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Abstract 

This paper argues that supervised cognitive growth in 
artifacts will be very difficult to achieve without detailed 
knowledge about systems’ internal states. Physical 
information is too low level to provide a useful 
understanding of a system’s behavior, and it is more 
pragmatically useful to take a mental stance towards an 
artificial system and interpret its actions in terms of mental 
states. This mental stance is similar to Dennett’s intentional 
stance, except the ascription of beliefs and rationality in the 
intentional stance is replaced by the attribution of low level 
mental states in the mental stance. In some cases it might 
also be useful to take a conscious stance towards an 
artificial system that interprets its behavior as the outcome 
of a conscious decision making process. Since most artifacts 
lack language, automatic analysis techniques have to be
used to identify the contents of their minds, and the second 
half of this paper suggests how some of the earlier work of 
Aleksander and Atlas can be applied in this area. 

Introduction  
A biologically-inspired cognitive system could be 
developed using a single black box approach. Only the 
external behavior would be monitored, and if the system 
failed to behave correctly, the parameters of the learning 
algorithm could be adjusted or the architecture changed, 
and the cycle repeated until the system behaved in the 
desired way. With the single black box approach it is 
difficult to identify the reasons for aberrant behavior, to 
know whether the system is overgeneralizing and to correct 
the architecture or learning parameters in appropriate ways.
The single black box approach is also likely to become 
increasingly unworkable as the complexity of the system 
increases. 
 A more promising alternative is to develop cognitive 
systems using modular black boxes that are designed for 
different tasks and trained and tested independently. For 
example, if the system has a visual module and a motor 
module, then these could be trained and tested separately 
and then combined to produce the complete system. The 
system’s developers could focus on the identification of 
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faulty modules and only adjust and retrain the ones that did 
not work. A first limitation of the modular black box 
approach is that researchers are unlikely to know the 
expected behavior of every module in the system: if they 
did have this information, then there would be little need 
for a biologically inspired cognitive architecture that learnt 
from its experiences.1

 A second problem is that the training 
of the modules is likely to depend on the interactions 
between them, which would make it impossible to train 
and test them in isolation – in other words, modular black 
boxes may merge into a single black box. A third issue is 
that, as training progresses, the overall behavior of the 
system is likely to become a complete mystery, even if 
specific modules have been designed and there are known 
connections between them. Finally, biologically-inspired 
cognitive architectures might have to allow for the 
possibility that modules are used in several different ways 
depending on context, which would seriously complicate 
any attempt to completely specify their function. 
 These limitations of black box methodologies can be 
addressed by monitoring what is going on inside cognitive 
systems as they are being developed. This could be done 
by examining the low level interactions of the system – for 
example, in a neural system information about the neurons 
and their connections could be used to understand what the 
system has learnt and predict what it is going to do next. 
The problem with this type of low level approach, which is 
analogous to what Dennett (1987) calls the physical stance, 
is that it takes a great deal of effort and gives little insight 
into a system’s behavior. A more promising approach is to 
interpret a system’s actions as the outcome of a rational 
decision process based on beliefs and desires. This 
perspective on the system is what Dennett (1987, p. 17) 
calls the intentional stance:2

… there is yet another stance or strategy one can 
adopt: the intentional stance. Here is how it works: 
first you decide to treat the object whose behavior is 
to be predicted as a rational agent; then you figure out 
what beliefs that agent ought to have, given its place 

                                                
1 One reason for the failure of De Garis’ (2002) CAM-Brain system was 

that it required a full specification of all of the modules’ functions.
2 Dennett’s design stance has been left out of this discussion because in a
learning system most of the behavior is the result of training.
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in the world and its purpose. Then you figure out what 
desires it ought to have, on the same considerations, 
and finally you predict that this rational agent will 
further its goals in the light of its beliefs. A little 
practical reasoning from the chosen set of beliefs and 
desires will in many – but not all – instances yield a 
decision about what the agent ought to do; that is what 
you predict the agent will do. 

 Whilst the intentional stance is a good way of 
understanding the behavior of a person or animal, the 
attribution of rationality to the half formed mind of an
experimental system undergoing training is unlikely to 
give much insight or have much predictive utility. Instead, 
this paper puts forward a version of the intentional stance 
called the mental stance, which takes the limited nature of 
artificial cognitive systems into account. The mental stance 
interprets a system as something that has a mind, and then 
frames its knowledge about the system in terms of mental 
states, representational mental states, relationships between 
mental states and cognitive functions. Since our current 
cognitive systems are incapable of expressing their states 
in language, third-person analysis techniques have to be 
used to map out a system’s mind. Taking the mental stance 
enables us to see inside a system’s mind as it is being 
trained, which makes it much easier to debug its learnt 
representations and understand its behavior. 
 In some cases it might be worth moving beyond the 
mental stance and taking a conscious stance towards a 
system, which interprets its actions as the outcome of a 
conscious decision-making process. Different theories 
about consciousness will make different predictions about 
a system’s conscious states and it is an empirical question 
about which theory of consciousness provides the best 
understanding of a system’s behavior. 
 The mental, intentional and conscious stances are 
adopted on pragmatic grounds because of the predictive 
power that is gained by interpreting a system in a particular 
way. The utility of these stances is independent of any 
actual mental, intentional or conscious states that a system 
might or might not have - questions about whether the 
system really has a mind, intentions or consciousness are 
set aside when viewing the system from one of these 
perspectives. Dennett’s own position is realistic to the 
extent that he believes that the patterns interpreted as 
intentional are objectively present in the world, but he 
acknowledges that these patterns are just one particular 
way of looking at reality: 

I claim that the intentional stance provides a vantage 
point for discerning similarly useful patterns. These 
patterns are objective – they are there to be detected – 
but from our point of view they are not out there 
entirely independent of us, since they are patterns 
composed partly of our own “subjective” reactions to 
what is out there; (Dennett, 1987, p. 39) 

 The first part of this paper sets out some of the ways in 
which the mental stance could help us to understand a 

system’s mental states. The next two parts explain how 
earlier work by Aleksander and Atlas could be used to
understand the minds of cognitive systems.

Aspects of an Artificial Mind 

Mental States 

The mental stance interprets a system as something that 
has a mind. Although many philosophers would argue that 
mental states are conceptually distinct from physical states, 
the increase in our knowledge about the brain, and the 
constant reduction of mental functions to brain functions 
has led Churchland (1989) to suggest that the term “mental 
state” will eventually become redundant and mental 
terminology will be superseded by descriptions in terms of 
states of the brain – a position known as eliminative 
materialism. In the human case, this may eventually occur 
because a clear link has been established between mental 
states and the brain. However, when we take the mental 
stance towards an artificial system it is far from clear 
which part of the system we should examine when we 
interpret it as a mental entity. Within this context we need 
the concept of a mental state to specify the part of the 
system (or subset of the system’s states) that is linked to 
states of its mind. 
 When people analyze human minds they generally focus 
on the brain and human mental states are usually taken to 
be states of human brains. However, other parts of the 
human body can be treated as mental as well. For example, 
states of the liver or blood could be interpreted as mental 
states and used to develop an understanding of a human’s 
mind.

3 In artificial systems a mental state could be the 
firing activity in simulated neurons or the 1s and 0s in a 
computer’s RAM - for example, mental states could be 
monitored in Franklin’s IDA (2003) by using a debugger to 
measure memory changes. Different ways of defining a 
system’s mental states may lead to different predictions 
about its behavior, and by experimenting with different 
mental state definitions we can identify the ones that 
provide the most accurate and efficient understanding of a 
system. 

Representational Mental States 

Systems that interact with their environment are likely to 
have representational mental states that co-vary with states 
of the world. In artificial systems these representations are 
likely to be very different from human beliefs and many of 
them will be difficult or impossible to express in natural 
language. Some systems will also have mental states that 
co-vary with states of their bodies, which can be 
interpreted as emotions using Damasio’s (1995) theories. 

A great deal of work has been carried out on the 
identification of representational mental states in the brain.

                                                
3

See Paton et al. (2003) for a discussion of the computations carried out 

by the liver and other tissues. 
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Classic work in this area was carried out by Hubel and 
Wiesel (1959), who inserted electrodes into the brains of 
cats and measured the neural activity when different 
stimuli were present in different parts of the visual field. 
Neurons whose activity changed when an external stimulus 
was presented were judged to be representing the 
information in the stimulus. More recently fMRI scanning 
has been used to identify representational mental states - 
for example, Kay et al. (2008) used fMRI data to predict 
novel images that subjects were viewing with over 70% 
accuracy. 
 Less work has been carried out on the identification of 
representational mental states in artificial systems,
although a number of techniques have been developed. For 
example, Krichmar et al. (2005) used a backtracing method 
to identify a system’s functional pathways and Gamez 
(2008) used a combination of noise injection and mutual 
information to map out a network’s representational states. 

Relationships Between Mental States 

The relationships between a system’s mental states can 
significantly affect its perception. For example, a system 
that integrates color and shape information can represent a
red cube. However, if the system cannot integrate color 
and shape information together, then it cannot represent the 
fact that a cube is red or imagine the possibility that a red 
cube could take on a different color. The relationships 
between mental states also determine the functions that are 
available in a system. 
 The relationships between mental states can be
identified using methods for measuring functional and 
effective connectivity, such as Granger causality (Seth and 
Edelman, 2007), neural complexity (Tononi, Sporns and 
Edelman, 1994) or information integration (Tononi and 
Sporns, 2003; Balduzzi and Tononi, 2008). We are 
currently developing a new approach based on liveliness, 
which is covered later in this paper. 

Cognitive Functions 

Knowledge about the presence or absence of cognitive 
functions, such as planning, imagination and attention, is 
essential if we want to understand a system’s training and 
behavior. Whilst some work has been carried out on 
validating functions using external behavior – unit testing 
in software development, for example – cognitive 
functions are more likely to be identified by examining a 
system’s internal states. One approach would be to define a
function in terms of a mapping between input and output 
and look for groups of mental states that implement this 
mapping. The problem with this method is that all possible 
combinations of input would have to be included in the 
definitions, which would be impossible for real valued 
inputs. A more promising approach would be to define 
functions in terms of workflows and use the relationships 
between mental states over time to determine whether a 
particular function is possible or active in the system.

Some suggestions about how this approach could work are 
given towards the end of this paper.

Conscious Mental States 

In some cases it might be worth going beyond the mental 
and intentional stances and take a conscious stance towards 
a system, which interprets its actions as the outcome of a 
conscious decision making process. In many cases a 
conscious stance might be able to provide a more accurate 
and efficient way of understanding a cognitive system’s 
training and make better predictions about its behavior. 
Since most contemporary artificial systems are unable to 
report their conscious states directly, an analysis process 
would have to be used to predict their conscious states. 
Different theories of consciousness are likely to make 
different predictions,

4
 and it is a pragmatic question about 

which theory would give the most useful understanding of 
a system’s learning and behavior.

5

Descriptions of Mental States 

The mental stance enables a system’s knowledge and 
behavior to be concisely summarized using high level 
descriptions of its mental states. However, Nagel (1974) 
and Chrisley (1995) have raised a number of problems 
with natural language descriptions of non-human and 
artificial mental states, which suggest that new methods of 
description may have to be found. 
 Previous work in this area includes graphical 
representations of the inner states of a robot (Holland and 
Goodman, 2003; Stening et al., 2005), and Chrisley and 
Parthemore’s (2007) use of a SEER-3 robot to specify non-
conceptual mental content. Ascoli and Samsonovich 
(2008) have developed an approach to this problem using 
semantic maps and a companion paper (Aleksander and 
Gamez, 2009) demonstrates how iconic representations can 
be used to dynamically display a system’s inner states. 

Liveliness in Neural Networks 

Weightless and Spiking Neurons 

The earlier work of Aleksander (1973) and Aleksander and 
Atlas (1973) on a logic-based approach to neural networks 
is used in this half of the paper to suggest some ways of 
analyzing an artificial mind. This approach is applicable to
neurons whose function can be expressed as a truth table –
for example, weightless neurons (Aleksander et al., 2009)
or simple models of spiking neurons. To see how spiking 
neurons can be expressed as truth tables, consider a simple 
neuron with the following features: 

� Neuron can emit 1 (spike) or 0 (no spike). 

                                                
4
 Early work in this area can be found in Gamez (2008).

5 The conscious stance is unlikely to be able to explain all of a system’s 
behaviors because many human actions take place automatically without 
conscious control, and the same is likely to be true of artificial systems.
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� When the neuron receives a spike on one of its 
connections, the weight of that connection is added to 
the neuron’s membrane potential. 

� If the value of the membrane potential exceeds the 
threshold, the neuron fires and emits 1. Otherwise the 
neuron emits 0. 

� Spikes from previous time steps are not taken into 
account – in effect the time step is set to a large value 
so that the membrane potential is reset after each time 
step. 

Figure 1: Example spiking network 

In the example network shown in Figure 1, information 

about the weights enables the function of N2 to be 

expressed in the truth table shown in Figure 2. 

N1 N3 N2 (0.1) N2 (0.3) N2 (0.5)

0 0 0 0 0

0 1 1 1 0

1 0 1 0 0

1 1 1 1 1

Figure 2: Truth table for N2 in Figure 1. The output of N2 depends 

on the threshold, which is given in brackets 

A truth table representation of a neurons’ functions enables 
a number of analytical results to be derived, which are 
covered next. 

Liveliness 

Liveliness is a key concept for the work described in this 
paper because it measures the probability that a connection 
or neuron transmits information. With a lively connection 
there is a high probability that a change of signal in the 
input will result in a change in the output, irrespective of 
the inputs to the other connections. On the other hand, the 
input to a non-lively connection will have little or no effect 
on the output of the neuron. For example, in the network 
shown in Figure 1, the connection between N3 and N2 has a 
high liveliness for thresholds of 0.1 and 0.3 because a 
change in N3 is almost always reflected in a change in the 
output of N2. On the other hand, the connection from N1 to 
N2 has low liveliness because a change in N1 is rarely 
reflected in a change in the output of N2, and only when the 
threshold is 0.1.  
 The probability, Pj, that a connection transmits a signal 
can be calculated by dividing the number, m, of conditions 
under which it transmits a signal by the number of possible 

states of the other K inputs to the neuron, as shown in 
Equation 1: 

12 �
� Kj

mP (1)

The liveliness of a neuron, λk, is the average probability of 
it being live (in a signal transmission sense) between an 
arbitrarily selected input and its output, with the average 
being taken over the K connections to the neuron, as 
expressed in Equation 2: 
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j
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K
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It is also possible to work out the liveliness of a set of
neurons whose functions are drawn with equal probability 
from some set F: 

��
f

KF F
L �1

(3)

In Equation 3 LF is the average probability of a neuron 
being live between an arbitrarily selected input and its 
output given that the neuron’s function is selected at 
random from set F. 
 Cyclical activity in a network only occurs within rings 
of lively elements that have a high probability of 
transmitting signals to each other. Using the results given 
above, Aleksander (1973) derives a formula expressing the 
number, Rl

N, of live rings with l elements in a network of N
neurons:
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Equation 4 can be used to find the distribution of the 
lengths of lively rings. On the assumption that the lively 
rings are independent, the total number of network states 
involved in cyclic activity is the product of the number of 
possible states in each ring, as shown in Equation 5: 

�
�

�
n

j

l
tot

jS
1

2 , (5)

where n is the number of isolated live rings and lj is the 
length of ring j. The detailed derivation of these results can 
be found in Aleksander (1973) and Aleksander and Atlas 
(1973). The application of these results to the analysis of a
system’s mental states is covered next. 

Applications of the Liveliness Approach 

Representational Mental States 

The liveliness of connections and elements provides a way 
of understanding the relationship between internal activity 
of the system and signals that reach the system from the 

                                                
6

Equation 4 is slightly different from Aleksander (1973) because it takes

networks with a connectivity (K) greater than 2 into account.
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outside world. For example, an analysis for 
representational mental states could be carried out using a 
modified version of Krichmar et al.’s (2005) backtracing 
method, which would start with an internal neuron whose 
representations were unknown and identify neurons with 
lively connections to this neuron. By repeating this process 
it would be possible to move back through the network 
until neurons were found with known representational 
states – perhaps because they were directly connected to
sensory input or motor output.

Information Integration 

The liveliness of a connection indicates how likely it is that 
information will be exchanged between two neurons and 
this can be extended through intermediate points to work 
out the information relationships between indirectly 
connected neurons. So, for example, questions about 
whether the system is aware of a red cube or separately 
aware of redness and cubeness can be answered by looking 
at the liveliness of the paths connecting the representations 
of redness and cubeness. It would also be possible to use 
the distribution of lively rings in different parts of the 
network to measure the differentiation of a system’s states,
and the liveliness approach might open up a way of 
calculating the Φ measure of information integration that 
avoids the processor-heavy factorial dependencies of 
Tononi and Sporns’ (2003) and Balduzzi and Tononi’s 
(2008) methods. 

Learning 

The distribution of information integration in a network 
could be a useful way of monitoring its learning. In a 
typical training scenario a system starts off with a high 
level of connectivity between its elements. As learning 
proceeds the strength of these connections is adjusted so 
that the connection patterns reflect the co-occurrence of
events in the world. The untrained system will have high 
integration and low differentiation, which will result in a
low value of Φ. As training proceeds, the integration will 
decrease as weights are reduced on certain connections, but 
the differentiation will increase because only particular 
combinations of states will occur - resulting in a net 
increase in the system’s Φ. However, if training goes on 
for too long, then the integration is likely to become too 
low and the value of Φ will go down – suggesting that 
there is a ‘sweet spot’ in which the balance between 
differentiation and integration is maximized. It would also 
be possible to use the number of lively rings and the 
richness of the state space to measure a system’s training.

7

Cognitive Functions 

The liveliness measures could be used to identify rings and 
chains of mental states that correspond to different 
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The relationship between information integration and learning is very 

speculative at this stage and more empirical work is needed.

functions: a lively ring of mental states would be a 
repeating function; a lively chain of mental states would be 
a linear function. This approach to function definition 
would make it possible to know whether, for example, the 
system is using its imagination to solve a particular 
problem, and one could map out the possible functions of a 
system and decide whether it has learnt a particular
function. 

Conscious Mental States 

The liveliness approach offers a number of ways of making 
predictions about conscious mental states according to 
different theories of consciousness. To begin with, Tononi 
(2008) makes an explicit connection between Φ and 
consciousness: if the liveliness approach could be used to 
calculate Φ, then it could also be used to make predictions 
about which mental states are associated with 
consciousness. Secondly, Metzinger (2003) links 
consciousness with information integration over time, 
which he calls the window of presence (Constraint 2) and 
dynamicity (Constraint 5). Since lively rings store earlier 
states of the system, the distribution of lively ring lengths 
could be used to measure the system’s window of presence 
and dynamicity. The state-based approach to functions also 
makes it possible to move from high level theories about 
consciousness to low level information about the system, 
allowing predictions to be made about whether the system 
conforms to Aleksander’s (2005) five axioms of depiction, 
imagination, volition, attention and emotion. 

Future Work 

This work linking liveliness and a truth table-based 
analysis to the mental and conscious stances is at a very 
early stage of development and a great deal more research 
is required. At the moment our primary focus is on the 
development of an open source software package that can 
carry out the liveliness and Φ calculations. We are 
planning to use this software to analyze the liveliness and 
integration of simulated networks and this will be 
compared with the results of Balduzzi and Tononi (2008).
Some preliminary experiments in this area can be found in 
a companion paper (Aleksander and Gamez, 2009). 

Conclusions 

This paper has argued that single or modular black box 
approaches will be inefficient and laborious ways of 
developing the next generation of cognitive systems. 
Taking the mental stance and viewing a system as if it has 
a mind provides a much better understanding of a cognitive 
system’s learning and behavior, and in some cases it might 
be useful to take a conscious stance towards a system.
 The first half of this paper outlined how the mental 
stance could be based on an analytical identification of 
mental states, representational mental states, relationships 
between mental states and cognitive functions. The second 
half made some suggestions about how the work of
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Aleksander (1973) and Aleksander and Atlas (1973) could 
be used to characterize a system’s mental contents. The
mental stance and the conscious stance are pragmatic 
positions and their utility is entirely separate from 
questions about whether the system really has a mind or 
conscious mental states. 
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