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Abstract 
Can intelligence be produced simply by reverse engineering 
the brain of an intelligent animal? In this paper, we argue 
that such reverse engineering will be ineffective if the focus 
is on reverse-engineering the brain mapping. We believe 
that the brain “hardware” implements a “system” and our 
work focuses on emulating this basic brain system and to 
provide it the necessary interfaces to support a collective 
intelligence.  

 Introduction   
Can brain-mapping data be used to reverse engineer a brain 
system in silico? This is actually the question of whether 
consciousness is fully contained within the physical 
structure that is the brain. Do the brain and its supporting 
systems fully account for consciousness or are there other 
components that transcend the body that are also at play? If 
metaphysical components play a role, then the answer is 
negative, since mapping just the anatomical aspects of the 
consciousness system would leave a critical component 
missing and, hence will not suffice to produce 
consciousness. A related question is whether consciousness 
is the result of a static system operating in the brain, or, is 
it a function of a dynamic system? In other words, what if 
consciousness is not a function of the state of discrete 
anatomical objects in the brain, synapses and neurons, but 
a function of the exchange of signals and chemicals 
between them? In such a case, the challenge is to replicate 
their function and interaction rather than their state. Can 
such a dynamic system be reverse engineered and 
captured? A similar question would be; can we replicate 
the Internet by capturing the state of every connected 
computer at a moment in time? What makes the Internet 
the useful tool it has become is the information flow 
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between connected computers, not the specific state of 
discrete nodes on the network. The next challenge is the 
question of the subconscious. From psychology, we are 
aware of its existence and its impact on our lives. 
However, our understanding of the subconscious is 
severely limited. How can we determine if we have 
effectively reverse engineered the subconscious since we 
cannot directly test its effects? 

 Related Work 
Noam Chomsky discusses the evolution of the field of 
artificial intelligence from 1956, when John McCarthy 
defined the science, until today (Ramsay, 2012). The goal 
of AI was to study intelligence by implementing its 
essential features using man-made technology. This goal 
has resulted in several practical applications people use 
every day. The field has produced significant advances in 
search engines, data mining, speech recognition, image 
processing, and expert systems, to name a few. 

The engineering of these practical solutions has taken AI 
in a direction that enables the rapid implementation of the 
essential features of intelligence these applications require. 
A search engine can be very efficient at finding relevant 
results but it does not comprehend what it is searching for. 
A data mining application can identify relevant features 
from noise in a dataset, but it does not comprehend the 
meaning or significance of what it finds.  

To fill the void created by the absence of 
comprehension, AI researchers rely on formalisms and, 
more recently, on statistical methods. Modern AI has 
abandoned the use of formalisms (Eiter & Simkus, 2007), 
in favor of probabilistic and statistical models (Darwiche, 
2010), in its decision-making. This shift reflects the 
substantial increase in computing capacity to process Big 
Data. 
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Statistical methods are effective at identifying salient 
features and at predicting the next event. However, they 
neither impart nor proceed from comprehension. 
Comprehension requires intelligence. These applications 
are tools in the hand of the intelligence that still resides 
within the user.  

A consequence of statistical methods is a loss of 
transparency. Often, the processing of these applications is 
difficult for a user to understand, even though the results 
are understandable. We view this lack of transparency as a 
reflection of our lack of understanding of how intelligence 
works within our own biological hardware. Of course, 
there is no assumption that our brains use statistical 
methods to achieve cognition. The statistical methods 
achieve sufficient approximation of intelligence to be 
useful within the narrow application domain. 

Other approaches focus on emulating the biological 
architecture of the brain. These approaches are based on 
the hypothesis that the brain is a collection of simple 
systems that collaborate to produce intelligence, and it 
makes sense to emulate this architecture to produce the 
same result. This line of thinking has resulted in several 
thrusts such as neural networks, and more recently, 
Connectomics (Kelland, 2011). Connectomics aims to map 
the brain’s synapses in an effort to decipher how 
information flows through the brain’s neural circuits. From 
the standpoint of neuroscience, the goal is to understand 
how the brain generates thoughts and perceptions. While 
this area of research will undoubtedly yield positive results 
in our struggle against diseases such as dementia and 
schizophrenia, it is not clear how it can provide insight into 
how intelligence works. 

In (Sejnowski, 2012), the author wonders; if experiences 
are coded into brain connections, could a wiring diagram 
simulate your mind? Even if such a simulation happens, 
our understanding of intelligence would not have 
significantly advanced. In (Brenner & Sejnowski, 2011), 
the authors comment that this is a good time to pause and 
ask ourselves what we expect to find at the end of this 
immense omic brainbow. Brenner is largely credited with 
establishing brain mapping but he does not believe this 
path will yield results for our understanding of cognition. 

The feasibility of observing the brain in action is still in 
question (Underwood, 2014). The question is whether the 
functioning of the brain, observed at its core level, will 
make sense to the researcher. This can only happen if the 
reality of the systems of the brain is a subset of human 
reality. Otherwise, the researcher will not have a frame of 
reference to understand intelligence even if she can 
replicate it. Can a researcher understand what drives an 
animal by taking it apart? Which chemical test does she 
use to determine whether a cat enjoys tickles? The frame of 
reference appears mismatched; advanced intelligence is not 

a direct function of the anatomical hardware it operates 
upon. 

Our current limited understanding of the brain shows 
that various regions of the brain are dedicated to perform 
certain functions, including enabling communications 
between regions. In  (Kak, Donald, & Delaune, 2005), the 
authors conclude that the evidence from neuroscience that 
we reviewed showed how specific centers in the brain are 
dedicated to different cognitive tasks. But these centers do 
not merely do signal processing: each operates within the 
universe of its experience so that it is able to generalize 
individually. This generalization keeps up with new 
experience and is further related to other cognitive 
processes in the brain. It is in this manner that cognitive 
ability is holistic and irreducible to a mechanistic 
computing algorithm. Viewed differently, each agent is an 
apparatus that taps into the "universal field of 
consciousness." On the other hand, AI machines based on 
classical computing principles have a fixed universe of 
discourse so they are unable to adapt in a flexible manner 
to a changing universe. This is why they cannot match 
biological intelligence. 

Reference Architecture 
Our work views the conscious brain as a collection of 
systems that can adapt flexibly to specialize or generalize 
based on the need. In this section, we discuss the reference 
architecture that our artificial agent is based upon. 

Component 
The basic component of the reference architecture accepts 
a stimulus, confirms that it matches certain criteria, and if 
it does, produces a response. See Figure 1. 

EvaluationStimulus Response

 
Figure 1 - Stimulus Response Model 

Neurons implement this component. In other words, it is 
possible to identify a specific set of neurons that 
implement this component for a given stimulus-response. 
The configuration of the neurons implements the 
component without hardwiring. 

The component varies in four dimensions of complexity; 
stimulus, evaluation, response and time. All permutations 
are valid. For example, a complex stimulus might involve 
several stimuli. A complex evaluation might involve 
several combinations of weights and strengths. A complex 
response might involve several actions or steps. A 
component might operate over a brief or long period. 
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As depicted on Figure 2, we can now differentiate 
between two component types, which we call basic and 
derived. The component described above is a basic 
component. A derived component accepts another 
component’s response as its stimulus. 

EvaluationStimulus Response Evaluation Response

Basic Component

Derived Component  
Figure 2 Basic and Derived Components 

System 
A component combines with other basic and derived 
components to form a system. We can envision that, given 
recurring stimuli that trigger an existing system, a 
cognitive system seeks to simplify the evaluation and 
response in an effort to produce the final response as soon 
as possible. This strategy is consistent with Evolution that 
favors rapid, almost reflex speed reactions to important 
stimuli. The evolutionary advantage of a sophisticated 
cognitive system is that it can create complex systems in 
response to complex changes in the environment. The cost 
is that it is undesirably slow when placed in the critical 
path to the response. Therefore, the cognitive system needs 
to learn from the environment which stimuli require which 
favorable response. Until the proper system is created, it 
makes sense to invest the time and effort in the cognitive 
system. Once the proper system is created, the cognitive 
system no longer needs to be engaged until unexpected 
results occur. 

In this model, the brain generates and operates systems 
to produce a response to stimuli. There are several systems, 
overlapping in stimuli and responses. What selects the 
proper system? This selector may be the intelligence that 
we seek to replicate. 

Referring to Figure 3, we envision a mechanism as a 
special system that has a control interface to anatomical 
elements. Thus, a mechanism is a hardwired system of the 
brain that is connected to senses, limbs, organs and other 
anatomical elements of the body. A mechanism is able to 
control the anatomical element and receives information 
about the state of the element. In addition, a mechanism 
can communicate with another system. 

Consider a basketball player shooting to score. A 
mechanism moves the hands and arms to shoot the ball. 
Another mechanism moves her feet and jumps. Another 
mechanism orients her head and eyes towards the basket. 
When the player is just learning the game, the cognitive 
system is actively involved and, as a result, the shooting 
action is not smooth or natural. With enough practice, the 
“shoot the basket” system is created and the shooting 

action becomes second nature. It no longer requires the 
cognitive system. 

 

Mechanism System

StimulusControl Information
From/To
Anatomy

Response

 
Figure 3 Systems and Mechanisms 

Intelligence as Coordination of Systems 
In the static behaviorism model of Figure 4, a system 
coordinates the mechanisms (and other systems if 
necessary).  

Arms & 
Hands

Head & Eyes

Legs & Feet

Shoot the 
Basketball

Shoot the ball

Face the basket

Jump

 
Figure 4 Shoot the Basketball (Static Behaviorism) 
 In the dynamic emergence model of Figure 5, systems 

and mechanisms coordinate with each other. In the static 
behaviorism model, the coordinator system maps the 
objective (shoot the basketball) to inputs to mechanisms 
and stimuli to other systems. We can imagine that until it 
learns which systems and mechanisms are actually 
required to accomplish this objective, it could involve 
unnecessary ones. For example, it might involve the “Nose 
and Tongue” mechanism to “smell and taste the ball.” In 
the dynamic emergence model, all systems know the 
objective and act to achieve it in the manner they innately 
can. The “Nose and Tongue” mechanism “smells and 
tastes the ball” because that is what it is capable of. Every 
system (and mechanism) reacts in the way it knows how. 
This characteristic explains why even a small change can 
throw off the basketball player. For example, if the ball 
smells funny or feels wrong, the cognitive system gets 
engaged again in response to the anomaly.  
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Figure 5 Shoot the Basketball (Dynamic Emergence) 

It is not clear which model is correct since the brain is an 
adaptive organ. Some researchers point out that the brain is 
able to perform up to a point even when damaged. They 
use this observation to invalidate the notion of a designated 
coordination system. On the other hand, perhaps the 
coordination system moves elsewhere. In other words, 
similar to other systems in the body, the systems are 
generic and could specialize based on the need. There is 
always a coordination system but any system can become 
the coordinator. This is similar to a hive losing its queen. 

The important observation is that once the system is in 
place, it becomes virtually hardwired and capable of 
performance similar to the inherited systems. As a result, it 
realizes its evolutionary benefit of enabling adaptation and 
therefore survival. It also appears that repetition and 
strength of stimuli are the key factors in creating a virtual 
hardwired system. 

Anomalies 
Note that an objective also defines an expectation. An 
expectation is an observable result from an action. Once 
the actions to shoot the basketball are performed, the 
expectation is that the basketball travels through the 
basket. Given an objective, each system has one or more 
expectations that result from its actions. In nature, it is not 
necessary for all aspects of the objective to have been met, 
for the intelligence to conclude that all aspects of the 
expectation have been met. The intelligence seeks to 
achieve equivalence between objective and expectation, 
but not identity. We refer to an anomaly as the condition 
when sufficient expectations have failed to materialize to 
conclude that the objective has been met. 

While we have identified no physical difference between 
mechanisms and systems, we can organize them in terms 
of the flow of anomaly (a meta-stimulus) and response to 
the anomaly, as shown on Figure 6. A mechanism engages 

an inherited system to address its anomaly. The inherited 
system can then trigger other primary or derived systems to 
respond to the anomaly. If the inherited system encounters 
an anomaly of its own, it engages the cognitive system. 
Finally, if the cognitive system encounters an anomaly of 
its own, it engages a metacognitive system. 

Mechanism
Inherited 
System

Cognitive 
System

Metacognitive 
System

Anomaly

Response
 

Figure 6 Anomaly Response 

Collective Intelligence 
A collective intelligence is a loose collaboration of systems 
with low or simple intelligence that produce results of high 
or complex intelligence. The collaboration is termed loose 
because there is no predetermined leader or coordinator. 
The individuals organize themselves in accordance with 
inherent rules and capabilities they possess. The methods 
and algorithms these individuals use to organize 
themselves to accomplish an objective are collectively 
referred to as swarm intelligence. 

When artificially implemented, such as software or 
hardware, an individual system is called an agent. 
Typically, an agent is built with a specific objective in 
mind. For example, an agent can be designed to mimic a 
bird in a flock or a human being in a crowd or a molecule 
in a solution. An agent is universal when it is not bound to 
any specific objective. The universal agent must cope with 
an unbounded set of problems, with little inherent 
knowledge of the domain. The user determines the 
objective(s) the universal agent pursues. 

Our architecture is based on the hypothesis that the 
reverse engineering of the physical brain is not necessary 
to replicate human level intelligence. Instead, we only need 
to reverse engineer a universal system. We can then 
instantiate a metacognitive system, a cognitive system and 
the inherited systems necessary to interact with the 
environment. 

GPME 
We call our universal agent the General Purpose 
Metacognition Engine (GPME) ((M’Balé & Josyula, 2014, 
2013)). The GPME is what provides intelligent behavior to 
the brain system of our reference architecture. It is 
designed to interact only with a system or with another 
GPME contained within another system. Referring to 
Figure 7, we refer to the system that contains the GPME as 
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the host. The host operates in an environment. The 
environment can be outside of or inside the body. To carry 
out its function, the host possesses cognitive capabilities 
specific to its purpose and function. The host senses stimuli 
from the environment and reacts. It uses actuators to affect 
the environment. The host provides some (coordinated 
model) or all (self-coordinated model) of the sensory 
information to the GPME as an observation. When the 
GPME detects an anomaly, it provides a tailored 
suggestion to the host. The host is not obligated to act on 
the suggestion. We refer to the communication between the 
GPME and the host as telemetry. 

 
Figure 7 Context Diagram 

Like the visual cortex of the brain, the host is a 
sophisticated system capable of cognitive functions 
autonomously. For example, assume the host is a robot 
capable of movement, equipped with a gripping arm, and 
auditory and visual sensors. The host has the ability to 
safely navigate a space from an original location to a target 
location. The GPME does not provide detailed step-by-step 
instruction to navigate from point A to point B. The GPME 
suggests the host to move from point A to point B. The 
host is sophisticated enough to act on this suggestion and 
report its status back to the GPME. We refer to it as a 
suggestion because the host may not be able to act or may 
not succeed in the act. While this example used a robot, it 
could also have used the brain system that manages vision. 

Perpetual Cognition Circuit 
The core design of the GPME operates a continuous 

cycle we call the Perpetual Cognition Circuit (See Figure 
8). The GPME receives telemetry from the environment 
and from the host. The instruments create an observation. 
The observation triggers the learning apparatus to process 
the new observation into the knowledge base. The 
assimilation of a new observation changes the organization 
of the episodic memory. The projection apparatus uses the 
knowledge base to project the future wellbeing of the 
system. If the future wellbeing of the system is in jeopardy, 
it suggests actions that maximizes wellbeing and monitors 
success. The measure of wellbeing is called homeostasis. 
The purpose and only goal of the GPME is to maximize 
homeostasis. All other goals are effectively steps towards 
this overarching goal.  

The GPME communicate with each other to form a 
collective intelligence. We refer to a group of 
communicating GPME instances as a GPME swarm. The 
GPME swarm enables its members to share their 

knowledge bases, accelerate learning and facilitate the 
construction of new brain systems. 
 

 
Figure 8 Perpetual Cognition Circuit 

Learning 
The GPME uses two learning methods; progressive 
reduction and selective imitation. 

Progressive reduction applies observational learning 
techniques on the telemetry. Since the telemetry contains a 
great deal of noise, the GPME looks for special patterns we 
call rhythmic patterns. A rhythmic pattern exists when the 
GPME detects at least two correlated patterns in the 
telemetry. In order to detect correlated patterns, the GPME 
sections the telemetry into episodes. It then clusters 
episodes with similar correlated patterns to derive a case. 
Therefore, progressive reduction enables the GPME to 
generate cases and apply case based reasoning techniques 
to resolve anomalies. The resolution of anomalies involves 
selecting the case with the most positive impact on 
homeostasis. The selected case provides the information 
necessary to provide the host with a suggestion in response 
to the anomaly. The GPME then observes the results in the 
telemetry to adjust the utility rating of cases. 

The GPME is an intrinsic reinforcement learner. It uses 
an internal reward that is a function of the number and 
types of anomalies that currently exist and the projection of 
the reward in the future. We refer to the result of this 
function as the homeostasis. As a result, the GPME can 
react to an anomaly caused by future unexpected 
homeostasis values. 

How does a GPME detect an anomaly without inherent 
knowledge? An anomaly occurs when an expectation is not 
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met. The GPME detects physical anomalies, such as the 
absence of stimuli, and logical anomalies, such as the 
absence of a result. As the GPME processes the telemetry, 
it projects forward the future state of the telemetry based 
on its case history. An anomaly is a substantial difference 
between the actual telemetry and the projected telemetry. 
For example, the GPME expects a particular stimulus to 
occur in future moment Mx based on the past. When 
moment Mx arrives, the stimulus is either present or absent. 
If it is absent, an anomaly has occurred. 

In practice, the GPME implements this concept using a 
bandwidth. The bandwidth is a projected minimum and 
maximum for the stimulus value or occurrence. An 
anomaly exists when the observation is outside the 
projected band. 

In addition to being an intrinsic reinforcement learner, 
the GPME learns by imitation. The formalization of the 
knowledge base makes it possible for the GPME to share 
parts of its knowledge base with other instances. The 
recipient GPME can then select the portions of the model’s 
knowledge base that it wants to incorporate within its own. 
The GPME is able to learn new cases and reasoning 
mechanisms from other GPME instances without needing 
to experience the environment first hand. 

Selective imitation involves receiving case information 
from other GPME. We refer to the imitation as selective 
because the GPME must determine whether to incorporate 
the case within its own knowledge base. All GPME in a 
swarm share all of their cases. It is up to the recipient to 
select which cases to accept. The selection process is based 
on three factors, host similarity, GPME maturity and 
mentor confidence.  

The attributes and function of each host is described in 
an XML interface specification. The GPME’s share their 
respective hosts’ descriptions to determine whether there 
exists sufficient commonality to use each other’s cases. 
The maturity of the source GPME is a function of the 
number of mature cases in its knowledge base. A GPME 
with a higher maturity level is less likely to select cases 
from a lower maturity GPME. Once a case is accepted, the 
GPME will treat it as any generated case. The case can be 
an example of what to do or an example of what not to do, 
based on the actual homeostasis impact. As a GPME (the 
learner) applies the cases acquired from another GPME 
(the mentor), the learner rates mentor’s cases to derive a 
confidence level. The higher the confidence level the more 
likely the learner is to use cases it learned from the 
particular mentor. 

Time and Decay 
The GPME processes a great deal of raw information to 
generate cases. In addition, the GPME receives cases from 
mentors. To manage the volume of data, the GPME uses 

the concept of forgetting through decay. Each time a 
component of the GPME knowledge base is used, the 
GPME determines whether to increase or decrease its 
utility value. We refer to the utility value as the Damaru. 
An independent process within the GPME visits every 
knowledge base object and decrements the Damaru. The 
time it takes to visit every object once is an atomic GPME 
time unit we call a moment. Therefore, every moment, the 
Damaru is adjusted up or down. When it reaches within a 
predetermined range, the object is purged from the 
knowledge base. 

Conclusion 
Our hypothesis is that the creation of a brain system does 
not require the reverse engineering of anatomical 
component of the brain. We believe that the brain 
“hardware” implements a system of simple design that 
operates on an electro-chemical machine. Therefore, it is 
sufficient to emulate this basic brain system and to provide 
it the necessary interfaces to support a collective 
intelligence. The GPME is a universal agent that provides 
sufficient generality and capability to be the building block 
of a brain system.  

Acknowledgments 
This research is supported in part by the Office of Naval 
Research grant ONR #N00014-12-1-0430. 

References 
Brenner, S., & Sejnowski, T. J. (2011). Understanding the human 
brain. Science (New York, N.Y.), 334(6056), 567. 
doi:10.1126/science.1215674 
Darwiche, A. (2010). Bayesian networks. Communications of the 
ACM, 53(12), 80. doi:10.1145/1859204.1859227 
Eiter, T., & Simkus, M. (2007). FDNC : Decidable 
Nonmonotonic Disjunctive Logic Programs with Function 
Symbols, 9(9), 1–45. 
Kelland, K. (2011). Scientists find way to map brain’s 
complexity. Reuters. Retrieved from 
http://www.reuters.com/article/2011/04/10/us-brain-model-
idUSTRE7392KU20110410 
M’Balé, K. M., & Josyula, D. (2014). Handling Seasonality using 
Metacognition. In Cognitive 2014. Venice, Italy. 
M’Balé, K. M., & Josyula, D. P. (2013). Integrating 
Metacognition into Artificial Agents. In AAAI 2013 Fall 
Symposium Series (pp. 55–62). Arlington, VA: AAAI Press. 
Ramsay, G. G. (2012). Noam Chomsky on Where Artificial 
Intelligence Went Wrong. The Atlantic, 1–20. 
Sejnowski, T. J. (2012, November 4). The product of our neurons. 
New Scientist, 334(6056), 1. Retrieved from 
http://papers.cnl.salk.edu/PDFs/The product of our neurons 2012-
4271.pdf 
Underwood, E. (2014). BRAIN project meets physics. Science, 
344(6187), 954–955. doi:10.1126/science.344.6187.954 

27




