the input pattern matches a 
known pattern (possibly with some degree of 
approximation), then 1 or 0 is output (depending on the 
training). When the input pattern does not match a known 
pattern (possibly with some degree of approximation), then 
the neuron outputs a random sequence of 1s and 0s.

Figure 2: Weightless neuron. 

 A weightless neuron is trained by presenting it with an 
N-input pattern and setting the desired output to 1 or 0, 
which causes an output of 1 or 0 to become associated with 
the N-input pattern in the neuron’s lookup table. If the 
stored output value is contradicted during a training 
sequence, then the stored lookup state is deleted for the 
contradicted input pattern. An approximate match between 
the input and the patterns in the lookup table is carried out 
by evaluating the Hamming distance between the input 
pattern and the stored patterns: if the Hamming distance is 

over a threshold set by the generalization parameter, then 
the input pattern is said to match. If multiple patterns 
match the input at a given level of approximation, then a 
random sequence of 1s and 0s is output.  

Dynamic Neural Systems 

In the first set of experiments a 98x98 neuron layer was 
used that did not have external inputs. The n inputs of each 
neuron were either connected to another neuron selected at 
random from the network (called a distributed connection) 
or connected to their near neighbors in a way that was 
specific to individual experiments (called a local 
connection). In the second set of experiments two 98x98 
neuron layers were used, with one acting as the input to the 
second. 
 In the majority of the experiments the networks were 
trained on the set of famous faces shown in Figure 3 using 
what is known as an ‘iconic’ method. This created stable 
states for the chosen training patterns by forcing the input 
image to be both the output of the network and the 
‘desired’ output of the neurons.

1
 Once a network has been 

trained on these images, its stable states often match one of 
the images exactly, and when this occurs the state is
referred to as an experience state. The advantage of 
working with two dimensional layers trained with 
recognizable images is that visual inspection can easily be 
used to monitor the evolution of the patterns over time.

2

Figure 3: Images used to train the networks: Left to right, top 
to bottom, Einstein, Mandela, Obama, Zarkozy. 

In all of these experiments the simulation and training of 
the networks was carried out using the NRM software.

3

Effective Information and Connectivity  

This series of experiments was designed to explore how 

the connectivity of the network affected the information 

that was generated by the stable states. The network was 

                                                
1

Aleksander (1996, Chapter 4) explains iconic training in detail.
2 This fits in with the monitoring of the internal states of self-organizing 

systems that is discussed in Gamez and Aleksander (2009).
3 See Barry Dunmall’s site for more information about NRM: 
http://www.iis.ee.ic.ac.uk/eagle/barry_dunmall.htm.
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trained so that it could move (with varying degrees of 

success) from a large number of initial starting states to a 

small number of stable finishing states. The training was 

carried out by setting the appropriate pixel of one of the 

four face patterns in Figure 3 as the desired output of each 

neuron in the network and also as the actual output of each 

neuron with the learning mechanism switched on. This 

created a potentially stable experienced state in the 

network and the system was tested by putting it into a non-

experienced state and checking that it settled into an 

experienced state. The experienced states became attractors 

in the state dynamics of the system, with the dynamics 

depending on the connectivity of the neurons. 

Experiment 1: Connectivity and the Retention of 

Experienced States 

In the first experiment the 98x98 neuron layer was 

randomly interconnected with 32 connections per neuron. 

Figure 4, top row, shows that with this level of 

connectivity the network consistently settled into one of 

the four experienced states.  

Figure 4: Experiment 1A, connectivity: 32 random connections. 

The upper row shows the individual stable states as they appeared

in the 98x98 weightless neuron network. The lower row shows 

the time development (left to right, t=0, t=1, t=2, t=4) of the 

system starting in a random state and ending in one of the four 

experienced states. 

The effective information that was generated when the 

network entered one of its four final states can be 

calculated as follows. We know that the network as a 

whole has 2
9604

 possible states. In the a priori repertoire 

each of these states has an equal probability of 1/2
9604

, 

making the entropy of the a priori repertoire 9604. If a 

quarter of these states, or 2
9602

, lead to each final state, then 

the a posteriori repertoire will consist of 2
9602

states with 

probability 1/2
9602

 and 2
9604

-2
9602

 states with probability 0, 

giving an entropy of the a posteriori repertoire of 9602. By 

Equation 2, the effective information generated by each 

stable state is thus 9604–9602 = 2 bits of information. This 

is low considering the size of the network, but it makes 

sense if one considers that one out of 2
9602

 states lead to 

each stable state, and so little information is gained by 

entering one of the stable states.  

This result can be generalized into a formula expressing 

the maximum effective information that is generated when 

a network enters a trained stable state. If the network has a 

repertoire of ntot possible states, then the entropy of the a
priori repertoire is log2(ntot) and the entropy of the a
posteriori repertoire of one of the stable states is log2( 1/

(ntot / t) ). Putting these expressions into Equation 2 gives 

Equation 5: 

)(log)( 210
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which is the maximum possible effective information that 

can be generated when the network enters a trained stable 

state, assuming that ntot / t of the states in the a priori
repertoire lead to one of the t stable states. The following 

experiment shows how the connectivity of the network 

may prevent it from reaching this maximum. 

In the next experiment the connectivity was reduced to 

six connections per neuron. As can be seen from the final 

stable states shown in the top row of Figure 5, the Obama 

and Zarkozy images continued to be stable final states, but 

the Mandela and Einstein states merged into a single stable 

end state. 

Figure 5: Experiment 1B, connectivity: 6 random connections. 

The upper row shows that two of the experience states were 

reasonably sustained, while the remaining two fused into one 

state. The lower row shows the deterioration over time into one of 

the confused experience states.

In the case of the fused Mandela/Einstein stable state, 

2
9604

/2 states led to this state and the effective information 

generated by this state was 1 bit, which is less than the 

maximum of log2(4) = 2 bits. This shows that the reduced 

connectivity prevented the network from generating the 

maximum possible effective information that could be 

expected from the training. 

Analytic comment. The above results may be linked to 
integration as follows. A particular neuron with n inputs 
can receive 2n

 distinct binary patterns (n-tuples). If the 
same n-tuple is present for two experience states that 
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require opposite outputs for that neuron, it is said that this 
neuron is contradicted for that n-tuple. That is, the neuron 
transmits no information in this instance and cannot take 
part in the process of integration. An exact prediction of 
the number of contradictions depends on similarity 
relationships between the experience states. While this is 
beyond the scope of this paper, it is noted that the 
similarity between the Mandela and Einstein images is 
greater (due to large areas of white) than between others. 
This illustrates well that for these two patterns a sufficient 
number of neurons has been excluded from the integration 
process for the integration to fail and for the experience 
states to be lost.  

Experiment 2: Effect of Connection Localization 

on Effective Information 

In the previous experiments the neurons had no 
geometrical metric associated with their interconnection. 
The next set of experiments examined whether localized 
connections affected the effective information generated by 
the system. Again, the 98x98 network was used and each 
neuron was connected to 25 other neurons in a 5x5 square 
and trained using the image set on the centre bit of the 5x5 
square to create a stable state. The system was tested by 
starting it in one of the experience states, and it was clear 
that these were integrated and stable. Noisy versions of the 
images were then tested and finally the initial state was set 
completely to noise to see if the experience states emerged.

Figure 6: Experiment 2A, localized connectivity, full connection 

in a 5x5 area. 

Top row: Sequence starting with an image state disturbed by 70%

noise (70% of the bits of the image arbitrarily set). The last state 

is stable.  

Second row: State sequence starting in a fully random state. The 

last state is stable. 

Last two rows: Final stable states for differing initial random 

states. No duplicate final states were observed in 30 such tests. 

The results in Figure 6, first row, show that localization did
not prevent the system from moving into one of the 
experience states when the network was started with one of 
the images and 70% noise. However, when the starting 
state was random the system ended up in a combination of 
the experience states, which appeared as a nightmarish 
juxtapositions of images.

4

 The main change introduced by the localized connection 
pattern was that less initial states led to the experienced 
states. This had the effect of reducing the entropy of the a
posteriori repertoire and the net result from Equation 2 is
that more effective information was generated by the 
experience states. The stable mixed up states were also 
generating more than 2 bits of effective information,
although it was not possible to calculate the exact amount 
with our current experimental setup. Although more 
effective information was generated by the network, only 
some states generated information about the experienced 
world: an issue that must be taken with some care when 
seeing integration as a measure of consciousness. The 
confused nature of these final states would also make them 
much less useful if the system needed to carry out a task in 
the world. 

Analytic comment. In a system of overlapping 
interconnections trained on experience states (a 5x5 patch 
overlaps 15 neurons in the next one; a 19x19 patch 
overlaps 323 neurons in the next one) neighboring patches 
are likely to have the same response, which creates regions 
that are sensitive to the same experience state. As time 
progresses, regions of similarity emerge and grow into 
clearly defined boundaries. 

                                                
4

The authors do not know if such phenomena have been experienced by 

humans, but if they have been, they could be due to insufficient 
integration between localized areas in the brain.
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Figure 7: Experiment 2B: false integration mechanisms. 

Top row: Patch size variation, left to right, the patch sizes were 

5x5, 9x9, 13x13, 19x19. 

Second Row: State progression for 25x25 localization patches, 

trained only on an all-black and an all white pattern, from noise 

(left) then, left to right, steps 1, 4 and final stable state reached 

after 22 steps. 

Third Row: Final states for the all-black and all-white 

experiments for the same patch sizes as the top row. 

To explore the effect of local connections further, 
experiments were carried out that varied the size of the 
local patch. The results in the top row of Figure 7 show 
that the larger the localized patch, the lower the 
fragmentation of the state. To reveal the mechanisms at 
work we also trained the network on all black and all white 
experiential states. In the second row of Figure 7 one can 
see how local integration between the neurons led to the 
development of boundaries in the final stable state. The 
third row of Figure 7 shows how a region of the 19x19 
patch grew into one of the two experience states.
 In the experiments shown in Figure 7 the networks were 
generating significant amounts of effective information 
because they could enter a large number of stable states 
and they were more sensitive to their starting points than 
the networks with non-localized connections. In our 
current experimental setup it was difficult to measure how 
much effective information was generated because we did 
not have an easy way of counting the number of stable 
states. However it is clear from inspection that locally 
integrated regions emerged as a function of both training 
and network structure.  

Experiment 3: Effect of Discontinuities on 

Effective Information 

This experiment investigated the effect of a discontinuity 
that cut direct connections between the top left quadrant 
and the top right quadrant of the randomly connected 
98x98 neuron network.

Figure 8: Experiment 3: Effect of a disconnection between the top 

two quadrants of the network. 

Top row: The neuron connectivity was 30 connections drawn

from allowed areas of the network. The figure shows the first four 

time steps, left to right. 

Second row: The neuron connectivity was reduced to 8. The first 

three steps are shown left to right. The last state is for step 32 and 

did not change, except for noise, thereafter. 

The results in Figure 8 show that the discontinuity only 
interfered with integration for low general connectivity, 
where integration was expected to fail even without a cut 
in the network. The importance of the experiment is seen 
in the first row, where a portion of the Obama image was 
used as a seed in an otherwise random image. The 
discontinuity delayed the integration in the top right 
quadrant which, nevertheless, was eventually achieved to 
complete the appropriate experience state. The failure in 
the second row was due to ‘false integration’, as no sign of 
the discontinuity was visible in the final state.  

It is of some interest to note that this network does not 
confuse the Einstein and Mandela states, as was the case in
the low-connectivity part of Experiment 3. This is due to a 
fortuitously more amenable set of random connections. In 
this experiment approximately the same effective 
information was generated as Experiment 1, although this 
took place over a longer period of time. 

Internalizing the External: Phenomenology 

This part of the paper describes experiments that 
investigated how a network can integrate incoming sensory 
information with its growing collection of experience 
states. We were particularly interested in the tradeoff 
between stable states that enable a network to complete 
noisy or missing information and stable states that are so 
strong that they dominate and obscure the sensory 
information coming from the world. 
 In these experiments the neural network consisted of a 
dynamic recurrently connected layer similar to the 
networks used in previous experiments, which was 
connected to a second 98x98 layer that acted as an input to 
the dynamic layer and functioned in a similar way to a 
retina - see Figure 9. 
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Figure 9: Experimental setup with input layer and dynamic layer

Figure 10 shows the connections of one weightless neuron 

in the dynamic layer of Figure 9. 

Figure 10: Connections to a neuron in the dynamic layer. 

Each neuron in the dynamic layer receives Nf single-bit 

lines fed back from the outputs of f randomly selected 

neurons. Neurons also receive Ni parallel lines all carrying 

one bit of information from the corresponding input layer, 

as well as Nc lines from a single one-bit control signal, C,

that is common to the entire network. 

During the first part of the training the control signal 

was set to 0 and the network was presented with an all 

white input. The network was taught to output an all white 

response and this procedure was repeated for an all black 

input. This training enabled the network to copy the state 

of the input layer when the control signal was set to 0. 

In the second stage of training the network was started 

with the control signal set to 0. The target image was then 

presented to the input layer with the dynamic layer in a 

random state. Next, the control signal was switched to 1 

and the training input was activated twice to make the 

target a re-entrant state (once for the transition from the 

random state and once to create the re-entrant experience

state). We found that it was necessary to repeat this several 

times with different random starting states to ease the 

switching from one experience state to another.
5

                                                
5 The results which follow represent a reasonable outcome after 

experimenting with several connection and training times to achieve a 

balance between creating stable states that did not respond to new input 
and stable states that were responsive to new input. 

Experiment 4A: State Switching with an 

Experience State at the Input. 

Once the network had been trained, an Obama image was 
presented at the input when the dynamic layer was in the 
Einstein state. The integrative activity of the network 
between its input and internal state led it to make a 
transition to the Obama state – see Figure 11. 

Figure 11: State transitions from one experience state to another 

in Experiment 4A. (Ni=2, Nf=16, Nc=16, 20 training steps per 

image). 

Top image: Input at the input layer. 

Lower Row: Left to right, state when the top image was presented 

(t=0), then t=1, t=3 and t=6. 

Experiment 4B: State Switching with a Non-

experience State at the Input 

In this experiment the network was presented with a partial 

experience state at its input and the dynamic layer was put 

into a random state. Figure 12 shows how the internal state 

developed from a random state into a complete Zarkozy 

image. 

Figure 12: Reaching the experience state from an incomplete 

input. 

Top image: Content of the input layer. 

Lower row: Left to right, state of the dynamic layer starting from 

a random state (t=0) and then ‘seeing’ the input at t=1, t=3 and 
t=6. 

 In both Experiment 4A and Experiment 4B the final 
state of the network was a combination of the input state, 
which did not change, and the state of the dynamic layer,
which moved into one of the four experience states. The 
total number of possible states of the network as a whole is 

Feedback

from other

neurons at 

random (Nf)

Weightless neuron

Input

layer

Single control bit C

Ni lines

Nc lines

Training

Input

layer

Control

Dynamic

layer
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2
19208

, and so the entropy of a priori repertoire is 19,208. In 
the a posteriori repertoire, 1/4 of the input states led to one 
of the four stable states when they were combined with any 
state of the dynamic layer, and so the number of states that 
led to each stable state is 2

9602
*2

9604
= 2

19206
. The 

probability of each of these states in the a posteriori 
repertoire is 1/2

19206
, and the entropy is 19206. By

Equation 2, the amount of information generated when the 
network entered one of its stable states is 19208–19206 = 2 
bits. 

Discussion 

These experiments demonstrate that it is possible to

roughly estimate the effective information that is generated 

by a stable state of a network of weightless neurons.

Instead of calculating the effective information on a state 

by state basis, we examined the effective information that 

was generated over time as an initial stimulus, such as 

noise or a partial face, was processed by the interactions 

between the neurons to produce a stable state. Although the 

number of possible states of the network was very high, the 

effective information generated by the stable states was 

low because the knowledge that the network was in one of 

the four experience states did little to reduce uncertainty 

about the starting state of the network.
6
 Localized 

connectivity made the network more sensitive to its 

starting state and increased the effective information 

generated by the network, but this did not improve the 

network’s knowledge about the world because the final 

stable states were largely mixed up and meaningless.  

The human brain has a large number of connections 

from high level to low level stages of sensory processing 

(Hupé1 et al., 1998), which suggest that the current state of 

our brain has a strong effect on our processing of 

information from the world. Experiment 4B gave a very 

simple demonstration of this phenomenon when the partial 

face was filled in by the network’s ‘expectations’ about the 
input. This experiment showed that the filling in is good at 

handling noisy data and reducing an uncertain world down 

to something that the system can respond to, but the cost of 

such simplification is that much less information is gained 

about the world.  

To work out the information integration or Φ of the 

network it is necessary to calculate the effective 

information of every possible partition using Equation 4 to

identify the minimum information partition. At the time of 

writing the software for these calculations is still under 

development and the factorial nature of this analysis 

heavily constrains the extent to which it can be carried out 

(Gamez, 2008). Given these constraints we can only make 

some speculative remarks about the likely information 

integration of the experimental networks in this paper.

                                                
6 If the calculations were carried out on a state by state basis, it is likely 
that the effective information would be considerably higher.

In the randomly connected single layer network it seems 

likely that the random global connectivity would make 

whole network into a complex, although there are likely to 

be smaller higher Φ complexes within the network due to 

the random nature of the connectivity and the effects of 

training. The local connections in Experiment 2 would be 

likely to promote small high Φ complexes, which would 

probably follow the boundaries shown in Figure 7. In the 

second set of experiments, the input layer was not as 

highly integrated as the dynamic layer, and we would 

predict that the neurons in the input layer would provide 

sensory data to the dynamic layer without participating in 

the higher Φ complexes of the dynamic layer. 

The work described in this paper is very preliminary and 

we are currently developing software that will run the Φ 
calculations on the networks presented in this paper. When 

we can say more about the information generated and 

integrated by the networks we will be able to build up a 

better understanding of the internal states of these 

experimental networks and make predictions about their

consciousness using Tononi’s (2008) theory. 

Conclusions 

This paper has described a number of experiments in 
which recurrent networks of weightless neurons were used 
to study the effective information that was generated by
stable states. This effective information reached the 
theoretical maximum for the training set when strong 
distributed connections caused the network to settle into 
one of the training states; reducing the connectivity caused 
the network to generate less than the maximum possible 
effective information. When the connectivity was more 
localized the effective information increased, but many of 
the stable final states were confused and meaningless. The 
network’s ability to reconstruct partial training patterns 
enabled it to respond effectively to noisy signals, but it also 
made the network relatively insensitive to its environment.
 The illustrations in this paper suggest that effective 
information measures based on the reconstruction of 
experience states could be a useful way of evaluating a 
system’s potential for consciousness. Whether this 
potential is actually exploited is likely to depend on
whether the system contains a high Φ complex that is 
connected to the external world through a process of 
learning. 
 The long term aim of this work is to help us to 
understand cognitive systems as they are being trained and 
to gain a better understanding of a systems’ internal states 
(Gamez and Aleksander, 2009). We are currently 
developing software that will enable us to calculate the 
information integration of a network and build up a more 
detailed picture of its informational relationships. 
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