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Abstract

Adaptation is a critical component of collaboration.
Nevertheless, online learning is not yet used in most
successful human-robot interactions, especially when
the human’s and robot’s goals are not fully aligned.
There are at least two barriers to the successful appli-
cation of online learning in HRI. First, typical machine-
learning algorithms do not learn at time scales that sup-
port effective interactions with people. Algorithms that
learn at sufficiently fast time scales often produce my-
opic strategies that do not lead to good long-term col-
laborations. Second, random exploration, a core com-
ponent of most online-learning algorithms, can be prob-
lematic for developing collaborative relationships with
a human partner. We anticipate that a new genre of
online-learning algorithms can overcome these two bar-
riers when paired with (cheap-talk) communication. In
this paper, we overview our efforts in these two areas
to produce a situation-independent, learning system that
quickly learns to collaborate with a human partner.

1 Introduction

In ad hoc teams (Stone et al. 2010), assistive robotics, man-
ufacturing systems, and other collaborative domains, robots
must establish long-term collaborative relationships with hu-
man partners. Interactions in these domains often have three
characteristics. First, as in repeated interactions between
people, these human-robot interactions are often punctuated
by conflicting interests — the human’s and robot’s goals are
not always fully aligned. Second, the human’s behaviors and
tendencies are initially unknown to the robot and to design-
ers of the robotic system. Third, people typically adapt as
they interact with the robot (HRI Community Page 2012).
These three characteristics imply that, in many scenarios,
robots must employ online learning to establishing effective
collaborations with human partners.

Despite its importance, online learning is a significant
challenge to HRI for at least two reasons. First, to date, most
machine-learning algorithms designed for generic multi-
agent scenarios do not learn at time scales that support ef-
fective interactions with people, especially when the human
partner is also adapting to the robot. Algorithms that do learn
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Figure 1: Average performance of existing online-learning algo-
rithms in self play in a repeated prisoners’ dilemma. A payoff of
0.60 results from mutual cooperation, 0.20 from mutual defection.
Most online-learning algorithms either fail to learn the cooperative
solution, or take hundreds to thousands of rounds of experience to
learn a collaborative solution (e.g., Satisficing and M-Qubed).

at appropriate time scales for human interaction are usu-
ally either customized for specific scenarios, or learn myopic
strategies that do not lead to effective long-term collabora-
tions. These statements are true for even very simple sce-
narios, such as the repeated prisoners’ dilemma (Figure 1).
Second, random exploration, a core component of traditional
learning algorithms, can be problematic for the development
of a collaborative relationship with a human partner.

Our proposed solution for overcoming these barriers is
two-pronged. First, we are developing a new family of
online-learning algorithms for repeated stochastic games.
Our intent is to develop algorithms that learn at much
faster time scales. In the absence of explicit communica-
tion, we have shown that these algorithms quickly learn ef-
fective collaborative solutions when associating with other
online-learning algorithms in repeated matrix games (Cran-
dall 2014). Via user study (Ishowo-Oloko et al. 2014), we
have also shown that the performance of these algorithms ri-
val human capabilities in repeated games of relatively brief
durations (Figures 2a-b). We have recently extended these
algorithms to repeated stochastic games. Evaluations are
currently underway to assess the effectiveness of these al-
gorithms to interact with people in the absence of explicit
communication.

However, when people interact with each other and with
robots, they utilize cheap talk and other forms of commu-
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Figure 2: (a-b) Average payoffs obtained in a user study pairing online-learning algorithms and people; see Ishowo-Oloko (2014) for details.
(c) A collaborative human-robot scenario in which we are evaluating our online-learning algorithms.

nication to help facilitate collaborative behavior. Thus, the
second component of our work is to integrate a scenario-
independent communication method with online learning.
We anticipate that this will (1) allow a robot to coordinate
collaborative behavior with others at an even faster rate and
(2) mitigate the negative effects of exploratory actions.

We briefly overview our work in these two areas.

2 Learning to Collaborate with People

Machine-learning algorithms have been used in several
forms of human-robot interaction. For example, machine
learning is a core component of learning from demonstra-
tions (Thomaz and Breazeal 2008; Argall et al. 2009). How-
ever, in such interactions, the robot’s goals arise from the
goals of the human with which it interacts — there is no con-
flicting interest. Furthermore, learning from demonstrations
is typically used as a method for learning a skill (offline),
which will then later be used by the robot. It is not often
used during real-time human-robot collaborations.

Online learning has been used successfully in scenario-
specific human-robot interactions. For example, in the
works of Hoffman and Breazeal (2008) and Nikolaidis et
al. (2014), online learning was used to build a model of
the human partner’s behavior. Our work differs from these
works in that (1) we seek situation-independent online-
learning algorithms and (2) we anticipate that the robot and
the human may not have identical preferences. Thus, our
problem of interest is closely aligned with the challenge of
multi-agent learning (Shoham, Powers, and Grenager 2007),
but where one of the players is a human. The goal of both
the human and the robot is to find a strategy that maximizes
its own individual payoffs (often, but not always, achieved
when the players “cooperate”).

Since most existing multi-agent learning algorithms fail to
learn collaborative strategies within time scales that support
interaction with a human partner (Figure 1), we are develop-
ing a new family of multi-agent learning algorithms (Cran-
dall 2014). These algorithms are novel expert algorithms
that operate on set of experts that implement strategies that
represent a variety of ideals, such as the best response, pareto
optimality, security, etc. In each round of interaction, the ex-
pert algorithm chooses to follow the strategy of one of these
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experts. Over time, it seeks to learn to always follow the
most successful expert for the given scenario.

As mentioned previously, preliminary results indicate
that these algorithms are at least as effective as people at
establishing collaborative relationships with people in re-
peated games (Figures 2a-b). In our ongoing work, we have
extended these algorithms for repeated stochastic games,
which can model rich environments such as those required
in human-robot collaborative tasks.

3 Adding Cheap Talk

To date, we have considered online learning in environments
that do not permit explicit communication between interac-
tants. However, in collaborative tasks, communication (non-
verbal signals and cheap talk) is often possible and useful.
Such communication allows humans to more quickly co-
ordinate their behaviors with each other. Thus, determin-
ing how to generate and integrate cheap-talk communication
with online learning appears to be critical to learning effec-
tively in human-robot collaborations.

Most machine-learning algorithms for stochastic games
employ statistical processes that are a “black box” to peo-
ple. However, the algorithms we consider can show more
clarity. Each of the experts used by the expert algorithms
computes a particular high-level ideal. These ideals form a
high-level behavioral agenda that is understandable to peo-
ple, and which can be communicated verbally in a situation-
independent way. Thus, as the expert algorithm switches be-
tween experts, the robot can explicitly communicate its fu-
ture behavior and its expectations for its collaborator.

4 Embodiment

Our preliminary assessments indicate that such communi-
cation will vastly enhance a robot’s ability to learn to col-
laborate with human partners. We are now in the process
of evaluating our integrated system via formal user studies.
Specifically, we studying interactions between people and
a Nao robot in several collaborative tasks. In one of these
tasks, the robot and human must learn to collaboratively con-
struct a (toy) building structure (Figure 2c¢). Other scenarios
involve determining how to share limited resources, such as
blocks and space.
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