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Abstract

Touch can be a powerful means of communication es-
pecially when it is combined with other sensing modali-
ties, such as speech. The challenge on a humanoid robot
is to sense touch in a way that can be sensitive to sub-
tle cues, such as the hand used and amount of force
applied. We propose a novel combination of sensing
modalities to extract touch information. We extract hand
information using the Leap Motion active sensor, then
determine force information from force sensitive resis-
tors. We combine these sensing modalities at the feature
level, then train a support vector machine to recognize
specific touch gestures. We demonstrate a high level of
accuracy recognizing four different touch gestures from
the firefighting domain.

Introduction
Touch gestures are tactile gestures that have a specific in-
terpretation in a given context. They are generally applica-
ble in scenarios where there are well-defined roles. While
there has been a lot of previous work on the use of tac-
tile HRI to determine emotional state or to ensure opera-
tor safety, there has been little relevant to interpreting touch
gestures (Argall and Billard, 2010). While it is difficult to
determine the reason for this, two key limitations are readily
apparent. First, a significant amount of hardware is required
to understand touch in a general way (Billard et al., 2013;
Ji et al., 2011). Second, even with the necessary hardware, it
can be difficult to determine subtle cues necessary to inter-
pret touch.

We propose a novel solution that is capable of addressing
both of these limitations. We combine hand sensing from a
Leap Motion active sensor(LeapMotion, 2014) with Force
Sensitive Resistors (FSR) placed at key locations to under-
stand how touch was applied.

Our work is similar in intent to (Ji et al., 2011), where the
authors present a machine learning approach that is com-
bined with a hardware prototype to distinguish between sev-
eral similar yet subtly different gestures. Our proposed solu-
tion is conceptually much simpler to implement, and takes
advantage of the active sensing from the Leap Motion to de-
termine how the hand is touching the robot. Similar work on
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multi-touch displays (Yuan and Barner, 2006) have shown
promising results using hand contours, but they lack the abil-
ity to provide any information on the force applied.

While touch gestures may be applied to a wide range
of scenarios, we specifically focus on a collaborative fire-
fighting task. In such domains, traditional visual gestures
are used very infrequently during firefighting episodes. This
is a surprising result; gestures, in general, are extremely
prevalent across all forms of human-human communica-
tion (Goldin-Meadow, 2007; Alibali et al., 1995; Breckin-
ridge Church and Goldin-Meadow, 1986). However, because
of the extremely poor visibility, people cannot assume that
teammates can see or interpret their visual gestures. There-
fore, they turn to touch as a a more reliable method of com-
municating in such situations.

The firefighting task is divided into the roles taken by the
supervisor and the nozzle operator. For our purposes, we as-
sume that the human takes the role of supervisor and that
the robot takes the role of nozzle operator. The touches ap-
plied by the human are predictable and have a very narrow
and specific interpretation. In some cases, the supervisor will
apply touch to let the nozzle operator know that they should
continue operating normally (we refer to this as the engage
gesture). In other cases, the supervisor will apply touch to
instruct the nozzle operator that they should turn left, turn
right, exit compartment, etc.

During an initial training period, a human operator inter-
acts with the robot, providing examples of different types
of touches that might be applied. We build a feature vec-
tor describing this touch, which includes information such
as force applied, the number of fingers used, the orientation
of the hand, and the spread of the hand. We train a support
vector machine to classify different types of touch gestures,
as described by these feature vectors.

Touch Sensing Hardware
Force sensing resistors (FSR) are made of a material whose
resistance are affected by the amount of force applied. We
have an array of FSRs positioned at key points throughout
the robot. In total, there are 10 FSRs: 6 are placed along the
back, 2 on the side, and 2 on the front. For evaluation, we
consider these to be 6 different discrete features: back left,
back right, side left, side right, front left and front right.
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Table 1: Touch gesture recognition accuracy
Touch Gesture True Positive Rate False Positive Rate

Engage 98.9% 0%
Exit 95.5% 0%

Turn Left 95.7% 0.3%
Turn Right 90.9% 1%

Leap Motion is a small (76 mm) sensor that uses struc-
tured light to locate hands within it’s viewing area. It is de-
signed to operate effectively at close ranges (approximately
1 cm to 1 meter). We place a Leap Motion sensor on the
back of the robot, pointing diagonally up and away from the
robot, so that the workspace intersects with the back of the
robot but also covers a significant portion of the space away
from the robot. The purpose of doing this is to ensure that
hands can be detected and tracked in a timely manner. This
increases the accuracy and stability of the hand during the
touch. The Leap Motion developer SDK returns a 6 DoF po-
sition of the hand. We determine if the hand is touching the
robot by testing for intersection between a point (the hand)
and a plane (the robot).

Combining Sensing Modalities
The two modalities are combined at the feature level, pro-
ducing a total of 16 different features: 6 for force sensing,
5 from the left hand position, 5 from the right hand posi-
tion. Note that this inherently provides the ability to analyze
2 handed touch gestures vs. 1 handed touch gestures.

Recognizing Touch Gestures
During a training period, the supervisor will provide sev-
eral examples of each gestural command. A feature vector
describing the touch gesture is generated from each of the
sensors, at a rate of approximately 30 Hz. In order to recog-
nize the gesture, we train a support vector machine with a
RBF kernel.

Experimental Results
Our initial experiments are focused towards learning four
different, commonly used firefighting touch gestures. They
are “engage”, “turn left”, “turn right”, and “exit”. In practice,
these touch gestures will be accompanied by speech com-
mands. For example, a supervisor might instruct the robot to
turn to the left, in which case the touch indicates the amount
that the robot should turn.

We evaluate during a session, where a supervisor pro-
vides several examples of each gesture. We split the session,
sequestering a portion for evaluation. We tune the support
vector machine using 5-fold cross-validation on the training
data.

We report results on an individual frame level, but note
that it’s possible to increase accuracy by considering results
across multiple frames.

Discussion
While we have demonstrated the ability to recognize differ-
ent classes of touch gestures, it is worth noting the rigid na-

ture of these classes vs. the fluid nature of gesture as a whole.
Gestures may have different levels of urgency (e.g., touching
with extra force), may be used as a way of attention-getting
(e.g., single tap), or to express general spatial information
(e.g., pushing). In future work, we propose to further ex-
tend the classes of touch gesture to explore different ways
in which they are made. For example, can we distinguish
between “exit” and “urgent exit”?

The proposed hardware approach has proven to be effec-
tive and simple. One limitation is the use of only one Leap
Motion sensor per computer system. Future revisions of the
Leap SDK are expected to remove this limitation. When
such a revision occurs, we intend to place multiple Leap
Motion sensors around the humanoid robot in order to sense
touch around multiple parts of the robot.

Finally, there is a question of general interpretations of
touch gestures. The interpretation of the touch gesture may
change depending on context, the way the gesture was made,
and other sensory cues (such as speech). Touch must be
learned in such a way that can be both sensitive to all of this
information, yet flexible enough to permit retraining when it
is necessary.
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