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Introduction
The development of new industrial robotic systems that op-
erate in the same physical space as people highlights the
emerging need for robots that can integrate seamlessly into
human group dynamics by adapting to the personalized style
of human teammates. This adaptation requires learning a sta-
tistical model of human behavior and integrating this model
into the decision-making algorithm of the robot in a princi-
pled way. We present a framework for automatically learn-
ing human user models from joint-action demonstrations
that enables the robot to compute a robust policy for a col-
laborative task with a human, assuming access to demonstra-
tions of human teams working on the task. The robustness of
the action selection mechanism of the robot is compared to
previous model-learning algorithms in the ability to function
despite increasing deviations of human actions from previ-
ously demonstrated behavior.

Related Work
For a robot to learn a human model, a human expert is typi-
cally required to explicitly teach the robot a skill or specific
task (Argall et al. 2009; Atkeson and Schaal 1997; Abbeel
and Ng 2004; Nicolescu and Mataric 2003; Chernova and
Veloso 2008; Akgun et al. 2012). In this work, demonstra-
tions of human teams executing a task are used to automat-
ically learn human types in an unsupervised fashion. This
allows rapid estimation of a human user model, which can
be done either offline or online, through the a priori learning
of a set of ”dominant” models. This differs from previous
approaches (Doshi and Roy 2007) that start with uncertain
model parameters and learn them through interaction. Such
approaches do not have the limitation of a fixed set of avail-
able models, however learning a good model requires a very
large amount of data, which can be an issue when using them
for practical applications. We present a pipeline to automat-
ically learn the reward function of a Mixed-Observability
Markov Decision Process through unsupervised learning
and inverse reinforcement learning (Abbeel and Ng 2004).
Using MOMDPs to compute personalized policies has been
used in prior work (Ong et al. 2010), (Bandyopadhyay
et al. 2013), but with the reward structure assumed to be
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known. Research on POMDP formulations for collaborative
tasks in game AI applications (Nguyen et al. 2011; Macin-
doe, Kaelbling, and Lozano-Pérez 2012; Silver and Veness
2010) also assumed a known human model. Additionally,
previous partially observable formalisms (Ong et al. 2010;
Bandyopadhyay et al. 2013; Broz, Nourbakhsh, and Sim-
mons 2011; Fern and Tadepalli 2010; Nguyen et al. 2011;
Macindoe, Kaelbling, and Lozano-Pérez 2012) in assistive
or collaborative tasks represented the preference or inten-
tion of the human for their own actions, rather than those of
the robot, as the partially observable variable.

Method
Our proposed framework has two main stages, as shown in
Figure 1. The training data is preprocessed in the first stage.
In the second stage, the robot infers the personalized style
of a new human teammate and executes its role in the task
according to the preference of this teammate.

The first stage of our framework assumes access to a set
of demonstrated sequences of actions from human teams
working together on a collaborative task, and uses an un-
supervised learning algorithm to cluster the data into domi-
nating human types. The cluster indices serve as the values
of a partially observable variable denoting human type, in a
MOMDP (Ong et al. 2010). Our framework then employes
an inverse reinforcement learning algorithm (Abbeel and Ng
2004) to learn a reward function for each human type, which
represents the preference of a human of the given type on a
subset of task-related robot actions. Finally, the framework
computes an approximately optimal policy for the robot that
reasons over the uncertainty on the human type and maxi-
mizes the expected accumulated reward.

In the second stage, a new human subject is asked to ex-
ecute the collaborative task with the robot. The human is
first instructed to demonstrate a few sequences of human and
robot actions. A belief about his type is then computed ac-
cording to the likelihood of the human sequences belonging
to each cluster. Alternatively, if the human actions are in-
formative of his type —his preference for the actions of the
robot —the human type can be estimated online. The robot
then executes the action based on the computed policy of the
MOMDP, based on the current belief of the human type, at
each time step.
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Figure 1: Framework flowchart

Evaluation
In this section, we show the applicability of the proposed
framework on a place-and-drill task, using joint-action
demonstrations from 18 human subjects. The role of the hu-
man was to place screws in one of three available positions,
while the robot was to drill each placed screw. The demon-
strations were provided during a training phase in which the
human and robot switched roles, giving the human the op-
portunity to demonstrate robot drilling actions to show the
robot how he would like the task to be executed. To evalu-
ate our framework, we used leave-one-out cross-validation,
by removing one subject and using the demonstrated se-
quences from the remaining 17 subjects as the training set.
In all cross-validation iterations, the human subjects were
clustered into two types: a “safe” type, in which each screw
was placed before drilling began, and an “efficient” type, in
which each screw was drilled immediately after placement.
For each type, our framework learns a reward function asso-
ciated with that type. The number of types and their associ-
ated reward functions is then passed to the MOMDP formu-
lation as input.

Each subject left out of the training set for cross-
validation - referred to as the “testing subject” - provided
three demonstrated sequences of human and robot actions
and a probability distribution over its type was calculated.
Using this as the initial belief on the human type, and the
associated reward function from the inverse reinforcement
learning algorithm, a MOMDP/SARSOP (Kurniawati, Hsu,
and Lee 2008) solver computed a policy for the robot. We
then had the testing subject execute the place-and-drill task
with the actual robot, with each performing their predefined
roles, during the “task execution phase” (Figure 2).

Figure 2: Task execution by a human-robot team on a place-
and-drill task.

Robustness and Quality of Learned Policy
We compared the computed policy with a state-of-the-art it-
erative algorithm for human-robot collaborative tasks, called
“human-robot cross-training” (Nikolaidis and Shah 2013),
in which the robot learns a human model by switching roles
with the human. We used the demonstrated sequences of
the testing subject as input for the cross-training algorithm,
which computes a policy which matches the human pref-
erence during task execution when the human and roboct
resume their predefined roles (Nikolaidis and Shah 2013).
In the actual human subject data, the human placement ac-
tions during task execution were, in most cases, identical
to those provided during the demonstrations. Therefore, we
simulated the task execution for increasing degrees of de-
viations from the demonstrated actions of the human, lead-
ing the execution to previously unexplored parts of the state-
space. We did this by having a simulated human perform a
random placement action with a probability ε, or the actual
action taken by the testing human subject with probability
1 − ε. For increasing levels of deviations, we computed the
accumulated reward for the policy of the proposed frame-
work and the policy computed by the human-robot cross-
training algorithm (Figure 3).

Figure 3: Accumulated reward averaged over 18 iterations
of cross-validation (one for each human subject), and over
100 simulated iterations of task execution. The plotted lines
illustrate the performance of the different policies. The x-
axis represents the probability ε of the human performing a
random action instead of replaying the actual action taken.

The policy of the human-robot cross-training algorithm
performed similarly to the one of the proposed framework if
the user did not deviate from his demonstrated placing ac-
tions. However, as the deviations increased, the policy from
the cross-training algorithm performed worse. On the other
hand, the MOMDP agent reasons over the partially observ-
able human type using a reward function that learns from
all demonstrated sequences that belong to the cluster asso-
ciated with that type; therefore, its performance was not af-
fected by these deviations. Figure 3 also shows that the pol-
icy computed by the MOMDP using the automatically gen-
erated user model has comparable performance to the one
using a hand-coded model from a domain expert. The plot-
ted lines denote the accumulated reward, averaged over all
iterations of cross-validation.
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