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Abstract
We describe CARDIAC, a prototype for an  intelligent con-
versational assistant that provides health monitoring for 
chronic heart  failure patients. CARDIAC supports user ini-
tiative through its ability to understand natural  language and 
connect it  to intention recognition. The natural language 
interface allows patients to interact with CARDIAC without 
special training. The system is designed to understand in-
formation that arises spontaneously in the course of the 
interview. If the patient gives more detail than necessary for 
answering a question, the system updates the user model 
accordingly.  CARDIAC is a first step towards developing 
cost-effective, customizable, automated in-home conversa-
tional assistants that help patients manage their care and 
monitor their health using natural language. 

 Introduction  
Research suggests that the quality of health care is greatly 
affected by the support patients receive in the home, 
whether by family caregivers or from providers such as 
nurse practitioners. For example, readmission rates for 
patients who have experienced congestive heart failure can 
be significantly reduced with close home monitoring of 
patients by a nurse practitioner (Naylor et al. 2004). Given 
the number of chronic heart failure patients, however, there 
is not enough medical personnel available to provide such 
close monitoring, and even if there was the cost would be 
prohibitive. New technologies for health monitoring are 
being implemented, but they can be complex and time-
consuming for people to use. And, these monitoring de-
vices allow limited input for the patient’s subjective health 
status report. The focus of our research is to develop an 
assistant for chronic care patients to help them look after 
themselves and provide comprehensive health care moni-
toring.  
 In this paper we give an overview of CARDIAC (Com-
puter Assistant for Robust Dialogue Interaction and Care), 
a prototype of an intelligent conversational assistant that 

provides health monitoring for chronic heart failure pa-
tients. CARDIAC’s objective is to conduct regular 
“checkup” interviews with patients to collect information 
relevant to their condition. The target population for 
CARDIAC is patients who are at home following specific 
self-care guidelines to manage their heart failure condition. 
The CARDIAC checkup is designed to obtain the informa-
tion required by the self-care guidelines including both 
objective (e.g., weight)  and subjective (e.g., pain)  aspects 
of their condition. This is a first step towards providing 
automated decision support based on the guidelines. The 
system can also take advantage of other sources of infor-
mation (such as a network-connected scale or, ultimately,  
a PHR) and use it effectively in the checkup without addi-
tional programming.
 The system’s conversational interface is intuitive and 
easy to use, a benefit that may encourage patients to report 
their information more often. This system is a first step 
towards our long-term goal of developing cost-effective, 
customizable, automated in-home conversational assistants 
that help patients manage their treatment and monitor their 
health using natural spoken dialogue over the telephone or 
with in-home systems.

Overview of the approach
CARDIAC is an agent-based spoken dialogue system that 
conducts health monitoring interviews with chronic heart 
failure patients using natural language. CARDIAC inter-
prets the patient information and uses it to update its user 
models. The following dialogue excerpt illustrates the sort 
of interaction that the system supports.

SYS: Do you know your weight
USR: YES
SYS: Got it
SYS: What is your weight
USR: TWO SIXTY
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SYS: Did you say 260
USR: YES
SYS: Do you have shortness of breath today
USR: YES
SYS: How severe is the shortness of breath
USR: A LITTLE MORE THAN NORMAL

Figure 1 Sample dialogue excerpt.

The CARDIAC system is built as an instantiation of the 
TRIPS generic dialogue architecture (Allen et al. 2000), 
which provides broad coverage domain-general parsing, 
generation, and discourse interpretation facilities. To adapt 
this generic system to a specific domain, we need to define 
a task model that the conversational agent uses to drive the 
interview process without needing to manage the details of 
natural conversation.  Besides the task model, other do-
main specific components needed are the domain specific 
lexicon (in this case, medication names) and statistical lan-
guage models used in speech recognition and generation. 
In addition, we need ontology mapping rules that translate 
meanings expressed in the TRIPS generic ontology to the 
specific ontology used for reasoning in this domain.  
 The system architecture is given in Figure 2, with the 
generic components in white and the domain specific com-
ponents in grey.  To obtain the most accurate speech recog-
nition (SR) we can get, we use dynamic language models 
based on the current topic. The topic is determined when 
the system asks a specific question, at which point the SR 
engine switches the language model accordingly. The best 
SR hypothesis is used as input to the parser. The interpreta-
tion manager (IM)  receives the parser output and performs 
contextual interpretation including reference resolution and 
interpreting elliptical answers. The IM and the Conversa-

tional Agent (CA) interact to perform goal-driven dialogue 
management; i.e., the system is driven by reasoning about 
goals to acquire knowledge. Each of these components is 
described in more detail below.

Speech Recognition
Because no domain-specific textual data was available to 
train statistical language models for speech recognition, we 
used the technique described in (Galescu et al. 1998). In 
short, this technique allows us to build quickly language 
models using a process of collecting domain-specific utter-
ances, then generalizing them (via synonyms and rephras-
ing) into a finite-state grammar from which we generate a 
large corpus of sentences; statistical language models are 
trained on this “artificial” sentence corpus. For the CAR-
DIAC system we trained a number of topic-specific gram-
mars and language models; topics were based on broad 
categories, such as symptoms (e.g., fatigue, edema, etc.), 
medication use, diet and exercise. However, because we 
expect that in reality the system would likely be faced with 
off-topic over-answers (e.g., “No swelling, but I was very 
short of breath yesterday after my daily exercise”), in the 
final system all the topic-specific models were interpolated, 
with most of the emphasis on the main topic -- this way we 
traded off some specificity for greater robustness. The in-
terpolation weights were tuned to some extent using data 
collected from simulated patients. Preliminary data sug-
gests that, on average, using dynamic LMs may improve 
performance by anywhere from 2% to 5% (relative) com-
pared to using a static LM. 
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Figure 2: CARDIAC System Architecture
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Parsing
The best SR hypothesis is then fed to a deep, broad cover-
age parser. The parser uses a general grammar and a 
domain-independent semantic lexicon augmented by 
domain-specific words, which in this system are medica-
tion names, to produce a semantic representation of the 
utterance. In order to deal with speech recognition errors, 
the parser is designed to find the most semantically coher-
ent sequence of sentence fragments when it cannot con-
struct a complete analysis.

Interpretation Manager
The IM receives the parser output and performs contextual 
interpretation including reference resolution, surface 
speech act recognition, and interpretation elliptical an-
swers. It generates possible hypotheses about the user’s 
intended meaning, which then are passed to the conversa-
tional agent (CA) for evaluation as to whether the hypothe-
sis would be a coherent statement. After evaluating the 
promising hypotheses, the IM either chooses one as the 
final interpretation and passes it to the conversational 
agent, or determines that it didn’t understand the user’s 
response.  Often, because of recognition errors, some part 
of the utterance is not interpretable. If the IM can identify a 
fragment that satisfies the goal (to the CA’s satisfaction), 
then it ignores the fragments that cannot be interpreted. 
While the conversational agent determines the current goal 
for the interview (e.g., find out the patient’s weight), the 
IM manages the details of the actual dialogue. Thus, if the 
user’s answer is not understood, it will re-ask the question, 
possibly also giving hints such as asking the patient to 
speak more simply. In addition, when dealing with answers 
that could easily be misrecognized, such as answers in-
volving numbers, the IM may initiate a confirmation sub-
dialogue to verify the answer.  If the system fails to under-
stand the patient a number of times, the IM abandons its 
discourse-level goal and notifies the conversational agent 
to abandon the current task-level goal. The IM also applies 
ontology mapping rules to convert the generic semantic 
representation output by the parser into the domain-specific 
representation whenever it communicates with the CA.

Conversational Agent
The CA is responsible for the system's overall behavior. 
This includes the following responsibilities:
• It is driven by a declarative model of the task(s) that the 

system can perform. Based on these tasks, it manages the 
goals that drive the system's behavior.

• During execution, it maintains the knowledge base that 
stores what the system knows about the current situation.

• It interacts with the language understanding components 
to support the interpretation of user utterances, and with 
the natural language generation components to produce 
system utterances.

• Finally, it responds reactively to changes in its environ-
ment, including utterances from the user and other 
sources of information.

This section briefly elaborates on each of these aspects.
System Behavior: The CA is based on a domain-
independent engine that executes tasks specified declara-
tively. Building on a long tradition in AI (Georgeff and 
Lansky 1984; Tate et al. 1994; Morley and Myers 2004), 
these tasks generally consist of goals that need to be 
achieved. Other tasks are invoked to achieve the sub-goals, 
eventually bottoming out in so-called “primitive” goals 
that can be achieved by built-in mechanisms. The CA exe-
cution engine includes predefined mechanisms for sequen-
tial and conditional tasks, and is easily extended.
 As this is a relatively new component of the TRIPS sys-
tem, the formal execution model and the semantics of tasks 
and operators has not yet been specified. At this point it is a 
programming environment for knowledge-based, goal-
directed agents, not a uniform, formal representation of 
tasks ranging from the abstract to the highly domain-
specific.
 What is significant about this engine is that the agent can 
introspect on its execution. It can inspect the set of active 
and pending goals, the goal-subgoal hierarchy, the tasks 
chosen for active goals, and the state of those tasks. This 
ability is crucial for collaborative systems. In the first 
place, it enables intention recognition for interpreting lan-
guage and identifying discourse phenomena such as topic 
shifts, corrections, and perhaps misunderstandings. It is 
also necessary to support explicit discussion of the 
problem-solving process, where the participants explicitly 
discuss what goals to pursue or whether to abandon them, 
for example. (The current prototype uses intention recogni-
tion against current goals for language interpretation, but 
not yet explicit user-initiated topic shifts. It also supports 
explicit abandonment of goals, but not yet richer interac-
tion about the problem-solving process. In both cases 
though, we believe that the CA engine can be extended to 
support the more elaborate uses of introspection.)
Task Models: As noted above, the CA defines a number of 
abstract tasks that form the basis for the specification of 
behavior for a given task. Because the system is designed 
from the outset to support collaboration, these predefined 
tasks include tasks for accomplishing knowledge goals. 
Our representation of the system's knowledge is loosely 
based on standard models of knowledge and belief and 
their relationship to language and action (e.g., Allen and 
Perrault 1980; Allen and Litman 1990; Cohen and 
Levesque 1990). Briefly, what this means is that goals may 
involve the system's knowing something, or more com-
monly that the system agree with the user about something. 
More generally, it could involve getting the other(s) to do 
something.
 Standard tasks accomplish these knowledge goals by 
inspecting the system's beliefs regarding the content of the 
goal (including its beliefs about the user's beliefs) and ini-
tiating conversational acts whose effects achieve the goal. 
For example, to agree whether the patient is experiencing 
any swelling, the system does not know the answer but 
believes that the user does (because swelling is a type of 
symptom that the system knows corresponds to an internal 
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state of the user). As described below, this eventually re-
sults in the system asking the user. On the other hand, in 
agreeing about the user's weight, the system might already 
know the value (perhaps from an automated bathroom 
scale). This would result in the system informing the user 
as a way of reaching agreement.
 For an information gathering task like the CARDIAC 
checkup, this framework allows the system's behavior to be 
specified as a set or sequence of agreement goals. These 
goals are the only place where domain-specific knowledge 
is used in the specification of behavior. This abstract, de-
clarative specification supports intuitive user-driven behav-
ior with effectively no additional programming.
Knowledge Base: The CA is responsible for maintaining 
the knowledge base (KB) that stores the system's beliefs 
about itself and about the user. The “state” of the interac-
tion is a function of this knowledge and the execution en-
gine's introspectable execution state. A few points are 
worth making.
 We believe explicit, symbolic knowledge is crucial to 
support both language understanding for intuitive interac-
tion (see below) and for realistically complex decision 
support. In both cases, the specific facts of the situation 
(patient's weight, whether they have swelling, etc.) must be 
combined with axiomatic (possibly probabilistic) knowl-
edge of how these facts relate to the patient's condition and 
their care. The current trend towards semantically mean-
ingful medical information systems is clearly a step in the 
right direction, but much work remains to be done.
 The KB could be bidirectionally coupled to external 
sources of information, whether within TRIPS or from 
outside. For example, in a related project we exchanged 
information with a prototype PHR platform. And we have 
simulated the existence of connected devices whose out-
puts become system knowledge, such as in the scale exam-
ple above.
Interaction with Natural Language Processing: The CA 
interacts with the natural language processing components 
of the system in several ways.
 First, once the execution of a task has reached a conver-
sational primitive, the CA requests that the dialogue man-
agement components perform the appropriate behavior. As 
noted elsewhere, this is more complex than simply turning 
a request to FIND-OUT-IF or FIND-OUT-WHAT into a 
surface question (and similarly for statements). The dia-
logue management components also look after requests for 
clarification, handling uninterpretable responses, and simi-
lar discourse phenomena without the CA's involvement.
 Second, the CA supports interpretation of user utterances 
by a combination of intention recognition and knowledge-
based interpretation. Even with topic-specific language 
modeling for speech recognition and deep, semantic pars-
ing, speech recognition errors can lead to grammatical but 
incorrect interpretations of user input. The system uses its 
knowledge of what it is doing (the goal hierarchy that led 
to the current question, if we're interpreting an answer) and 
the reasoning capabilities of the knowledge base to validate 
interpretation hypotheses. Furthermore, for valid interpre-

tations, the CA rewrites the linguistic interpretation into the 
form used by the knowledge base for the task at hand. Both 
of these use relatively small amounts of more or less 
domain-specific information, such as what sorts of things 
can be the location of a swelling for a CHF patient (of 
course, this piece of knowledge probably applies more 
generally than that, and so could be shared by other instan-
tiations of the system). Crucially, the interpretation process 
is applied equally to the user's answers to the system's 
questions and to statements that the user makes on their 
own, supporting the user-initiated style of interaction de-
scribed below.
 Finally, there are complications resulting from the com-
bination of a reactive agent (the CA) with the incremental 
processing of language described elsewhere. These are 
aggravated by the fact that the TRIPS system, in addition 
to embodying an assistive agent, is itself implemented as a 
collection of software agents. The interaction between the 
NL components and the CA therefore includes mechanisms 
for coordinating interpretation of multiple utterances or 
fragments, separating processing of separate contributions 
(possibly made without an intervening system contribu-
tion), and attempting to ensure that the agent's execution 
results in collaborative behavior that users find natural. 
This is a difficult problem in distributed computing, and an 
ongoing focus of work.
Reactive Behavior for Intuitive Interaction: We have 
emphasized that the goal of intuitive interaction requires 
that the system behavior be driven not by a predefined 
“flowchart” or “decision tree,” but by an agent that can 
react to its environment. One example of this is the exam-
ple used above of the networked scale whose output be-
comes part of the system's knowledge about the user. The 
reactive, knowledge-based, goal-driven Conversational 
Agent means that at any time, knowledge of the user's 
weight can trigger a change in behavior. If the system 
knows the weight before the interview, it won't ask about it 
(it might inform the user, depending on its beliefs about the 
user). If the system has asked about the weight and the user 
steps on the scale, the resulting knowledge would be taken 
as answering the question (technically, discharging the 
goal). These common collaborative behaviors require no 
programming to achieve.
 More interestingly perhaps, the agent's reactive behavior 
and explicit goal state and task model allow it to support 
over-answering and, more generally, user initiative. In the 
case of over-answering, the content of a user's answer is 
taken from its linguistic interpretation, not from the fact 
that it is an answer to the question. The linguistic interpre-
tation must make sense as an answer (as described above), 
but once committed, the entire content of the utterance 
becomes system knowledge. If that knowledge is the sub-
ject of subsequent goals, the CA execution engine will 
automatically use the knowledge and behave appropriately 
(for example, not asking a question for which it already 
knows the answer).
 The system can also interpret user utterances that are not 
responses to questions. Again, the interpretation of the ut-
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terance becomes system knowledge (and this time the in-
terpretation must make sense relative to the task being per-
formed, a form of intention recognition). This symmetric 
treatment of questions and statements means that the sys-
tem automatically supports mixed-initiative interaction 
with no task- or domain-specific programming. Patients 
using our prototype for the first time typically let the sys-
tem ask the questions and answer quite specifically. If they 
were to become more familiar with the system's goals (i.e., 
what the system needs from them), they could make the 
checkup interview even simpler by describing how they're 
doing from the outset. The system would interpret all this, 
and followup only on things that we not mentioned or are 
not inferable from what the system knows already (from 
environmental sensors, PHR, etc.).

Evaluation
We are in the process of evaluating CARDIAC with actual 
chronic heart failure patients in a cardiology practice. The 
focus of the evaluation is whether the system can identify 
with high accuracy the information the patient provides in 
the interview. The evaluation requires the comparison of 
CARDIAC’s analysis of patient responses with that of 
nurse practitioners. To this end, we created a web interface 
where nurse practitioners can listen to the audio of the sys-
tem interviews and record their interpretation of patient 
responses. A detailed analysis is in progress. Preliminary 
observations suggest that the system can perform the CHF 
self-care checkup with reasonable accuracy, and that most 
patients believe the system is easy to use and would be 
helpful to them in managing their care.

Conclusion
We have described CARDIAC, an intelligent conversa-
tional assistant designed to promote successful health out-
comes with patient-centered health monitoring technology. 
It is a first step towards developing a system that helps 
patients and/or their caregivers manage their medical care, 
provide reminders, answer questions, and engage in dia-
logue to collect information for monitoring a patient’s cur-
rent state. The information that the system collects during 
its interviews with the patient could be used by an interface 
which allowed the patient to view trends in their data, or 
exported to a PHR to share longitudinal data with their 
healthcare providers.
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