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Abstract
Clinical practice guidelines (CPGs) were originally de-
signed to help with evidence-based management of a
single disease and such a single disease focus has im-
pacted research on CPG computerization. This comput-
erization is mostly concerned with supporting different
representation formats and identifying potential incon-
sistencies in the definitions of CPGs. However, one of
the biggest challenges facing physicians is the person-
alization of multiple CPGs to comorbid patients. Vari-
ous research initiatives propose ways of mitigating ad-
verse interactions in concurrently applied CPGs, how-
ever, there are no attempts to develop a generalized
framework for mitigation that captures generic charac-
teristics of the problem while handling nuances such
as precedence relationships. In this paper we present
our research towards developing a mitigation frame-
work that relies on a first-order logic-based represen-
tation and related theorem proving and model finding
techniques. The application of the proposed framework
is illustrated with a simple clinical example.

1 Introduction
A clinical practice guideline (CPG) codifies the evidence-
based best practice in prescribing the most appropriate
disease-specific therapy to patients, subject to available pa-
tient data and possible diagnoses (Rosenfeld and Shiffman
2009). Since the scope of each guideline is limited to a
single disease, the evidence-based management of a co-
morbid patient according to the recommendations concur-
rently coming from multiple CPGs is difficult and can re-
sult in inconsistent and potentially harmful therapies. Of-
ten times the derivation of a combined therapy directly from
the guidelines (even for properly diagnosed comorbid con-
ditions) is incorrect due to adverse interactions between the
treatments associated with individual therapies. These inter-
actions manifest directly as contradictory recommendations
(e.g., use of steroids is recommended by one CPG and pro-
hibited by the other), or they may correspond to drug-drug
or drug-disease adverse interactions resulting in actions that
cannot be taken concurrently.

As a matter of fact, concurrent application of two or more
CPGs is challenging - it requires designing a sophisticated
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mechanism for identifying and eliminating potential redun-
dancy in the tests or procedures, identifying contradictions
(direct adverse interactions), and for managing discordance
(indirect, drug-drug or drug-disease interactions) (Sittig et
al. 2008). As such, it is believed that executing multiple
CPGs concurrently requires a new, “combinatorial, logical,
or semantic” methodological approach (Fox et al. 2010).

Our previous research (Wilk et al. 2013; Michalowski et
al. 2013a; 2013b) proposes such an approach by introduc-
ing and formally defining logical models of CPGs and de-
veloping a mitigation algorithm that operates on these mod-
els. The algorithm relies on secondary clinical knowledge
(i.e., knowledge that goes beyond the primary knowledge
encoded in CPGs and that comes from domain experts, text-
books, or repositories of clinical evidence) that is encoded
as interaction and revision operators. The operators char-
acterize adverse interactions associated with the concurrent
application of CPGs and describe revisions to logical mod-
els required to address these interactions. The algorithm em-
ploys the constraint logic programming (CLP) paradigm to
efficiently solve the logical models where a solution repre-
sents a combined and personalized therapy free of adverse
interactions.

In the research described here, we move further towards
developing a general framework for mitigation by enrich-
ing the representation of CPGs using first-order logic (FOL)
theories and relying on theorem proving and model finding
techniques to process these theories. This expansion is dic-
tated by the following limitations of our previous research:

• Restricted expressive power of the CLP-based approach
that does not allow for explicit representation of prop-
erties of objects (e.g., a dosage associated with a spe-
cific CPG action) and relationships between objects (e.g.,
precedence between CPG actions),

• Limited interpretability of solutions returned by CLP
solvers and consequently the need to assign real-world
semantics to truth-value assignment of the propositional
symbols in the CLP-based model.

FOL significantly improves the expressiveness of our ap-
proach by introducing predicates to represent properties and
relationships in the domain (in fact, relationships are only
first-order definable). Moreover, predicates impose seman-
tics on solutions, facilitating their interpretation from a clin-
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ical perspective.
This paper is organized as follows. First we present the

foundations of FOL and theorem proving and model finding
that are relevant to our research. Next we describe the pro-
posed framework - we start with the underlying FOL theo-
ries and then present an overview of the mitigation process.
We proceed with a simple clinical example that illustrates
the application of the framework. Finally, we finish with a
brief review of related work and provide conclusions and di-
rections for our future research.

2 Background
2.1 Foundations of FOL
The formal language of FOL relies on logical and non-
logical symbols. The logical symbols (connectives, quan-
tifiers, variables) are those that have a fixed meaning in
a language. The non-logical symbols are those that have
an application-dependent meaning (e.g., symbols needed to
represent a CPG in FOL) and they are further categorized
into function and predicate symbols. Each non-logical sym-
bol has an arity, indicating how many arguments it requires.
A function symbol with arity 0 is called a constant and a
predicate symbol with arity 0 is called a propositional sym-
bol.

FOL allows for two types of syntactic expressions: terms
(made of variables, constants and functions) and formulas
(composed of terms, predicates and connectives). Formulas
with variables bounded by quantifiers and formulas without
variables (i.e., grounded formulas) are called sentences. A
FOL theoryD is a collection of sentences. An interpretation
I (sometimes called a structure) in FOL is defined as a triple:

I =< Idomain, Ipredicate, Ifunction >,

where
• Idomain is any nonempty set of objects under considera-

tion called the domain of the interpretation,
• Ipredicate is a set of interpretation mappings over Idomain,
• Ifunction is a set of functions over Idomain.

Mappings from Ipredicate assign meaning to the pred-
icate symbols as follows: for every predicate symbol P
of arity n, I[P ] ∈ Ipredicate is an n-ary relation over
Idomain, that is I[P ] ⊆ Idomain × . . . × Idomain. Map-
pings from Ifunction assign meaning to the function sym-
bols as follows: for every function symbol F of arity n,
I[F ] ∈ Ifunction is an n-ary function over Idomain, that
is I[F ] ∈ [Idomain × . . . × Idomain → Idomain]. Given
an interpretation I , we can check which sentences of a FOL
theoryD are true and which are false according to this inter-
pretation. If sentence φ ∈ D is true given I , then we write
it formally as I |=m φ. Moreover, if I satisfies all sentences
in D, then it is called a model for theory D and formally it
is denoted as I |=m D.

2.2 Theorem Proving and Model Finding
There are three fundamental questions that are associated
with FOL theories:

1. Is a given theory consistent?

2. What is a model for a consistent theory?

3. What are logical consequences (implications) of a consis-
tent theory?

A FOL theory D is consistent (or satisfiable) iff there ex-
ists at least one model of this theory. The question of the
consistency of D can be answered using theorem proving
(Pavlov, Schukin, and Cherkasova 2013) that employs auto-
matic reasoning (the resolution method) to construct a proof
for D. However, theorem proving techniques provide only
a binary answer to the consistency question and no model
is directly returned even if it exists (i.e., when the answer is
positive). In order to answer the question about a model for a
consistent theory, one needs to use model finding techniques
that can be considered as a special case of the constraint sat-
isfaction problem (Zhang and Zhang 2013) where possible
interpretations are generated until a model is found.

The logical consequences question is translated into
checking if a FOL theory D entails sentence φ (or φ is a
logical consequence of D). Formally, we say D entails φ,
written as D |= φ, iff, for every interpretation I such that
I |=m D, we have I |=m φ. In other words, we say D en-
tails φ (or φ can be deduced from D) if φ is satisfied by
all models for D. The entailment D |= φ can be translated
into checking whether a new theory D∪{¬φ} is not consis-
tent. This means that theorem proving techniques can equiv-
alently be used to check for logical entailments of a theory
D.

3 Methodology
Using FOL in a framework for the mitigation of concur-
rently applied CPGs relies on four key components that are
listed below and described in the following sections:

1. A vocabulary used to construct the FOL theory describing
a particular mitigation problem (further referred to as to
combined mitigation theory),

2. A combined mitigation theory composed of individual
theories that describe various aspects of the mitigation
problem,

3. A set of operators that encode the secondary knowledge
needed to identify and address adverse interactions asso-
ciated with the combined mitigation theory,

4. A mitigation algorithm that controls the application of op-
erators to the combined mitigation theory.

3.1 Vocabulary
Following our previous work, we assume a CPG is repre-
sented as an actionable graph (AG) (Wilk et al. 2013). An
AG is a directed graph composed of three types of nodes -
context, action, and decision, and arcs that represent transi-
tions between nodes. A context node defines an entry point
and indicates the disease associated with the CPG, an action
node indicates a clinical action that needs to be executed,
and a decision node indicates a selection from several al-
ternative choices and allows for conditional branching. The
vocabulary of our FOL-based approach is composed of con-
stants (denoted with upper case letters), variables (denoted
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Predicate Description
node(x) x is a node in AG
action(x) x is an action node in AG
decision(x) x is a decision node in AG
executed(x) action node x is executed
value(x, v) value v is associated with decision node x
dosage(x, n) action node x is characterized by medication dosage n
directPrec(x, y) node x directly precedes node y (there is an edge from x to y)
prec(x, y) node x precedes node y (there is a path from x to y)
disease(d) d is a disease to be managed
diagnosed(d) the patient has been diagnosed with disease d

Table 1: Defined predicates

with lower case letters) and predicates. The predicates used
in the mitigation problem are listed in Table 1. We note there
is no predicate corresponding to a context node, as infor-
mation embedded in this node is provided by the predicate
diagnosed(d).

3.2 Combined Mitigation Theory
We use the vocabulary to construct a combined mitigation
theory. Formally, this combined theory Dcomb is defined as
a triple:

Dcomb =< Dcommon, Dcpg, Dpi >,

where Dcommon is a theory that axiomatizes the universal
characteristics of CPGs as part of a FOL representation. It is
the common (shared and reusable) component of all mitiga-
tion theories and it contains the following axioms:

• ∀x, y directPrec(x, y) ⇒ prec(x, y) - association be-
tween precedence and direct precedence,

• ∀x, y, directPrec(x, y) ⇒ ¬directPrec(y, x) - asym-
metry of direct precedence,

• ∀x, y, z, directPrec(x, y) ∧ directPrec(y, z) ⇒
directPrec(x, z) - transitivity of direct precedence,

• ∀x, y, z prec(x, y) ∧ prec(y, z)⇒ prec(x, z) - transitiv-
ity of precedence,

• ∀x, y, prec(x, y) ⇒ ¬prec(y, x) - asymmetry of prece-
dence to ensure a strict partial order,

• ∀x node(x) ⇒ (action(x) ∧ ¬decision(x)) ∨
(¬action(x) ∧ decision(x)) - ensures that a node can-
not be simultaneously an action and decision node,

• ∀x, action(x) ⇒ node(x),∀x, decision(x) ⇒ node(x)
- all nodes are either actions or decisions,

• ∀x, n dosage(x, n) ⇒ action(x) - ensures that only an
action node can be characterized with medication dosage,

• ∀x, v value(x, v) ⇒ decision(x) - ensures that only a
decision node can be characterized by a value,

• ∀d diagnosed(d) ⇒ disease(d) - ensures that the diag-
nosed disease is the same as the disease to be managed.

Dcpg is a union of theories, each theory representing a sin-
gle AG (and thus the underlying CPG) that are being applied
to a comorbid patient:

Dcpg = Dd1
cpg ∪Dd2

cpg ∪ . . . ∪Ddk
cpg,

where Ddi
cpg is the theory that describes the AG associated

with disease di by enlisting all nodes and paths, giving infor-
mation about precedence between nodes and providing in-
formation on dosages associated with selected action nodes.
Because of axioms inDcommon it is sufficient to define only
direct precedence between nodes (directPrec predicate) -
precedence between nodes represented with the prec pred-
icate is derived automatically.
Dpi is the theory that describes available patient informa-

tion. It contains sentences representing patient data, includ-
ing results of tests and examinations, or indicating already
prescribed therapies and procedures.

3.3 Interaction and Revision Operators
Interaction and revision operators were introduced in our
previous research (Wilk et al. 2013). Here we reformulate
them to account for the FOL-based representation and to en-
hance their capabilities. For example using a FOL-based ap-
proach enables the mitigation framework to represent a revi-
sion operator that specifies multiple operations.

An interaction operator IOk encodes knowledge about
indirect adverse interactions (usually drug-drug or drug-
disease) and formally it is defined as

IOk =< αk >,

where αk is a sentence (constructed with the vocabulary de-
scribed in Section 3.1) describing a specific indirect interac-
tion. Checking whether IOk is applicable to Dcomb (or in
other words, if the interaction represented by IOk occurs in
Dcomb) is the entailment problem Dcomb |= αk.

A revision operator encodes knowledge about the revi-
sions that need to be introduced to the theory Dcpg in or-
der to address encountered interactions (both direct and in-
direct). In layman terms, it describes changes that need to be
introduced to concurrently applied CPGs. Formally a revi-
sion operator ROk is defined as

ROk =< βk, Opk >,

where βk is a logical sentence that defines the applicability
of the operator to the theory Dcpg , and Opk describes the
revisions introduced by ROk. In particular, Opk is a set of
n pairs of formulas < ϕk

i , φ
k
i > (i = 1 . . . n) that define a

single operation within the operator. As already stated, these
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operations are applied only to Dcpg , so other components of
Dcomb are protected from unwanted revisions. For example,
Dpi is never modified thus patient information is never inad-
vertently changed. The pairs of formulas are interpreted as
follows (where ∅ indicates an empty formula):

• < ϕk
i , ∅ > means that ϕk

i is removed from any sentence
in Dcpg where it appears,

• < ∅, φki > means that φki is added as a new sentence to
Dcpg ,

• < ϕk
i , φ

k
i > means that ϕk

i is replaced by φki in any sen-
tence in Dcpg where it appears.

It is possible to use unbounded variables in ϕk
i and φki and

these are interpreted as “wildcards” that are bound to a con-
stant specific to a patient encounter. For example, one can
define an operation that increases the dosage of a medica-
tion by a given amount. Moreover, checking the applicabil-
ity of ROk to Dcomb is analogous to checking the appli-
cability of IOk and translates into the entailment problem
Dcomb |= βk.

3.4 Mitigation Algorithm
The algorithm consists of two phases and it is outlined in
Figure 1. The first phase involves mitigating direct adverse
interactions. Their identification translates into checking the
consistency of the Dcomb theory (note that in order to check
for consistency and entailment we need to create a tempo-
rary theory that is a union of all three components inDcomb).
If the theory is consistent, then it indicates there are no direct
interactions and the algorithm passes to the second phase.
Otherwise, the theory Dcomb (specifically its Dcpg compo-
nent) needs to be revised using applicable revision opera-
tors. Since Dcomb is inconsistent, entailment cannot be used
to find applicable revision operators as entailment problems
can only be formulated over a consistent theory. Instead we
identify actions shared across theories in Dcpg that result in
direct interactions and use them to check the applicability
of ROk. The algorithm may stop here, reporting a failure
to indicate that Dcomb is still inconsistent, if it has failed to
address the encountered direct interaction.

The second phase identifies and addresses indirect ad-
verse interactions. It starts by identifying applicable inter-
action operators (for operator IOk this translates to check-
ing the entailment Dcomb |= αk). If there is no applicable
operator, then this means that there are no indirect interac-
tions or they have been already addressed and the algorithm
finds a model for Dcomb. This model is equivalent to a so-
lution in the CLP-based mitigation framework, and using its
Ipredicate component it is possible to construct a personal-
ized combined therapy for a patient. This combined ther-
apy highlights the clinical actions to be taken (executed and
dosage predicates) along with the order in which they should
be carried out (prec and directPrec predicates) and includes
the assumptions made about the patient’s state (value pred-
icates). Note that the combined therapy contains only these
predicates that have not been provided as part of Dpi, thus
it is focused on future (suggested) actions and possible (as-
sumed) patient state.

Figure 1: Outline of the mitigation algorithm.

On the other hand, if direct interactions exist (there is
at least one IOk applicable to Dcomb), the algorithm at-
tempts to revise Dcomb using applicable revision operators,
where checking applicability of an operator ROk is an en-
tailment problem (Dcomb |= βk). There is an additional ex-
plicit check if Dcomb has been revised to avoid indefinite
loops if there is no applicable ROk. If the revised Dcomb is
consistent, then the algorithm checks again for an applicable
IOk, otherwise it fails. This loop is repeated until there are
no more applicable interaction operators.

In our previous research we assumed that an interaction
had to be addressed by a single applicable revision opera-
tor. In this framework we relax this assumption and allow
for more complex adverse interactions that may need to be
mitigated by multiple revision operators. Further, the imple-
mentation of the mitigation algorithm involves a number of
software tools that were developed for FOL theories. In this
research we are using Prover9 (McCune 2005) to check con-
sistency of all theories and to execute the entailment required
for the identification and use of the operators. Moreover, we
are using a model finding technique implemented in Mace4
(McCune 2005) that returns a model on top of a theory that
has been verified as a consistent one.

4 Illustrative Example

In this section we illustrate our proposed FOL-based miti-
gation framework using the simple clinical case also used in
(Wilk et al. 2013). The purpose of using the same example
is to show how the methodology proposed here extends our
earlier research. According to this example, a patient that
is treated for a duodenal ulcer (DU) experiences an episode
of transient ischemic attack (TIA). AGs used in this example
are derived from the guidelines published by the National In-
stitute for Health and Clinical Excellence, UK (NICE) (NIC
2012) and they have been simplified to include only the rel-
evant action and decision nodes.
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Figure 2: Actionable graph for TIA (AGTIA).

4.1 Actionable Graphs
For illustrative purposes we show in Figure 2 the AG for TIA
only. In this figure the context node is indicated with a cir-
cle, decision nodes are indicated with diamonds, and action
nodes with rectangles. The figure also labels constants asso-
ciated with specific nodes and corresponding to alternative
choices - they are given in square brackets after node and
choice descriptions.

4.2 Theories
The AGs are converted into the respective theories, DDU

cpg

for DU and DTIA
cpg for TIA. For illustrative purposes, DTIA

cpg
is shown in Figure 3. Note that DU, HP, P, TIA, HG, N,
etc. are all FOL constants. As can be seen, this representa-
tion captures precedence relationships and attaches seman-
tics to each node. All paths in the corresponding AG are de-
scribed using a single sentence (a disjunction of conjunc-
tions, where each conjunction corresponds to a single path).
Each path contains formulas with the negated executed pred-
icate to indicate these actions are not executed for a given
path.

4.3 Operators
One interaction and two revision operators associated with
the clinical scenarios are discussed below.

IO1 =< α1 >,

α1 = diagnosed(DU)∧executed(A)∧¬executed(PPI).
IO1 represents a drug-disease interaction (the increased risk
of bleeding) that occurs when a DU patient is given aspirin
(A) without a proton-pump inhibitor (PPI).

RO1 =< β1, Op1 >,

β1 = diagnosed(DU) ∧ executed(A) ∧ ¬executed(D),

Op1 = {< executed(A), executed(CL) >}

RO1 is applicable to a patient diagnosed with DU who
has been prescribed aspirin (A) but has not been prescribed
dipyridamole (D). In such cases, the patient is taken off of
aspirin and prescribed clopidogrel (CL).

RO2 =< β2, Op2 >,

β2 = diagnosed(DU) ∧ executed(A) ∧ executed(D),

Op2 = {< ∅, executed(PPI) >,<
dosage(A, x), dosage(A, x− 50) >}

RO2 is applicable to a patient diagnosed with DU who has
been prescribed aspirin (A) and dipyridamole (D). In such
cases, the patient is also prescribed a proton-pump inhibitor
(PPI) and the dosage of aspirin (A) is reduced by 50 mil-
ligrams (mg).

4.4 Scenario 1: No Adverse Interactions
In this scenario we assume a patient suffering from DU who
has tested positive for H.pylori (HP) and is undergoing erad-
ication therapy (ET), on presentation to the emergency de-
partment with TIA symptoms, has tested negative for hypo-
glycemia (HG) and the result of FAST test (FAST) is nega-
tive. The theory Dpi describing this patient is:

diagnosed(DU).value(HP,P ).executed(ET ).
diagnosed(TIA).value(HG,N).value(FAST,N).

We create a theory Dcomb to describe this specific patient
encounter, where Dcpg are the union of DDU

cpg and DTIA
cpg ,

which were introduced in Section 4.2. The mitigation al-
gorithm begins by applying theorem proving technique and
checking if Dcomb is consistent. Since the theory is consis-
tent, the algorithm infers that no direct interactions exist. At
this stage the mitigation algorithm proceeds to the second
phase and checks for the existence of an indirect interaction.
It starts with IO1 by formulating the entailment problem
Dcomb |= α1. Because α1 is not entailed by Dcomb (i.e.,
there exists at least one model where α1 is not satisfied),
there are no indirect interactions present in the theory and
the mitigation algorithm uses model finding techniques to
find a model for the theory Dcomb. One such model is found
and used to create the combined therapy below (for easier
readability we omitted the prec predicates):

executed(PPI).value(UE,H).executed(SC).
executed(PCS).

According to this personalized combined therapy, the pa-
tient should be prescribed a proton-pump inhibitor (exe-
cuted(PPI)) and since the result of the endoscopy (UE) is
not known (neither value(UE, H) nor value(UE, NH) is in-
cluded in Dpi), the combined therapy assumes a healed ul-
cer (value(UE, H)) and suggests self-care (executed(SC)) for
DU and a referral to a primary care specialist for TIA (ex-
ecuted(PCS)). Such a combined therapy is returned by the
mitigation algorithm and presented to the physician along
with the known patient state (Dpi). The physician evaluates
the therapy by checking the appropriateness of assumptions
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diagnosed(TIA)
decision(HG). decision(FAST). decision(NS). decision(RST).
action(EC). action(A). action(TST). action(PCS). action(D). action(NC).
dosage(A, 300). dosage(D, 75).
directPrec(HG, FAST). directPrec(HG, EC). directPrec(FAST, PCS). directPrec(FAST, NS).
directPrec(NS, A). directPrec(NS, TST). directPrec(A, RST). directPrec(TST, NC). directPrec(RST, PCS).
directPrec(RST, D). directPrec(D, NC).

(value(HG,N) ∧ value(FAST,N) ∧ executed(PCS) ∧ ¬executed(A) ∧ ¬executed(D) ∧ ¬executed(EC) ∧
¬executed(TST ) ∧ ¬executed(NC))
∨
(value(HG,N) ∧ value(FAST, P ) ∧ value(NS,R) ∧ value(RST,NG) ∧ executed(A) ∧ executed(PCS) ∧
¬executed(EC) ∧ ¬executed(D) ∧ ¬executed(NC) ∧ ¬executed(TST ))
∨
(value(HG,N) ∧ value(FAST, P ) ∧ value(NS,R) ∧ value(RST,EL) ∧ executed(A) ∧ executed(D) ∧
executed(NC) ∧ ¬executed(EC) ∧ ¬executed(PCS) ∧ ¬executed(TST ))
∨
(value(HG,N) ∧ value(FAST, P ) ∧ value(NS,NR) ∧ executed(TST ) ∧ executed(NC) ∧ ¬executed(A) ∧
¬executed(D) ∧ ¬executed(EC) ∧ ¬executed(PCS))
∨
(value(HG,P ) ∧ executed(EC) ∧ ¬executed(A) ∧ ¬executed(D) ∧ ¬executed(PCS) ∧ ¬executed(NC) ∧
¬executed(TST ))

Figure 3: The DTIA
cpg theory representing the CPG for TIA.

made, such as the assumption of a healed ulcer in this partic-
ular scenario. If she deems some of these assumptions to be
inappropriate, new patient information needs to be collected
(Dpi is updated) and the mitigation algorithm needs to be
invoked again to generate a new combined therapy.

4.5 Scenario 2: Adverse Interactions Present
In this scenario we consider a patient suffering from DU who
has tested negative for H.pylori (HP) and who on presenta-
tion to the emergency department with TIA symptoms has
tested negative for hypoglycemia (HG), passed FAST test,
and has had neurological symptoms (NS) resolved. The the-
ory Dpi describing this patient is:

diagnosed(DU).value(HP,N).diagnosed(TIA).
value(HG,N).value(FAST, P ).value(NS,R).

Similar to the previous scenario, Dcomb is consistent and
as such no direct interactions exist. To check for the exis-
tence of an indirect interaction we consider IO1 and formu-
late the entailment problem Dcomb |= α1. This time α1 is
entailed by Dcomb (it is satisfied by each model of Dcomb)
indicating that an indirect interaction exists.

Following the steps of the mitigation algorithm, we re-
solve an indirect interaction by selecting a relevant revision
operator to revise Dcpg . A relevant operator is found by it-
erating over available revision operators and formulating the
entailment problem Dcomb |= βk for each revision operator
ROk. In this scenario, for RO1 β1 is not entailed by Dcomb

as there exists at least one model that does not satisfy β1.

This indicates that RO1 is not a relevant revision operator.
Next, the algorithm considers RO2 and formulates the en-
tailment problem Dcomb |= β2. β2 is entailed by Dcomb and
RO2 is considered a relevant revision operator.

The algorithm revises Dcomb by modifying Dcpg accord-
ing to the operations Op2 defined in RO2. These operations
add a proton pump inhibitor (executed(PPI)) and reduce the
dosage of aspirin by 50 mg to 250 mg (replacing dosage(A,
300) with dosage(A, 250)). After making these revisions, the
mitigation algorithm checks if the revised Dcomb is consis-
tent. Since it is, the algorithm finds a model for the revised
Dcomb that includes the modified Dcpg . This model is used
to derive the personalized combined therapy where again the
prec predicates are excluded for brevity and underlined en-
tries have been introduced by the revision operator:

value(ZES,N).executed(PPI).value(UE,NH).

executed(RS).executed(A).dosage(A, 250).

value(RST,EL).executed(D).dosage(D, 75).
executed(NC).

According to the combined therapy, the patient is pre-
scribed PPI (executed(PPI)) and referred to a specialist
for DU (executed(RS)) assuming the absence of Zollinger-
Ellison syndrome (value(ZES, N)) and a not healed ul-
cer (value(UE, NH)). Also the therapy prescribes as-
pirin (executed(A)) with the dosage adjusted to 250mg
(dosage(A, 250)), prescribes dipyridamole (executed(D))
with the dosage set to 75mg (dosage(D, 75)), schedules
an outpatient neurological consult for TIA (executed(NC))
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while at the same time assuming a suspected elevated risk
of stroke (value(RST, EL)). As in the previous scenario, this
combined therapy is presented to the physician for evalu-
ation who may invoke the algorithm again once additional
patient information becomes available.

5 Conclusion

Following the recent review of computer-interpretable CPGs
(Peleg 2013), our research can be categorized as formal CPG
verification. Most of this research involves verifying individ-
ual CPGs before they are applied to a patient. For example,
Duftschmid and Miksch proposed a knowledge-based detec-
tion method for checking the consistency of a CPG repre-
sented in ASBRU (Duftschmid and Miksch 2001). Another
approach by Perez and Porres uses model checking tech-
niques for authoring and verification of CPGs given in UML
(Perez and Porres 2010). Theorem proving techniques were
also used to check whether a guideline for managing jaun-
dice in newborns complies with certain properties (ten Teije
et al. 2006). Most of the research on identifying adverse
interactions in multiple CPGs and mitigating them for co-
morbid patients relies on description logic for manipulating
the guidelines (Jafarpour and Abidi 2013; Abidi et al. 2012;
GLI ). We believe FOL allows for a more flexible represen-
tation by including predicates to represent properties of do-
main objects and temporal relationships, and flexibly quan-
tified sentences.

In this paper we presented how combining different FOL
theories allows us to augment the expressiveness of repre-
sentation in order to capture intrinsic characteristics of the
CPGs and combined therapies, and thus provides for a more
complete mitigation framework. Using a simple clinical ex-
ample we demonstrated the semantic interpretability of the
models and combined therapies. In our earlier CLP-based
framework we manually interpreted the solutions, distin-
guishing between action and decision steps, and constructed
temporal relationships to impose order on the clinical steps
to be taken. The new framework discussed here addresses all
of these shortcomings.

For future research, we are working on a different repre-
sentation of paths in Ddi

cpg , so disjunctions of conjunctions
can be avoided, and on more sophisticated search methods
employed by the mitigation algorithm to identify suitable
revision operators. Considering that the ultimate goal of
our research is to develop a generalized framework of
mitigation, we are also studying different clinical situations
involving comorbid patients to extract the full set of proper-
ties of CPGs that hold across mitigation scenarios.
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