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Abstract

In this work, we focus on advancing the state of the art
in intelligent agents that can learn complex procedural
tasks from humans. Our main innovation is to view the
interaction between the human and the robot as a mixed-
initiative collaboration. Our contribution is to integrate
hierarchical task networks and collaborative discourse
theory into the learning from demonstration paradigm
to enable robots to learn complex tasks in collaboration
with the human teacher.

Introduction
Our goal is to advance the state of the art of intelligent agents
that can learn complex procedural tasks from humans. Our
work draws on several research areas, primarily robot learn-
ing from demonstration (LfD) (Argall et al. 2009), hierar-
chical task network (HTN) planning, and collaborative dis-
course theory. Our approach is to view the interaction be-
tween the human teacher and the learning agent as a mixed-
initiative collaboration, in which both parties are committed
to the shared goal of successful learning, and in which both
parties make contributions in the form of both actions and
communication, including verbal instructions, asking ques-
tions, and critiquing. For this, we draw heavily on collabo-
rative discourse theory and tools.

Our approach is based on the conjecture that it is often
easier for people to generate and discuss examples of how to
accomplish tasks than it is to deal directly with task model
abstractions. Our approach is thus for the robot to iteratively
learn tasks from human demonstrations and instructions. In
addition, the robot is able to ask questions, to which human
responds. By engaging the robot as an active partner in the
learning process, and by using the hierarchical structures, we
believe that complex tasks can be naturally taught by non-
expert users. Our work makes contributions in the following
areas:

1. a unified system that integrates hierarchical task networks
and collaborative discourse theory into the learning from
demonstration;
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2. a novel approach for learning task structure from a small
number of demonstrations, including the task hierarchy,
temporal constraints and inputs/outputs of a task;

3. novel generalization techniques that reduce the number
of demonstrations required to learn the task through input
generalization and merging;

4. integration of mixed-initiative interaction into the learn-
ing process through question asking.

System Architecture
Figure 1 presents an overview of our system architecture;
the key collaborative learning components are highlighted in
blue. The architecture consists of two subsystems, learning
and execution.

The inputs to the system are user demonstrations, instruc-
tions and answers to questions provided via a GUI. The core
components of the learning subsystem are the Task Struc-
ture Learning, Generalization and Question Asking mod-
ules, which together generate an HTN model of the task
being learned. The entire learning process is supported by
Disco, an implementation of collaborative discourse the-
ory (Grosz and Sidner 1988; Rich, Sidner, and Lesh 2001)
and ANSI/CEA-2018 (Rich 2009). Disco’s dialog manage-
ment capabilities are used to maintain a focus stack which
keeps track of the current topic and has expectations for
what needs to be said or done next. During the execution
of a learned task, the Disco planner decomposes each non-
primitive task in the HTN into its subtasks. When the plan-
ner reaches a primitive task, the primitive task is sent as
an action command to the execution subsystem. The execu-
tion subsystem includes the Motion Planner, Abstract World
Model (AWM), and the learning agent embodied either as a
physical PR2 or as a Gazebo simulation.

Learning Modules
In this section we briefly summarize the key learning com-
ponents of the system.

Generating the Task Hierarchy: One of the core func-
tionalities of the learning subsystem is to learn the implicit
hierarchical structure of the demonstration sequence. Each
task in an HTN has one or more recipes, or methods for de-
composing non-primitive actions. Each recipe specifies a set
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Figure 1: An overview of the system architecture.

of steps that are performed to achieve the non-primitive ac-
tion that is the collective objective of the steps (e.g., rotate
tires in an x-pattern or front to rear). In each new demonstra-
tion sequence, the user either teaches a new non-primitive
action (e.g., unscrewHub) or demonstrates a new recipe
for an existing nonprimitive action (e.g., xPattern) by us-
ing existing non-primitive and primitive actions. The system
gives the flexiblity to the human teacher to switch between
bottom-up approach and top-down approach at any point in
the teaching process of the task model.

Associating Inputs/Outputs: Each task within the HTN
has zero or more inputs and outputs associated with it. The
input of a task must be specified by the user at demonstra-
tion time, thus allowing the input to be added to the task
definition. The system is also able to determine the output
of a task, and analyze the dependency between actions by
propagating this information throughout the hierarchy.

Learning the Temporal Constraints: Demonstrations
are intrinsically totally ordered, i.e., any set of (discrete,
non-overlapping) actions performed in the real world oc-
cur in sequence. However, in many cases, only some of the
demonstrated ordering is fixed. For example, in tire rota-
tion task, even though you must demonstrate unhanging all
four tires in some order, the order does not matter. Learning
the minimum required ordering constraints is important to
have a more flexible and reusable plan. One of the contri-
butions of the paper is an automated algorithm for finding
the temporal constraints between steps in a recipe. Past ap-
proaches have mostly focused on learning these constraints
from multiple demonstrations, which requires many demon-
strations in a task with many steps. In addition to using past
approaches, we are using a new technique (Mohseni-Kabir,
Rich, and Chernova 2014) based on finding the data flow
betweeen steps, which enables us to learn these temporal
constraints from a single demonstration.

Generalization: The generalization module performs two
functions, input generalization and merging. Generalizing
over the inputs of a task is useful because it makes the
task structure more reusable and flexible, and because it re-
duces the number of demonstrations required for learning
the task. Merging is applied when the human provides mul-
tiple demonstrations of the same task, in which case the sys-
tem merges them to allow for generalization across the two

examples. This approach has three advantages: 1) this avoids
adding a separate recipe for each tiny difference between
the new demonstration for a specific task and the previously
learned model, 2) by merging different demonstrations and
factoring the common steps between them, we are postpon-
ing recipe selection until the choice must be made during ex-
ecution, resulting in a more robust system, and 3) it reduces
the number of demonstrations required to learn the task.

Question Asking: Since the robot and teacher represent
knowledge differently, the teacher does not always know
what additional information the robot requires. The robot
is able to expedite the learning process by asking questions
when it lacks information, thereby further reducing the num-
ber of demonstrations required to learn the task and helping
the human teracher to build the hierarchy. Our current sys-
tem supports six different question types.

Evaluation
We evaluated our complete system in a preliminary pilot
study using the Gazebo simulation of a car maintenance do-
main. Specifically, the robot was taught a tire rotation task
which consists of first removing the tires by uncrewing and
unhanging the hubs, then rotating the tires in one of two pat-
terns (i.e., two alternative recipes), hanging the tires and then
screwing them on. Tire rotation was chosen because the task
is relatively simple, requiring only six unique primitive ac-
tions (PickUp, PutDown, Hang, Unhang, Screw, Unscrew),
but highlights the benefits of using the HTN representation,
including alternative recipes, hierarchy and inputs/outputs.
The results of this study shows that using the methods de-
scribed in this paper, we are able to teach the complete task
structure, including alternative recipes, in 26 demonstration
steps. Importantly, we note that the complete execution of
the tire rotation task (both recipes) requires 128 steps. Thus,
remarkably, we are able to teach not only one, but two,
ways of performing this task (i.e., both variants of Rotate)
in fewer steps than it takes to perform the task once all the
way through.
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