
From Constructionist to Constructivist A.I.

Kristinn R. Thórisson
Center for Analysis & Design of Intelligent Agents and School of Computer Science

Reykjavik University, Kringlunni 1, IS-103 Reykjavik, Iceland
thorisson@ru.is

Abstract

The development of artificial intelligence systems has
to date been largely one of manual labor. This Con-
structionist approach to A.I. has resulted in a diverse
set of isolated solutions to relatively small problems.
Small success stories of putting these pieces together in
robotics, for example, has made people optimistic that
continuing on this path would lead to artificial general
intelligence. This is unlikely. “The A.I. problem” has
been divided up without much guidance from science or
theory, resulting in a fragmentation of the research com-
munity and a set of grossly incompatible approaches.
Standard software development methods come with se-
rious limitations in scaling; in A.I. the Constructionist
approach results in systems with limited domain appli-
cation and severe performance brittleness. Genuine in-
tegration, as required for general intelligence, is there-
fore practically and theoretically precluded. Yet go-
ing beyond current A.I. systems requires significantly
more complex integration than attempted to date, es-
pecially regarding transversal functions such as atten-
tion and learning. The only way to address the chal-
lenge is replacing top-down architectural design as a
major development methodology with methods focus-
ing on self-generated code and self-organizing architec-
tures. I call this Constructivist A.I., in reference to the
self-constructive principles on which it must be based.
Methodologies employed for Constructivist A.I. will be
very different from today’s software development meth-
ods. In this paper I describe the argument in detail
and examine some of the implications of this impend-
ing paradigm shift.

Introduction

Compared to a cat or a mouse a software program whose en-
tire operation consists of classifying objects into groups la-
beled “high”, “medium” and “low”, along a few dimensions,
is by most measures not very intelligent. Yet the majority of
A.I. systems developed today are not much smarter than that.
They are geared towards targeted, isolated problems. Most
of them are dumber than a fruit fly.

That industrial applications should call for targeted A.I.
systems is not a surprise: Any product market will present

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

practical, limited problems that call for well-defined, limited
solutions. Solving these problems is a predictable and man-
ageable engineering effort, and it allows companies to get
ahead in the market. Why academia should have a limited
focus in their A.I. research is also understandable, albeit not
as obvious. It is, however, more difficult to excuse.

Computer science has supplied many useful tools to the
study of intelligent systems, most notably the ability to build
runnable models, which allow us to experiment with our the-
ories and ultimately demonstrate their soundness. An im-
portant determinant of speed of progress is how such mod-
els are implemented; typically this is done by a single coder
or a small team using common software development meth-
ods. Following – and sometimes slightly ahead of – standard
software methodologies, A.I. systems are built by hand, the
A.I. developer taking the role of a “construction worker”.
This Constructionist A.I. approach goes hand-in-hand with
the traditional divide-and-conquer methodology: dividing
the problem up into small enough pieces so that a student
or a small team of researchers can find a solution to one of
them within a few years.

Employing the divide-and-conquer method as the main
way towards complete understanding of a phenomenon only
works in combination with a subsequent effort – not nearly
as often discussed – whereby the resulting theories are syn-
thesized to give a unified picture. For any subject of study
there is no guarantee that a set of models or theories devel-
oped independently for its isolated sub-parts can be com-
bined in a straightforward manner to form a complete the-
ory – even though the components seem satisfactorily ex-
plainable by themselves. Differences in type, scope, and un-
derlying assumptions of the smaller-scope theories may par-
tially or completely prevent their linear combination. Such
a failure would preclude a holistic understanding of the
phenomenon under investigation.1 This is especially likely
to happen when using a traditional divide-and-conquer ap-
proach for studying dynamic phenomena with a mixture of
dense and loose couplings2 between a large number of sub-

1Some success of combining theories in other scientific fields
may have spurred optimism that the same could be done in A.I.
We should be reminded, however, that in fields where this has been
done, e.g. chemistry and physics, it has typically been an excruci-
atingly slow process, extending over centuries and millennia.

2The density of couplings is the sheer number of connections;

175

Biologically Inspired Cognitive Architectures II: 
Papers from the AAAI Fall Symposium (FS-09-01)



systems: The functional state space of such systems can get
exceedingly large (consider e.g. the state space of a large
city3) and any subdivision will ignore important intercon-
nections between the various parts. Moreover, in systems
with little replication of functionality, every part must be un-
derstood to explain the operation of the whole. As I have
argued elsewhere, the human mind4 embodies the properties
of a heterogeneous, large, densely-coupled system (HeLD;
Thórisson, 2008). Such systems are notoriously difficult to
understand and model.

I would like to stress that here we are primarily concerned
with methodologies for developing A.I. systems, not the par-
ticular cognitive architectures that get built through their ap-
plication.5 So to a large extent the soundness of the argu-
ments made in this paper do not rest on – and do not need
to rest on – assumptions about what kind of a system the hu-
man and animal mind really is. Past discussions about cog-
nitive architecture – whether the mind is primarily “symbol-
based” (c.f. Newell and Simon, 1976), “dynamical” (c.f. van
Gelder, 1995, Froese, 2007), “massively modular” (c.f. Bar-
rett and Kurzban, 2006) (however these concepts are inter-
preted) or something else entirely – can be largely put aside
as we focus on the size of the system and interdependencies
between its enormous set of functions: Just as an ecosystem
cannot be understood by studying one lake and three inhab-
iting animal species, intelligence cannot be understood as a
phenomenon by studying only a few of its features – critical
interdependencies of its relatively large number of heteroge-
nous mechanisms prevent most disections from providing
more than a small insight into the big picture.

Consider functions such as global attention with intro-
spective capabilities, the ability to discover, understand and
abstract facts and causal chains, to make analogies and infer-
ences, and to learn a large amount of vastly different skills,
facts and tasks including the control of ones own thoughts.
These are features that seem simply too critical to leave out
when trying to build an intelligent system.6 It is in part the
neglect of such key features – and in particular their integra-

the looseness/tightness of couplings is their rigidity (Thórisson,
2008).

3“Functional state space” refers to the states which matter to the
system’s operation – for a city it would include e.g. the position of
every person at every moment and the ordering of bytes in the city’s
phone calls, as both could affect the city’s operation if they were
changed, but it would exclude e.g. the placement of living cells in
the inhabitants’ livers and the exact number of pebbles in the city’s
pavements.

4And by extension, the minds of a large portion of Earth’s ani-
mals, as these implement much of the same functionality.

5Although the two are connected, I have elsewhere extensively
discussed how the computational architecture (software implemen-
tation) and the cognitive architecture that it simulates need not be
isomorphic (Thórisson, 2008).

6Broadly speaking, by “generally intelligent system” I mean
systems that can apply themselves to study and learn disparate
tasks, facts and situations, in environments of roughly the same
complexity as the real world. A fairly trivial example would be an
A.I. that can learn to fix automobiles, do the dishes and cook din-
ner. An A.I. that can acquire the skills to invent new things, solve
global warming and negotiate peace treaties would also pass.

tion – that motivates the present discussion.
In academia “the A.I. problem” has largely been divided

up based on concerns for potential application areas, not
based on scientific or theoretical guidelines, possibly be-
cause we do not (yet) have very good tools and methodolo-
gies for addressing them all in a single system. As a re-
sult the field has ignored important holistic features of in-
telligence, such as a system-wide ability to learn and the
power of globally-steerable attention, and severely limited
the chances that progress in isolated subfields of A.I. can be
put back together to form a more complete picture of what
intelligence can or should be.

While results coming out of A.I. labs will undoubtedly
continue to be useful to society, I will show how the above
factors are colluding to preclude progress towards under-
standing the larger picture and the general nature of intel-
ligence, and discuss some of the research topics we need to
focus on to see significant progress in A.I. research over the
next 50 years.

Constructionist A.I.

Creating genuinely multi-purpose machines that can oper-
ate in the real world (virtual or physical) requires, among
other things, integrated manipulation and sensing capabili-
ties. Putting together the sensory-motor capabilities to sup-
port even just basic functionality for this purpose has been
a major challenge. To take an example, the annual Robot
Challenge competition at AAAI calls for competing teams
to create a social robot that, starting at the conference build-
ing’s entrance, can locate the registration counter and reg-
ister for the conference, find its way to the proper lecture
hall and give a two-minute lecture about itself, as well as
take questions from its (all-human, as of yet) audience. The
challenge demonstrates nicely the multiple skills that must
be closely coordinated to solve many tasks that people face
every day, such as asking for directions, finding an eleva-
tor and operating its controls, navigating hallways, open-
ing doors and doing presentations. Integrating the necessary
competencies to create such social robots is a major under-
taking, as shown in the entrances to the competition over the
years, some involving several institutions and close to 20 re-
searchers (c.f. Simmons et al., 2003).

To illustrate this point I will take two other examples,
from my own research.7 These systems, while probably not
the largest out there, are representative of efforts towards
integration such as that in the AAAI Robot Challenge, and
they are among the relatively few that make it a goal to push
the envelope on size and breadth of integration.

The Cognitive Map architecture (Ng-Thow-Hing et al.,
2009) has been used for endow the Honda ASIMO robot
with various skills, including playing board games with chil-
dren. Integrating vision, speech and gesture, the architec-

7Discussing only two systems in more detail may invite crit-
icism that the conclusions (reviewed in the next section) may be
particular to these systems, or to the limited class to which they be-
long. However, making general claims without concrete examples
is difficult. This way, at least, readers can judge for themselves
how generally the arguments apply.

176



ture has a relatively large set of interacting modules respon-
sible for various parts of the robot’s operations, including
numerous perceptors for detecting and indexing perceived
phenomena, as well as various types of deciders, spatial and
semantic memory systems, action controllers, etc. Each of
these is a hand-crafted piece of software, counting anywhere
from a few dozens lines of code to tens of thousands. In this
architecture some of the smaller ones, like two types of per-
ceptors called Detectors and Indexers (Ng-Thow-Hing et al.,
2007), include interpreted code that makes the robot’s visual
routines more flexible than if they were developed with com-
piled software only.

Another example is an autonomous radio-show host that
can learn to avoid interruptions and awkward pauses when
talking to people (Jonsdottir and Thórisson, 2009). The sys-
tem is possibly the first to actually learn politeness in con-
versation. It does this on the fly, during interaction, and is
able to quickly adapt its speaking patterns to a large set of
individuals. A network of perceptual and decision modules,
along with a couple of special learner modules, process raw
data, keep track of history and manages the learning.

The modules in both these systems are connected via a
flexible infrastructure where information flow can easily,
quickly and dynamically be changed on the fly.8 Most mod-
ules accept input (receive messages) from more than two
other modules. The majority of the data produced is pub-
lished on one or more publish-subscribe blackboards (called
whiteboards) and shared with any subscribing modules, the
number and type of which may vary significantly depending
on the global state of the robot at any point in time.

The systems embody what has been called emergent sim-
plicity (Bar-Yam, 1997) – they are monolithic in that every
piece is essential; take any one away and they break. They
are highly modular, however, in that the modules are rela-
tively small compared to the overall size of the full architec-
ture. Contributing to this modularity is the relatively small
size of an average module’s algorithms and input/output
data, giving high data transparency for the whole system,
and the relatively frequent activity of the average module,
giving a high temporal resolution as well.9

A handful of methodologies have been developed over the
years for building large, integrated A.I. systems of this kind,
including Behavior-Oriented Design (BOD, Bryson, 2003),
the Subsumption Architecture (Brooks, 1986) and Belief,
Desires, Intentions (BDI; c.f. Rao and Georgeff, 1991). We
have used the Constructionist Design Methodology (CDM)
to build our systems, a methodology developed by myself
and my collaborators over the last decade to help creating
ever-growing systems (Thórisson et al., 2004). Its principles

8The Psyclone AIOS (Thórisson et al., 2005) has been used in
both of these systems, which in our experience is the most flex-
ible system for creating and managing large architectures. Other
systems with overlapping functionality include Elvin (Sutton et al.,
2001), the Open Agent Architecture (Martin et al., 1999) and NetP
(Hsiao et al., 2005).

9Exceptions to this exist, e.g. the speech synthesizers, which
is produced by a third party, containing fairly boxed-off internal
operations, and the speech recognizers, also produced by a third
party with no access or visibility of internal operations.

allow architecture-preserving expansion of systems span-
ning integration of large numbers of executables, computers,
developers and even research teams. CDM speeds up the
development of large software systems, beyond what stan-
dard component-based methodologies enable, and makes it
easier to keep expanding them without frequent or major
rewrites of the architecture. These results have been col-
lected for several types of systems, in many contexts, pri-
marily at three different research labs, CADIA (Jonsdottir
et al., 2008, Thórisson and Jonsdottir, 2008, Saemundsson
et al., 2006), Honda Research Labs (HRI) (Ng-Thow-Hing
et al., 2007, Ng-Thow-Hing et al., 2009) and the Computer
Graphics and User Interfaces Lab at Columbia University
(Thórisson et al., 2004). While our methodology differs
somewhat from others proposed for similar purposes, espe-
cially in that it is aimed at continuous incremental construc-
tion and, perhaps more importantly, is independent of the
particular cognitive architectures being built, it is motivated
by the same fundamental concern for constructing larger and
smarter systems. It is also based on the same assumption as
alternative methodologies in that traditional software writing
and environments are taken as a core activity in the develop-
ment effort – existing methodologies are all in some sense
embedded within current software practices.

Limitations of Constructionist A.I.

The majority of the present-day A.I. architectures rely on
traditional component-based software development method-
ologies. The large-scale structure of these systems is de-
signed by A.I. software engineers and constructed by hand
by software developers. In the examples reviewed above,
which by no means are laggards in the state-of-the-art race,
we see successful integration of a wide variety of compo-
nents, some developed by the same team during the same
periods (e.g. the visual perceptors modules in the Cogni-
tive Map) while others are developed in separate parts of
the world by separate companies (e.g. speech recognition).
So, from a software architecture perspective, the integration
called for in these social robots, to stay with that example,
is not only possible, it has already been demonstrated in a
number of successful systems (c.f. Rich and Sidner, 2009,
Ng-Thow-Hing et al., 2009, Simmons et al., 2003, Johnson
et al., 2004). We could also point to recent successful efforts
focused on the internals of such systems, offering new solu-
tions to representing perception, knowledge and action (c.f.
Pezzulo, 2009, Wang, 2006, Roy, 2005).

So is there a problem? Yes. First, the heavy reliance
on manual labor in these systems limits, by its very na-
ture, the size and complexity of the architectures that can
be built. The Constructionist approach results in a second
equally important and critical limitation: inflexibility of the
implemented systems. In any system of this kind it is not
only the function of the components that is rather static, the
architectures themselves – the relationship between system
components – are fairly non-dynamic. We can see this in
many other engineered systems of a comparable scale and
level of integration, such as telephone networks, CPUs and
power grids. The architecture is controlled by algorithms
that are themselves hand-crafted, and thus of limited flexi-

177



bility. This limitations precludes autonomous architectural
adaptation and growth of the systems: The traditional soft-
ware development methods used for hand-crafting the mod-
ules and the architecture creates dependencies in the way
the modules communicate which makes them highly depen-
dent on particular data formats, severely limiting the abil-
ity of the architects to take advantage of e.g. the dynamic
data flow features provided by the middleware. As a result
these systems are incapable of architecture-level evolution,
precluding architecture-wide learning (what one might intu-
itively think of as “cognitive growth”). Without system-wide
learning the systems cannot break out of targeted learning,
which precludes general-purpose systems capable of apply-
ing themselves autonomously to arbitrary problems.

Size matters in two ways. First, because the systems are
relatively small they can neither implement supernumerary
nor very complex functions. Second, they are incapable
of supporting many functionalities that characterize higher-
level intelligences, such as system-wide analogy-making,
abstraction, cross-domain knowledge, attention, all of which
require transversal functionality of some sort to be of gen-
eral use.10 These issues ultimately revolve around software
architecture: Most architectures built to date are coarse-
grained, being built of relatively large modules.11 Such a
system simply does not permit the highly dynamic commu-
nication patterns required for these sophisticated functional-
ities.

The architectures of our systems reviewed above are
among the finer-grained ones – we have referred to them
as “granular” to emphasize this. In these systems the algo-
rithms coordinating the modules – i.e. the gross architecture
– controls dynamically which components are active at what
time, which ones receive input from where, etc. Some of
the components can change dynamically, such as the Index-
ers in the Cognitive Map (Ng-Thow-Hing et al., 2007), and
learn, such as the module complex for learning turntaking in
the artificial radio-show host (Jonsdottir et al., 2008). Nev-
ertheless, the modules in these systems are typically black-
box with prescribed dependencies, which make it impossible
for them to automatically change their operation, expand or
even modify their input and output profiles in any signifi-
cant way, beyond what the coder could prescribe. The de-
pendency problem becomes even worse as many component
technologies used in these architectures include third-party
software such as speech recognition, spatial navigation, ob-
ject recognition, dialogue management systems, motor con-
trollers, etc., which are legally or pragmatically closed of
from any enhancements or modifications. The result is
small, inflexible architectures enabling limited-intelligence
systems. The methodology makes it also extremely difficult

10Although system-wide learning and self-evolution could be re-
alized by a small system, these features are likely to be difficult to
maintain in a large system when taking a Constructionist approach.

11The size of components in Constructionist systems built to
date varies from “a few” to “dozens”, depending on which system
you look at. In our own single-intelligence (as opposed to multi-
agent) systems we have had over 80 modules, most of them only a
few pages of C++ code each, but often including 2 or 3 significantly
larger ones (thousands of lines or more) in the full system.

to implement transversal skills – skills such as system-wide
attention (allocation of computational resources to particular
issues in the system’s own operation), which are necessary
for the architecture to grow (Thórisson and Nivel, 2009b).
With only such systems to play with and explore there is
little hope of realizing more general-purpose learning or au-
tonomous acquisition of real-world understanding.

In summary, there are thus three main factors that hamper
progress towards smarter A.I. systems when relying exclu-
sively on the Constructionist approach, their size limitation,
their limited integration and their lack of flexibility. From an
A.I. perspective, architectures built with the Constructionist
approach are bound to be fairly non-integrated, composed
out of modules that have very limited interaction capabili-
ties. As there are generally no flexible transversal mecha-
nisms to speak of, these systems have a low level of auton-
omy and cannot be applied to arbitrary problems.

Might it be possible to expand current component-based
development practices to overcome these limitations? CDM
(Thórisson et al., 2004) was designed with this ques-
tion in mind, as a response to the realization that current
component-based methodologies do not scale well. After
a decade of experience in using this methodology to build
A.I. architectures we can conclude that, yes, it is possible
to stretch current development environments to A.I. systems
that span millions of lines of code and execute on distributed
clusters, yet exhibit emergent simplicity. The improvement
over standard methodologies, however, is at best linear, for
the foreseeable future. The same problems persist – and
some get worse – as the architectures get bigger (such as
code-level bugs) for lack of fault tolerance. Some new ones
are introduced, especially architecture-level problems and
those we call interaction problems: Loosely-coupled mod-
ules often have complex (and infrequent) patterns of interac-
tion that are difficult to understand for the developers; these
grow exponentially as the system gets bigger.

One of the most difficult parts of constructing A.I. sys-
tems is avoiding brittleness in their performance. Hand-
crafted software systems tend to break very easily, for many
reasons, for example when taking inputs outside the scope
of those anticipated by their designers or because of unex-
pected interaction effects amongst the systems’ components.
In spite of decades of dealing with the various problems of
scaling, standard component-based software methodology
simply does not scale easily, as anyone knows who has tried
to integrate more than 5 or 6 separate medium-size software
systems running in parallel. The limitation is a fundamental
one, yet the many fields of A.I. continue to develop slices of
the “intelligence cake” without regards for this fundamental
fact, with the hope that someone somewhere will later com-
bine their work with that of everyone else, resulting in a gen-
erally intelligent system. Such an event is unlikely in every
sense but the most trivial one. It would mean that the prin-
ciples behind generally intelligent systems are linearly com-
posable and require little or no cross-system functionality.
We simply do not know this to be true – and we have good
reasons for thinking otherwise. In A.I., “putting Humpty-
Dumpty back together again” in the next few decades would
therefore not simply be a huge undertaking, it is likely to be

178



both practically and theoretically intractable.
The CDM notwithstanding, and in spite of today’s A.I.

systems clearly being useful in many ways, the Construc-
tionist approach to A.I. has shown itself to result in sys-
tems with limited-domain application and severe perfor-
mance brittleness, at least when compared to naturally intel-
ligent systems. Ever-larger “idiot savant” systems are being
built in academia and industry that show little or no hope
of growing beyond their still highly-limited operating con-
texts. It seems inevitable that only with significantly dif-
ferent development methodologies could we enable a small
team of developers to create massively larger, more complex
and powerful architectures than possible today. These new
principles must rely on increased autonomy in the construc-
tion process itself.

Towards Constructivist A.I.

The preceding discussion presents evidence that strongly
hint at a need for larger and more integrated systems. How
much larger? Nature, of course, gives us a rough idea, but
depending on how you measure it the answer can cover
quite a range. Functions clearly lacking in current A.I. sys-
tems yet abundant in nature include performance robust-
ness, many types of context-based learning and adaptation,
interference-resistant inferencing, and of course powerful
cognitive growth from childhood to adulthood. The abysmal
performance of current systems on these points hints at noth-
ing less than exponentially larger systems: Going beyond
current A.I. systems will require integrating significantly
more complex processes than seen to date, in vastly greater
numbers. Given the slow progress in both machine learning
and large architecture implementation12 current methodolo-
gies will not bring us significantly closer towards that goal:
Even if we keep at it for centuries, their basic limitations
are likely to asymptotically bring us to a grinding halt in the
not-too-distant future.

We are looking for more than a linear increase in the
power of our systems and experience strongly suggests that
a linear increase in present methods will not bring this about.
It is likely that the principles required to develop and govern
the behavior of intelligent architectures with massive num-
bers of interacting components may be very different from
those traditional software practices allow us to explore.

The operating assumption here is that the power of gen-
eral intelligence, arising from a high degree of architectural
plasticity, is of a complexity well beyond the maximum reach
of traditional software methodologies, including future ex-
tensions thereof. If this hypothesis is right, and we want
to see significant progress in the coming decades, we have
no choice but to replace hand-crafting and top-down archi-
tectural design with self-generated code and self-organizing
architectures that largely manage their own growth, without
(low-level) developer intervention. These systems are auto-
constructive; I call this approach Constructivist, in reference
to its reliance on self-constructive principles. Notice that
we are not arguing for the elimination of “manual” research

12While these two factors are not sufficient to build more
general-purpose A.I. systems, they are clearly necessary.

and development methods, or even the elimination of divide-
and-conquer methodologies, but rather a radical shift in wow
these are employed. More importantly, we are arguing that
the principles of operation of a generally intelligent architec-
ture (a) must be vastly larger and more complex than what
is possible to build (for the foreseeable future) with present
standard methodologies, and that (b) it must therefore rely,
in a deep sense, on principles of self-organization, not only
for its evolution (how it grows from dumb to smart) but also
as a general principle of its continuous operation.

It stands to reason that the methodologies employed for
Constructivist A.I. will be very different from today’s soft-
ware development methods; they are likely to be qualita-
tively different. Following are topics that I consider likely to
play a critical role in the impending paradigm shift towards
Constructionist A.I. There probably exist other key factors,
not included here, so this list should be considered a neces-
sary but not sufficient set of topics to focus on in the coming
decades, as we turn our sights to building larger, more self-
organizing systems. The topics are: Temporal grounding,
feedback loops, pan-architectural pattern matching, small
white-box components and architecture meta-programming
and integration.

Temporal Grounding

As seems now widely accepted in the A.I. community, it is
fairly useless to talk of an entity being intelligent without
referencing the context in which the entity operates. “In-
telligence” must be judged by its behavioral effects on the
world in particular circumstances which are not part of the
entity’s operation: We cannot rightfully show an entity to be
smart unless we consider both the entity and its operating
environment. In other words, intelligent behavior requires
grounding – a meaningful “hook-up” between an intelligent
system’s thoughts and the world in which it operates. This
grounding must include a connection to both space and time:
Ignoring either would cripple the entity’s possibility of act-
ing intelligently in the world. So, for one, the entity must
have a means to influence the world – it must have a body.
By the same token, the body must be connected to the en-
tity’s internal thought/computational processes, to transfer
the results of its thinking to the body.13

The issue goes beyond situatedness – being situated is a
necessary but not sufficient condition for grounding: via sit-
uated perception and action a feedback loop is created that
allows the system to adapt to its environment and to produce
models of the world that enable it to plan in that world, us-
ing predicted results of sequences of actions (plans). Results
that do not match predictions become grounds for revisions
of its models of the world, and thus enable it to learn to exist
in the given environment (c.f. Wang, 2005). To be grounded,
therefore, an intelligent entity must be able to compute using
processes that have a causal, predictable relationship with
the external reality.

This leads us to a discussion of temporality. As any stu-
dent of computer science knows, computation can be dis-

13Froese (2007) gives a good overview of past research on these
topics.

179



cussed, scrutinized and reasoned about without regard for
how long it takes in an implemented system. This fact has
allowed a number of advances within the field of computer
science, mathematics and engineering. However, without a
strong foundation for the semantics of the actual, realtime
execution of computational operations has resulted in seri-
ous limitations which have made applications where time
is of essence – notably embedded systems, user interfaces,
networks, distributed and artificial intelligence systems –
very difficult to model, analyze and design. As others have
pointed out, timeliness is a semantic property (Lee, 2009).
To be grounded, the computational operations of an intel-
ligent entity must have a causal, temporally contextualized
and predictable – and thus temporally meaningful – rela-
tionship with the external reality.

Interestingly, there exist no examples of natural intelli-
gence where time isn’t integral in its operation: When it
comes to doing intelligent things in the world, time is of the
essence. Indeed, in a world without the arrow of time there
would be little need for the kind of intelligence we see in
nature. The lack of a strong connection between computa-
tional operations and the temporal dimension is preventing
a necessary theoretical and practical understanding of the
scaling of software systems and the construction of large ar-
chitectural solutions that operate according to external time
constraints.

To make an intelligent machine that does not understand
time is a strange undertaking. To use its own “mental pow-
ers” wisely it must not only be able to understand the march
of the real-world clock itself, it should preferably also un-
derstand its own capabilities and limitations with regards to
time, lest it cannot properly make plans to guide its own
learning or evolution. We need to find ways to build an op-
erational knowledge of time into A.I. architectures. One way
to do this is to link the execution of the software tightly with
the operation of the CPU, creating a clear semantic relation-
ship between logical operations and the passing of realtime
(running of the CPU), in a way that allows the system itself
to do inferencing and modeling of this relation and use it in
its own operation. In the Ikon Flux system, Nivel (2007)
used lambda terms to implement this idea in a system con-
taining hundreds of thousands of such terms, showing that
this is indeed possible on large architectural scales. As men-
tioned above, the full perception-action loop needs to be in-
cluded in these operational semantics.

There are at least three aspects of temporal representation
that are key. The first is the perception of external time. The
system exists in some world; this world has a clock: Any
system that cannot reasonably accurately sense time, at a
resolution relevant to its operation, cannot take actions with
regards to events that march along to this clock, and thus
by definition is not intelligent. Second, an intelligent sys-
tem must have a representation of mental time and be able
to estimate how long its own mental operations take. Third,
an A.I. architecture must understand how these two relate,
so that mental actions can be planned for, based on exter-
nally or internally-imposed timelines and deadlines. The
challenge is how to implement this in distributed, fine-grain
architectures with parallel execution of subcomponents.

Feedback Loops

Focus on the perception-action loop in current A.I. curric-
ula is minimal. A quick look at some of the more popular
textbooks on the subject reveals hardly any mention of the
subject. Given that this most important loop of intelligence
is ignored in the mainstream A.I. literature, it is no suprirse
that little discussion of feedback loops in general can be
found. Yet the only means for systems to achieve stabil-
ity far from (thermodynamic) equilibrium is through feed-
back loops. The growth of a system, and its adaptation to
genuinely new contexts, must rely on feedback loops to sta-
bilise the system and protect it from collapsing. Further, any
expansion or modification of existing skills or capabilities,
whether it is to support more complex inferencing, making
skills more general-purpose or improving the performance
on a particular task, requires an evaluation feedback loop.
For general-purpose intelligence such loops need to perme-
ate the intelligence architecture.

The way any entity achieves grounding is through feed-
back loops: repated interactions which serve as experiments
on the context in which the entity finds itself, and the ab-
stractions which it has built of that context, its own actions,
and the task. Over time these result in experience which
serves as the foundation for increased intelligence. This pro-
cess must involve not only experience (feedback) of its ac-
tions on the context outside itself, it must also involve the
context of its internal processes. So self-modeling is a nec-
essary part of any intelligent being.

The science of self-organization is a relatively young dis-
cipline with slow progress (c.f. De Meer and Sterbenz, 2006,
Salthe and Matsuno, 1995). Self-organization requires feed-
back loops, yet Constructionist A.I. methodologies make no
contributions in that respect. It is therefore no surprise that
concrete results are hard to come by (c.f. Iizuka and Paolo,
2007) and the study of self-organization in computer science
has been largely theoretical. Perhaps one of the important
contributions that this field has to offer at present is to show
how the principles behind self-organization call for a way
of thinking that is very different from traditional software
development methodologies.

Pan-Architectural Pattern Matching

Complex, tightly-integrated intelligence architectures will
not work without large-scale pattern matching, that is, pat-
tern matching that involves large portions of the system it-
self. Such functionality plays many roles; I will mention a
couple.

Any creature living in a complex world must be able to
classify and remember the salient features of a large number
of contexts. Without knowing which features to remember
(as a learning creature must be able to do) it must store po-
tential features – a much larger set than the (ultimately) rel-
evant features – and subsequently hone these over time, as
it experiences increasingly larger numbers of contexts. In a
complex environment like the real-world the number of po-
tential states or task-relevant contexts a being may find itself
in is virtually infinite. Yet the being’s processing power, un-
like the number of contexts it may find itself in, is finite.

180



So it must have some sort of attention.14 At any point in
time the attentional mechanism selects one or more memo-
ries, mental process(es), memories of having applied/used a
mental process for a particular purpose, or all of the above,
to determine which mental process to apply currently, iden-
tify potential for improvement, or simply for the purpose of
reminiscing about the past. The pan-architectural nature of
such mechanisms crystalizes in the rather large amounts of
recall required for prior patterns involving not only e.g. fea-
tures of objects to be recognized, or the contexts in which
these objects (including the creature itself) may be at any
point, but also involving the way in which the being con-
trols its attention in these contexts with regards to its task
(something which it must also be able to learn), the various
analogies it has made to choose a course of action and the
mechanisms that made these analogies possible. To do all
this in realtime in one and the same system is, no surprise, a
challenge.

Yet another example of a process for which such transver-
sal pattern matching is important is the growth of the sys-
tem as it gets smarter with experience. To grow in a par-
ticular way, according to some specification,15 the architec-
ture must have built-in ways to compare its own status be-
tween days, months and years, and verify that this growth
is according to the specification. This might involve pattern
matching of large parts of the realtime mind, that is, the part
of the mind that controls the creature from moment to mo-
ment at different points in time. For a large, heterogeneous
architecture such architecture-scale pattern matching can get
quite complicated. Needless to say, it is unlikely that we will
ever build highly intelligent artificial systems without it.

Small White-Box Components

As already discussed, most integration in robotics has in-
volved relatively small numbers of components. A close
look at these components – whether they are for computer
vision, speech recognition, navigation capabilities, plan-
ning, or other such specialized mechanisms – reveals inter-
nals with an intricate structure based on programming lan-
guages with syntax made for human brains to understand
and use, implementing broad mixtures of home-brew algo-
rithms. The syntax and semantics of these “black-boxed”
internals is difficult or impossible to discover from the out-
side, by observing only their inputs, outputs and behaviors.
This is a critical issue in self-organizing systems: The larger
and more complex any component in an architecture be-
comes the harder it is to understand its operational seman-
tics. In other words, the greater the size and complexity
of components, the greater the intelligence required to un-
derstand them. Therefore, to make architectures that con-
struct themselves we need to move away from large, black-
box components. Small “white-box” components, executed

14Here “attention” refers to a much broader set of actions than
our typical introspective notion of attention, involving the global
control of which parts of the mind are active at any point in time as
well as what each one is doing.

15Such a specification could be small or medium-sized, com-
pared to the resulting system, and it could be evolved, as our DNA
has been, or provided via new meta-programming methods.

asynchronously and each implementing one of only a few
primitive functions, help streamline the assembly of com-
ponents, based on a few fundamental principles, and ease
the detection of functional patterns realized by these assem-
blies. This, in turn, makes the detection and learning of op-
erational semantics much easier. (Which incidentally is also
what is called for to enable sufficient flexibility to connect
components system-wide, to implement attention, system-
wide learning and architecture-wide pattern matching.)

How much smaller do the components need to be? Else-
where we have argued for the need to move towards what we
call “peewee-size” granularity (Thórisson and Nivel, 2009a)
– systems composed of hundreds of thousands of modules,
each no larger than a lambda term or small function written
in C++. We are aware of only one architecture that has actu-
ally implemented such an approach, the Loki system, which
was built using the Ikon Flux framework (Nivel, 2007). The
system was used in live public theater performances at Cite
des Sciences et de L’Industrie in Paris, in 2005.16 Whether
the extremely small size of peewee granularity is required
for self-construction or whether larger components can be
used is an important question that we are unable to answer at
the moment. Whatever the size, the components must be ex-
pressable using simple syntax, as rich syntax begets rich se-
mantics, and rich semantics call for the need of smarter self-
inspection mechanisms, eventually rising above a thresh-
old of complexity beyond which self-construction and self-
organization cannot be bootstrapped. The finer the granu-
larity and simpler the syntax the more likely it is to suc-
ceed in this regard. The Loki system showed that the the-
ory behind Ikon Flux is already implementable on currently
available hardware using existing programming languages.
It also showed uniquivocally that a lot of work remains to be
done on the the principles of construction, debugging, opea-
ration and analysis of such systems.

Architecture Meta-Programming and Integration

While it may seem obvious to some readers at this point,
it is worth emphasizing the importance of striving for new
principles for large architectural construction: The transi-
tion to Constructivist A.I. will be challenging. There exists
no obvious recipie for how to move faster towards generally
intelligent artificial systems, just as there is no magic trick to
how they operate. Constructivist A.I. will certainly be easier
if we find a “cognitive principle” as hypothesized by Cas-
simatis, 2006, where the same small set of basic principles
can be used throughout to construct every function of a cog-
nitive system. Such a principle has clearly not been found.
Either way we need to set our sights on methods for deal-
ing with large, semi-autonomously evolving architectures
with heterogeneous functionality. New meta-programming
languages, Constructivist design methodologies and power-
ful visualization systems must be developed for significant
progress to be made. Architectural meta-programming is
needed to handle larger and more complex systems (Baum,

16The play Roma Amor, directed by J.M. Musial, ran for a num-
ber of months and was supported by grants from the French Agency
for Research (ANVAR) and Ministry of Culture.

181



2009), scaling up to systems with architectural designs that
are more complex than even the most complex systems yet
engineered, such as microprocessors, the Terrestrial tele-
phone network or the largest known natural neural networks
(Oshio et al., 1998).

Conclusions
Large systems whose gross architecture is mostly designed
from the top-down and programmed by hand – Construc-
tionist A.I. – has been the norm since the field’s inception,
more than 50 years ago. Few methodologies have been
proposed specifically for A.I. and researchers have relied
on standard software methodologies, with one of the more
popular ones in recent times being object-oriented program-
ming and component-based architectures. As far as large
A.I. systems go these methodologies rely on fairly primitive
tools for integration and have generally resulted in brittle
systems with little or no adaptation ability and targeted do-
main application. This is a problem that cannot be addressed
through incremental improvement of current practices and
continuing exponential growth of computing power: Stan-
dard software development methods do not scale well; Con-
structionist A.I. has foreseeable limitations. The complex-
ities of these systems push the limits of what small teams
of researchers can handle. Systems built to date using these
methods show that while integration is indeed possible, us-
ing current software development methods and extensions
thereof (c.f. Thórisson et al., 2004), the kind of deep inte-
gration needed for developing general artificial intelligence
is unlikely to be attained this way. Too many hard problems,
including a freely roving attentional mechanism, equally ca-
pable of real-world inspection and introspection, system-
wide learning, evolution and improvement, to take some key
examples, would be left by the wayside. To create generally
intelligent systems we will need to build significantly larger
and more complex systems than built to date.

To address the limitations of present methodologies a
paradigm shift is needed – a shift towards Constructivist
A.I., comprised of new methodologies that emphasize auto-
generated code and self-organization. Constructivist A.I.
calls for a very different approach than offered by traditional
software methodologies. Architectures would emerge out of
interaction between flexible autonomous self-construction
principles, where a complex environment and initial “seed”
code would interact to automatically create the kinds of ar-
chitectures needed for general-purpose intelligence. In this
paper I have outlined some of the key topics that need to
be advanced in order for this paradigm shift to happen, in-
cluding an stronger emphasis on feedback loops, tempo-
ral grounding, architecture metaprogramming and integra-
tion, pan-architectural pattern matching and small white-
box components. The list, while non-exhaustive, illustrates
well the relatively large shift in focus that needs to hap-
pen, as most of these topics are not well understood to-
day. To increase our chances of progress towards artificial
general intelligence, future work in A.I. should focus on
Constructionist-based tools including new development en-
vironments, programming languages and architectural con-
struction principles.

Acknowledgments This work was supported by the Euro-
pean Project HUMANOBS – Humanoids that Learn Socio-
Communicative Skills Through Observation (grant number
231453), and by a research grant from RANNIS, Iceland. I
would like to thank Eric Nivel for brilliant insights and nu-
merous discussions on many of the topics covered, as well
as excellent suggestions for improving this paper. Thanks
also to Gudny R. Jonsdottir and the anonymous reviewers
for helpful comments on earlier versions.

References

Bar-Yam, Y. (1997). The Dynamics of Complex Systems.
Perseus Books, Reading, Massachusetts.
Barrett, H. C. and Kurzban, R. (2006). Modularity in
cognition: Framing the debate. Psychological Revivew,
113(3):628–647.
Baum, E. B. (2009). Project to build programs that under-
stand. In Proceedings of the Second Conference on Artifi-
cial General Intelligence.
Brooks, R. A. (1986). Robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation,
2(1):1423.
Bryson, J. (2003). The behavior-oriented design of modu-
lar agent intelligence. Lecture notes in computer science,
2592:61–76.
Cassimatis, N. (2006). A cognitive substrate for achieving
human-level intelligence. A.I. Magazine, 27(2):45–56.
De Meer, H. and Sterbenz, J. P. G., editors (2006). Self-
Organizing Systems: First International Workshop, IWSOS
2006. Springer, New York, NY, USA.
Froese, T. (2007). On the role of AI in the ongoing
paradigm shift within the cognitive sciences. 50 Years of
Artificial Intelligence - Lecture Notes in Computer Science,
4850:63–75.
Hsiao, K., Gorniak, P., and Roy, D. (2005). Netp: A net-
work API for building heterogeneous modular intelligent
systems. In Proceedings of AAAI 2005 Workshop on mod-
ular construction of human-like intelligence. AAAI Techni-
cal Report WS-0508, pages 24–31.
Iizuka, H. and Paolo, E. A. D. (2007). Toward spinozist
robotics: Exploring the minimal dynamics of behavioural
preference. Adaptive Behavior, 15(4):359–376.
Johnson, W. L., Marsella, S., Mote, N., Si, M., Vilhjalms-
son, H., and Wu, S. (2004). Balanced perception and ac-
tion in the tactical language training system. In Workshop
on Embodied Conversational Agents: Balanced Perception
and Action, AAMAS 2004: The Third International Joint
Conference on Autonomous Agents and Multi Agent Sys-
tems, pages 19–23.
Jonsdottir, G. R. and Thórisson, K. R. (2009). Teaching
computers to conduct spoken interviews: Breaking the re-
altime barrier with learning. In IVA ’09: Proceedings of the
9th international conference on Intelligent Virtual Agents,
Berlin, Heidelberg. Springer-Verlag.

182



Jonsdottir, G. R., Thórisson, K. R., and Eric, N. (2008).
Learning smooth, human-like turntaking in realtime dia-
logue. In IVA ’08: Proceedings of the 8th international
conference on Intelligent Virtual Agents, pages 162–175,
Berlin, Heidelberg. Springer-Verlag.
Lee, E. E. (2009). Computing needs time. Communications
of the ACM, 52(5):70–79.
Martin, D., Cheyer, A., and Moran, D. (1999). The open
agent architecture: A framework for building distributed
software systems. Applied Artificial Intelligence, 13(1-
2):91–128.
Newell, A. and Simon, H. A. (1976). Computer sci-
ence as empirical enquiry: Symbols and search. Com-
munications of the Association for Computing Machinery,
19(3):113126.
Ng-Thow-Hing, V., List, T., Thórisson, K. R., Lim, J., and
Wormer, J. (2007). Design and evaluation of communica-
tion middleware in a distributed humanoid robot architec-
ture. In IROS ’07 Workshop: Measures and Procedures for
the Evaluation of Robot Architectures and Middleware.
Ng-Thow-Hing, V., Thórisson, K. R., Sarvadevabhatla,
R. K., Wormer, J., and List, T. (2009). Cognitive map
architecture: Faciliation of human-robot interaction in hu-
manoid robots. IEEE Robotics & Automation, 16(1):55–
66.
Nivel, E. (2007). Ikon flux 2.0. Technical report, Reyk-
javik University Department of Computer Science. Tech-
nical Report RUTR-CS07006.
Oshio, K., Morita, S., Osana, Y., and Oka, K. (1998). C.
elegans synaptic connectivity data. Technical Report of
CCeP, Keio Future, No. 1, Keyo University.
Pezzulo, G. (2009). Dipra: A layered agent architec-
ture which integrates practical reasoning and sensorimotor
schemas. Connection Science.
Rao, A. S. and Georgeff, M. P. (1991). Modeling rational
agents within a BDI-architecture. In Allen, J., Fikes, R.,
and Sandewall, E., editors, Proceedings of the 2nd Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 473–484. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA.
Rich, C. and Sidner, C. L. (2009). Robots and avatars as
hosts, advisors, companions, and jesters. A.I. Magazine,
30(1):29–41.
Roy, D. (2005). Semiotic schemas: A framework for
grounding language in the action and perception. Artificial
Intelligence, 167(1-2):170–205.
Saemundsson, R. J., Thórisson, K. R., Jonsdottir, G. R., Ar-
inbjarnar, M., Finnsson, H., Gudnason, H., Hafsteinsson,
V., Hannesson, G., Isleifsdottir, J., Jóhannsson, Á., Krist-
jansson, G., and Sigmundarson, S. (2006). Modular simu-
lation of knowledge development in industry: A multi-level
framework. In WEHIA - Proc. of the First Intl. Conf. on
Economic Science with Heterogeneous Interacting Agents,
Bologna, Italy.
Salthe, S. N. and Matsuno, K. (1995). Self-organization in

hierarchical systems. Journal of Social and Evolurionary
Systems, 18(4):327–3.
Simmons, R., Goldberg, D., Goode, A., Montemerlo, M.,
Roy, N., Sellner, B., Urmson, C., Schultz, A., Abramson,
M., Adams, W., Atrash, A., Bugajska, M., Coblenz, M.,
MacMahon, M., Perzanowski, D., Horswill, I., Zubek, R.,
Kortenkamp, D., Wolfe, B., Milam, T., and Maxwell, B.
(2003). GRACE: An autonomous robot for the aaai robot
challenge. A.I. Magazine, 24(2):51–72.
Sutton, P., Arkins, R., and Segall, B. (2001). Support-
ing disconnectedness - transparent information delivery for
mobile and invisible computing. In CCGrid 2001 IEEE
International Symposium on Cluster Computing and the
Grid.
Thórisson, K. R. (2008). Modeling multimodal commu-
nication as a complex system. In Wachsmuth, I. and
Knoblich, G., editors, ZiF Workshop, volume 4930 of Lec-
ture Notes in Computer Science, pages 143–168. Springer.
Thórisson, K. R., Benko, H., Arnold, A., Abramov, D.,
Maskey, S., and Vaseekaran, A. (2004). Constructionist
design methodology for interactive intelligences. A.I. Mag-
azine, 25(4):77–90.
Thórisson, K. R. and Jonsdottir, G. R. (2008). A granular
architecture for dynamic realtime dialogue. In Intelligent
Virtual Agents, IVA08, pages 1–3.
Thórisson, K. R., List, T., Pennock, C., and DiPirro, J.
(2005). Whiteboards: Scheduling blackboards for semantic
routing of messages & streams. In AAAI-05, AAAI Techni-
cal Report WS-05-08, pages 8–15.
Thórisson, K. R. and Nivel, E. (2009a). Achieving arti-
ficial general intelligence through peewee granularity. In
Proceedings of the Second Conference on Artificial Gen-
eral Intelligence, pages 222–223.
Thórisson, K. R. and Nivel, E. (2009b). Holistic intelli-
gence: Transversal skills and current methodologies. In
Proceedings of the Second Conference on Artificial Gen-
eral Intelligence, pages 220–221.
van Gelder, T. J. (1995). What might cognition be, if not
computation? Journal of Philosophy, 91:345–381.
Wang, P. (2005). Experience-grounded semantics: A the-
ory for intelligent systems. In Cognitive Systems Research,
pages 282–302. Springer-Verlag.
Wang, P. (2006). The logic of intelligence. In Artificial
General Intelligence, pages 31–62. Springer-Verlag.

183




