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Abstract

A “meta-study” or “meta-analysis” analyzes multiple
medical studies related to the same disease, treatment
protocol, and outcome measurement to identify if there
is an overall effect or not (e.g., treatment induces remis-
sion or causes adverse effects). It’s advantage lies in the
pooling and analysis of results across independent stud-
ies, which increases the population size, mitigates some
experimental bias or inconsistent results from a single
study, etc. Meta-studies are important for understand-
ing the effectiveness (or not) of treatment, influencing
clinical guidelines and for spurring new research direc-
tions. However, meta-studies are extremely time con-
suming to construct by hand and keep updated with the
latest results. This limits both their breadth of cover-
age (since researchers will only invest the time for dis-
eases they are interested in) and their practically. Yet,
high-quality medical research is increasing at a stagger-
ing rate, and there is an opportunity to apply automa-
tion to this increasing body of knowledge, thereby ex-
panding the benefits of meta-studies to (theoretically)
all diseases and treatment, as they are published. That is,
we envision, long term an automatic process for creat-
ing meta-studies across all diseases and treatments, and
keeping those meta-studies up-to-date automatically. In
this paper we demonstrate that there is potential to per-
form this task, point out future research directions to
make this so, and, hopefully, spur significant interest in
this compelling and important research direction at the
intersection of medical research and machine learning.

Introduction
A meta-analysis (or “meta-study”) collects and analyzes the
results from multiple studies that are all focused on the same
disease, treatment and primary outcome to determine if there
is an overall beneficial effect of some treatment (or not).
Meta-studies can can confirm (or refute) the overall effect
across the studies, lead to changes in clinical guidelines, or
spur new directions for research.

However, meta-studies are currently constructed by hand.
This is an extremely time consuming process that starts with
a comprehensive search of the literature, followed by com-
piling and filtering the results, and lastly performing statisti-
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cal analysis. In fact, the sheer scope of the manual effort in-
volved causes two fundamental challenges in widely apply-
ing meta-analysis to medicine in general. First, many topics
are left unexplored, either due to the lack of researcher inter-
est or lack of time to produce the review. That is, the sheer
scope of time required may outweigh the interest in every
possible disease and outcome. Second, meta-analyses are of-
ten not updated to reflect the latest results and studies. Rather
than being a dynamic report that changes with the results,
they reflect only a snapshot in time, up to the point when
the review was produced. To underscore the sheer commit-
ment involved when producing high-quality reviews of mul-
tiple studies, the Cochrane Collaboration, a volunteer-based
organization that publishes systematic reviews, leverages a
volunteer workforce of over 25,000 people (as of 2011). Fi-
nally, a number of (unknown) biases, via subjective choices
during the meta-study, may influence the results.

While daunting to produce, meta-analyses are nonetheless
extremely important. Therefore, our long-term goal is to au-
tomate, as much as possible, the meta-analysis process. This
should greatly reduce human bias; increase the dissemina-
tion of evidence, especially for diseases and interventions
with less focused attention; and allow for the automatic up-
dating of meta-studies as new results are published. We en-
vision an automated, computational approach that generates
meta-studies and keeps them up-to-date. The system will
constantly scour the literature and clinical trial databases,
pulling out the freshest results it can find, grouping them ap-
propriately (while excluding those that dont seem to be high
enough quality), and updating all of the appropriate meta-
studies as necessary.

In fact, the key tasks in the meta-study correspond to
well to different techniques in machine learning. The task
of searching and aggregating the literature by disease, in-
tervention and primary outcome is essentially a “clustering”
task that should learn to automatically group the papers to-
gether based on the same sets of features (Xu, Wunsch, and
others 2005). Compiling the results from the different papers
corresponds to to “information extraction” (Sarawagi 2008)
where a machine can learn (either by example or from statis-
tics about the content) how to extract the outcomes of trials
or the population sizes from the sentences in the paper that
describe them. The final step in the meta-analysis is a statis-
tical analysis, involving tasks such as funnel plot analysis or
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applying random-effects models, which are tasks well suited
to computation.

In this paper we present some of our very early work
towards these goals. Specifically, we focus on a particu-
lar type of meta-study: applying a random-effects model to
the outcomes of randomized controlled trials (e.g., a “con-
trol” group’s effect versus a population given treatment). We
chose to focus on random-effects because these models can
account for the heterogeneity when applied to understand-
ing the effect across clinical trials (DerSimonian and Kacker
2007). The intuition here is that in each trial, the effect is
measured in the control group versus the treatment, and the
random-effects model determines, taking into account vari-
ability across the trials, whether this effect holds true across
the trials. For this early work, we use the classic Paule-
Mandel random effects model (Paule and Mandel 1982).

Our results demonstrate the potential in automating these
steps. While the work is very early, we hope we can ig-
nite research interest in this important and interesting topic,
especially as it blends the worlds of medical research and
machine learning. We note that the process of automating
meta-studies has received attention lately (see Tsafnat et al.
(2014) for recent survey). However, as the survey shows,
while individual pieces (such as extraction) received atten-
tion for automation, we intend to spur interest in automating
the whole, integrated process and our results are toward that
end (though clearly not there yet).

Automating Meta-Studies
Overall, the intuition behind our process is to turn papers
(abstracts) describing the results of clinical trials into struc-
tured data that we can then analyze using the Paule-Mandel
random-effects model. This model will then tell us if there is
an appreciable overall effect for the treatment or not. There-
fore, our main tasks in automating meta-studies fall into two
categories. First, we take the natural language description of
the results from the papers, and perform information extrac-
tion to turn this into structured data that can be processed.
Second, we then group together all of the studies that apply
the same treatment to the same disease for the same primary
outcome. This grouped set of structured data then becomes
the input to the random effects model which outputs whether
there is a meaningful effect (or not) across the trials. Figure 1
shows this process.

We now describe each of these higher level tasks in more
detail.

Information extraction to structure results
We start by describing how information extraction can turn
the results described in a technical article into structured
data. The random effects model we automate here is based
on a log-odds ratio between the control population and the
treatment population. Therefore, the goal of our extraction
module is to gather the results from the papers and convert
them into a format that is appropriate for this type of compu-
tation. This means that data for (at least) two groups must be
gathered: one set of data for the treatment group and one set
of data for the control group. For each of these groups, we
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Figure 1: Architecture for meta-study automation

need to extract the overall population size and the size that
demonstrated the effect of the treatment. Finally, we need to
be sure that the effect is for the primary outcome.

This task is a combined extraction and classification task.
We do not explicitly demarcate which sentences contain “re-
sults.” Rather, data is extracted and then a small classifier is
used to determine whether (a) the sentence involves a pri-
mary outcome (e.g., it is a result) and (b) whether it pertains
to the control group or the treatment group. Sample results
are given in Table 1.

To begin the process, we extract values from sentences
using a number of patterns that identify results for odds ra-
tio computations. For instance, we looked for patterns of the
form “X of (the) Y,” where “X” is the numerator in a re-
ported ratio, “the” is an optional word, and “Y” is the de-
nominator. Other patterns include “X/Y” (as shown in the
table), or “X% (n=Z)” which then requires that we compute
the number in an affected group based on this inference.1 For
instance, if we see a sentence “reported 33% effect (N=12)”
then we can infer that the affected group has a size of 4.
Once a paper has been processed in this manner, we end up
with records as shown in the table.

We then assigned the extracted results to either the con-
trol group or the treatment group, by analyzing textual clues
around the extracted results. To do this, we look for the
words “control” or “placebo” and then assign them to the
result which they are closest to. In Table 1, in the first row,
the result 9 of 36 is closer to “placebo” than the treatment

1Note, for this early work, we only include the case where the
value of n is in the same sentence as the reported percentage. Han-
dling the harder cases, where the n in a sentence must be linked to
a previous sentence are currently part of our future work.
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Table 1: Example sentences and extracted results

Treatment Group Control Group
Sentence # Affected Total # Affected Total
At the end of the trial, 9 of 36 patients administered 14 48 9 36
placebo and 14 of 48 administered mesalamine were in remission
For the study using 15 mg/week of oral methotrexate 33% (5/15) of 5 15 2 18
methotrexate patients failed to enter remission
compared to 11% (2/18) of placebo patients

name and so it is assigned to that value. As with the above
extraction, this is currently a heuristic process, but we intend
to eventually learn this assignment.

Combining similar results using clustering
Once the results are extracted, the papers are then grouped
together such that studies for the same treatment, for the
same disease and outcome can be compared within the meta-
analysis. For this study, we employed a simple clustering
method called greedy clustering, using Jaccard similarity as
our metric. Greedy clustering defines within a cluster any
two members that share some value for the similarity metric
that is above a threshold. The Jaccard similarity is computed
as the ratio between the words in common over the unique
set of all words across the two studies (Jaccard 1901). We
set our threshold at 0.1252, which is the similarity value
one standard deviation above the mean, as computed across
all pairs of abstract titles. Therefore, if the similarity be-
tween two titles is at least one standard deviation from the
mean, we group the titles together to build clusters. While
we mined this threshold directly from the data (and therefore
likely over fit it such that it would not generalize well out-
side of this study), such an approach is less biased for these
small studies than choosing and tuning a value by hand.

Once we have the extracted values, and they are clus-
tered by disease, treatment and outcome, we then pass the
structured results through our Paule-Mandel random effects
model. Again, we emphasize that while our work is quite
early, focusing mostly on heuristic methods, there is signif-
icant room to improve the approach using rather standard
methods from machine learning. For instance, we intend to
learn the extraction models, rather than define them man-
ually, and we will improve clustering using more advanced
techniques. However, in this paper we intend to push the idea
forward by demonstrating that pieces are at least possible, so
this important task can begin to benefit from the automation
that machine learning can provide.

Experiments and Results
As we mentioned above, the work is quite preliminary, and
our motivation in this paper is to present the possibility that
meta-studies can be automated to help spur research interest
in this important area. To that end, we ran a small pilot study,
using our approach, and report those results here.

For our study we chose a specific meta-study that focused
on treatment for Inflammatory Bowel Disease (Camma et

al. 1997), with the intention that if these studies were all
grouped together (e.g., clustering works perfectly), would
we be able to extract the data from them to build the meta-
study. The meta-study references 15 other studies, 13 of
which contained freely available online abstracts that a com-
puter could access (to mimic an automatic harvesting pro-
cess).2

Using our information extraction approach we were able
to extract the results from four of the abstracts (26.7% of the
original 15). All of the extractions were manually verified
as correctly reflecting the reported treatment ratios (yielding
an accuracy of 100%), though only on four studies. In the
metrics of information extraction, for this (albeit) tiny study,
our precision is 100% and our recall is 26.7%. The studies
where we failed to extract the data used other patterns, such
as presenting the results as percentages with an associated
population value in different sentences. This motivates a ma-
chine learning approach that will learn how to generate such
patterns, covering many different types of representations in
the text.

Two interesting points came out of even this small study.
The endpoint focus of the meta-analysis was remission for
Crohn’s disease. Of the four papers for which we could ex-
tract results, three reported the results as proportions of pa-
tients in remission. However, one of the studies reported the
results as the proportion that relapsed, rather than remission.
Therefore, the system will need to learn that if the endpoint
is remission, and the results are reported as relapse, then
they cannot be directly grouped together for analysis without
some transformation (e.g., perhaps treating relapse as the in-
verse of remission). That is, there is some subtlety required
to extracting the pertinent results and outcomes. Again, this
points to overall difficulty of this problem.

Another interesting result that points in this direction is
that for one of the papers, the system extracted two sets of
results, both correct. However, each focused on a slightly
different population in the study. One reported the results
for the whole population (our desired results), while the
other was only for Crohn’s patients with ileal-based disease.
Again, this points to the notion that the system will need to
have some sense of which results to group together when
it generates a meta-analysis. Further, it motivates our idea
that researchers should be able to change and interact with
the data themselves, to mitigate such subtleties that may be

2This study focused on processing abstracts, rather than whole
papers, since it made the extraction easier.
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beyond the systems capabilities.
Next, we performed a simple study to determine whether

it would be possible to automatically group these relevant
abstracts together from a larger set. Here, we took the 15
Crohn’s studies and combined them with 15 studies focused
on lupus (again remission was the endpoint). In this study,
the classes are balanced and the goal is to determine that
once we mix together all of the abstract titles, the system
can separate them again. This is a proxy study for a true
clustering experiment.

Indeed, with our clustering approach, using only the ab-
stract titles, we end up with 3 clusters of studies. One clus-
ter contains all of the Crohn’s studies, and only the Crohn’s
studies. This is an ideal cluster. The other clusters are more
interesting. One cluster contains 14 of the 15 lupus stud-
ies, while the third cluster only contains one of the lupus
papers. Upon further analysis the paper not included in the
large lupus cluster has a title that is 36.7% longer (in number
of words), than the other two clusters titles average length
of words. This is known deficiency with the simple Jaccard
metric: it can be sensitive to the length of the input text it
receives, and we are seeing this behavior here. As with the
extraction study, although this was a small, focused study it
motivates more sophisticated clustering methods that should
be able to appropriately select and group the studies, even
based solely on the titles.

Future Research Directions
As our results and approach demonstrate, while it may be
feasible to automate meta-studies, there is still a significant
amount of research to be done in this area. Here we outline
some challenging future research directions that are relevant
to this topic, aligned with different aspects of the meta-study
process.

Improved information extraction
We initially demonstrate that linguistic patterns can extract
some data and structure into a more natural format for com-
parison (including normalizing the data from percent to
value, etc.). There is absolutely value in pursing this path
of research. We believe that unsupervised approaches to ex-
traction could perform well in this domain, where simple
patterns can be used to bootstrap data collection and then
those can be used as input for machine learning algorithms
to train themselves. This will also help deal with the scale
problem associated with the massive, and growing, sets of
published medical literature.

While core extraction of results is an interesting path,
there are also other new challenges to turn medical studies
into structured data for processing. Specifically, beyond the
numerics in the results of the study, there are certain pieces
of information about a study, such as participant informa-
tion, that also need to be extracted and normalized in order
to be compared across studies. For instance, the informa-
tion about the cohort participants, such as the age range,
demographics, medical history (e.g., smokers versus non-
smokers) also needs to be extracted and normalized. Perhaps
more difficult than the extraction itself will be the ability to

normalize this type of information into standard categorical
values.

Improved clustering of results
As we improve the clustering, there are a number of im-
provements required to group the results into appropriate
sets for meta-analysis. First and foremost, the challenge of
scale will need to be addressed. Once we can perform extrac-
tion from all of the published studies, grouping them by sim-
ilarity will be a massive challenge for scale and efficiency.
Further, general similarity will need to be improved, for in-
stance, as alluded to above, resolving some of the more sub-
tle differences in outcomes of studies that may seem similar
(e.g., remission versus symptom re-emergence).

However, a potentially even more important task involves
grouping the studies together using deeper levels of sophis-
tication than presented here. Specifically, building upon the
ability to extract information about the study participants,
the clustering should take these differences and similarities
across populations into account. For instance, some meta-
studies only focus on adverse events in pediatric use. There-
fore, the system should be able to group all adverse effect
studies together, and further, build a sub-cluster for analysis
that focuses on adverse events in pediatric use or for users
with specific medical histories (e.g., those with diabetes and
those without). Along these lines, meta-studies often look at
similarities in the “methods” section for including studies in
the meta-analysis (or not). For instance, differences or simi-
larities among the populations or their inclusion criteria may
determine which papers should be clustered together or not.
This requires more sophisticated extraction and clustering
and is an important future research direction.

Improved meta-analysis
Finally, we believe there are a number of interesting avenues
to pursue with respect to core analysis. For instance, once
the results are consumable by a machine, multiple meta-
analyses could be run simultaneously to re-affirm (or dis-
pute) one another. For instance, some techniques are better
than others for certain cases in the data, and therefore mul-
tiple tests, which might be difficult to do by hand, could be
done in volume. A machine could even learn to pick which
type of statistical analysis is most appropriate given the un-
derlying study data it is being passed.

Conclusion
Our aim in this paper is spark research interest in the au-
tomation of meta-studies. Meta-studies are an increasingly
important tool for medical researcher to uncover valuable
insights across the myriad of studies that are related, but
independent from one another. Here we outline the tasks,
which if accomplished, can begin to automate this man-
ual and complicated task. We showed early possibility that
some of this work has potential for automation, but there is
still much work to do. Yet, if we, as machine learning re-
searchers, can automate this process, bridging it to the scale
of medical literature, we can potentially uncover novel ther-
apies personalized to a group, improve the timeliness of clin-
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ical guidelines and even spur new directions for medical re-
search.
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