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Over the last five years, and while developing an architec-
ture for autonomous service robots in human environments,
we have identified several key decisional issues that are to be
tackled for a cognitive robot to share space and tasks with
a human. We introduce some of them here: situation as-
sessment and mutual modelling, management and exploita-
tion of each agent (human and robot) knowledge in sepa-
rate cognitive models, natural multi-modal communication,
“human-aware” task planning, and human and robot inter-
leaved plan achievement.

As a general “take home” message, it appears that ex-
plicit knowledge management, both symbolic and geomet-
ric, proves to be a successful key while attempting to address
these challenges, as it pushes for a different, more semantic
way to address the decision-making issue in human-robot
interactions.

This abstract summarizes the main ideas of a full article
submitted to the special issue on Robotics of the Artificial
Intelligence Journal.

One Architecture, Many Cognitive Skills Building a ser-
vice robot for autonomous human-robot interaction involves
many components that translate cognitive skills into soft-
wares. Connecting these multiple independent software
modules in one coherent robotic architecture is a first chal-
lenge that goes beyond simple engineering: dealing with
the intricate semantics of human-level interaction has to be
properly addressed. We have been researching to this end
a robotic architecture focused on explicit knowledge repre-
sentation and manipulation (at the deliberative level): com-
ponents’ “APIs” become “ASIs”: application semantic in-
terface, as first-order-logic statements act as lingua franca
between the components.

Figure 1 gives an overview of our architecture. An ac-
tive knowledge base (ORO (Lemaignan et al. 2010)), con-
veniently thought as a semantic blackboard, connects most
of the modules together: the geometric reasoning module
(SPARK) produces symbolic assertions (like 〈 BOOK1 isOn
TABLE〉) describing the state and dynamics of the robot’s en-
vironment. These logical statements are stored in the knowl-
edge base, and queried back by the language processing
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module (DIALOGS), the symbolic task planner (HATP) and
the execution controller. The output of the language process-
ing module and the activities started by the robot controller
are likewise stored as symbolic statements.

For instance, when processing a sentence like “give
me another book”, the DIALOGS module queries the
knowledge base: find(?book type Book, ?book
differentFrom BOOK1), and write back assertions like
〈 HUMAN desires GIVE ACTION45, GIVE ACTION45
actsOn BOOK2〉. The HATP planner then uses the knowl-
edge base to initialise the planning domains with similar
requests (find(BOOK2 isAt ?location), etc.), and
the execution controller typically monitor conditions (by
subscribing to events like: onNewMatch(HUMAN desires
?goal)) and stores what the robot is currently doing (〈
myself currentlyPerforms GIVE ACTION45〉).

As we already see in this example, our software modules
can be seen as translators from human cognitive skills to
robotic cognitive skills. In our context, we call cognitive
skills the deliberative behaviours that are 1. stateful (keep-
ing track of previous states is typically required for the com-
ponent to perform adequately), 2. amodal in that the skill
is not inherently bound to a specific perception or actuation
modality, 3. manipulate explicit and grounded semantics,
typically by the mean of symbolic reasoning, 4. operate at
the human-level, i.e. are legible to the humans, typically by
acting at similar levels of abstraction.

Even before discussing the AI challenges specifically
raised by each of the skills we want to endow our robot
with, this definition of a cognitive skill already hints at a
range of general AI questions like: What amodal actually
means for an “embodied Turing machine”? Is conveying
human-level semantics achievable by the mean of symbolic
reasoning? Should we at all try to translate human skills to
robotic skills? Still, we can outline the main cognitive tools
that we have researched, and how they question artificial in-
telligence in their own manner.

From Cognitive Skills to AI Challenges We distinguish
between what we call intrinsic and extrinsic cognitive ca-
pabilities: intrinsic are those skills that are tightly bound
to the knowledge model (and hence implemented close to
the knowledge base). In our system, they include for in-
stance symbolic reasoning and mutual modelling. Ex-
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Figure 1: A deliberative architecture for autonomous service robots.

trinsic cognitive skills, on the other hand, are partially de-
coupled from the central knowledge base (they can usually
work – with reduced functionalities – without any). We have
investigated human-aware situation assessment, natural
language grounding, social task planning and high-level
execution control. We introduce below four of these skills,
and relate them to the underlying AI challenges they raise
(and attempt to partially address).

We manage symbolic knowledge in our architecture via
the ORO (Lemaignan et al. 2010) knowledge base, that relies
on standard tools: Description Logics (OWL) as first-order-
logic formalism and the Pellet open-source reasoner. This
provides the whole system with standard inference capabil-
ities like consistency checking, concept satisfiability, classi-
fication and realisation.

Many alternatives to description logics exist and have also
been investigated in robotics (modal logic, temporal logic,
different kind of probabilistic logics, specialized approaches
like Answer Set Programming, etc.), and a synthesis on logic
formalisms that would address the specific needs of HRI (be-
yond the expressiveness vs. tractability trade-off) would cer-
tainly be a welcome contribution.

We also conducted research on mutual modelling through
the implementation of a simple theory of mind (the cogni-
tive ability that allows a subject to represent the mental state
of another agent). From a robotics point of view, it supposes
the ability to build, store and retrieve separate models of the
beliefs of the agents the robot interacts with. Our knowledge
base implements such a mechanism by the mean of indepen-
dent ontologies for each agent the robot interacts with, and
maintain then different (and possibly diverging) knowledge
models based on visual perspective taking (Sisbot, Ros, and
Alami 2011).

While this approach enabled us to reproduce the classi-
cal False-Belief experiment (Warnier et al. 2012), it is also

clear that mutual modelling covers more than what visual
perspective taking provides to the system, and more research
is required to actually take into account what the human
knows about the robot (and vice versa) regarding expected
knowledge, skills, plans, emotions, etc. This line of re-
search would support an interdisciplinary approach, where
AI would have to discuss with the other fields of cognitive
sciences.

Natural language understanding is another classical AI
challenge that we have investigated (Lemaignan et al. 2011),
focusing on the grounding (Coradeschi and Saffiotti 2003)
issue: how to establish a common ground between the robot
and the human, relying on the different communication
modalities elicited by the robot. We found that representing
the robot’s belief state with human-level semantics simpli-
fies dialogue understanding, both in terms of grounding (be-
cause the robot already represents what it perceives at a level
of abstraction that is close to the human one) and of inter-
pretation (the robot’s planner takes as input task descriptions
that are also close to what the human expresses). Much re-
mains however to be done, starting with better speech recog-
nition (which likely asks for a better integration with speech
understanding).

Finally, human-aware task planning is a cognitive capa-
bility of interest for both the AI and HRI communities: we
have developed an original task planner, HATP (Lallement,
De Silva, and Alami 2014), that augments the standard HTN
approach by allowing the system to generate interleaved
plans for multiple agents, so-called shared plans. These are
then used to anticipate human action or to propose to hu-
man to act. A set of social rules together with cost-based
plan selection allows to promote the (shared) plans that suit
better human preferences and needs or to tune the workload
balance between participants, the human or the robot, de-
pending on the context.
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A fruitful cooperation Human-Robot Interaction is def-
initely an area full of challenges for Artificial Intelligence.
We have briefly outlined here a few challenges that we at-
tempt to address in our architecture: indeed, besides all
”standard” robotic challenges in terms of autonomy, it is
interesting to identify and investigate issues dealing with
”human-aware” planning and reasoning.
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