
Threshold Phenomena in Epistemic Networks   

Patrick Grim  
 

Group for Logic & Formal Semantics, Department of Philosophy, SUNY Stony Brook 

Visiting Scholar, Center for Study of Complex Systems, University of Michigan, AnnArbor 

pgrim@notes.cc.sunysb.edu   

 

 

 

Abstract 

A small consortium of philosophers has begun work on the 

implications of epistemic networks (Zollman 2008 and 

forthcoming; Grim 2006, 2007; Weisberg and Muldoon 

forthcoming), building on theoretical work in economics, 

computer science, and engineering (Bala and Goyal 1998, 

Kleinberg 2001; Amaral et. al., 2004) and on some experimental 

work in social psychology (Mason, Jones, and Goldstone, 2008).  

This paper outlines core philosophical results and extends those 

results to the specific question of thresholds.  Epistemic 

maximization of certain types does show clear threshold effects.     

Intriguingly, however, those effects appear to be importantly 

independent from more familiar threshold effects in networks.   

1. Epistemology and Scientific Networks 

Epistemology is defined as the study of knowledge.  The 

traditional focus in the field, however, has long been 

limited to the study of the individual epistemic agent. 

Traditional epistemology treats knowledge acquisition as 

an individual endeavor.  In Hume, Descartes, and Kant, 

epistemology is told as the story of a single individual 

trying to figure out what the world is like—an attempt to 

answer the question of how an individual agent figures out 

the structure of the world.   

A small consortium of contemporary philosophers has 

begun work on a different approach (Zollman 2008 and 

forthcoming; Grim 2006, 2007; Weisberg and Muldoon 

forthcoming).  In this recent work the essential emphasis is 

not on communities of epistemic agents rather than on the 

individual.   

How does an individual figure out the structure of the 

world?  The truth is that no individual does.  It is cultures 

and communities that plumb the structure of reality; 

individuals figure out the structure of the world only as 

they participate in the epistemic networks in which they 

are embedded.   

Science is undoubtedly our pre-eminent example of 

knowledge acquisition.  But what characterizes 

contemporary scientific research is not a catalog of isolated 

investigators but coordinated interactive networks of 

investigation. To understand knowledge acquisition in 

science one must understand more than the work of 

individual participants.  One must understand the structure 

and dynamics of the enterprise as whole.   

 Here questions are importantly different than those in 

traditional epistemology.  A scientific community can be 

envisaged as a network of interactive agents attempting to 

limn reality on the basis of uneven, conflicting, and 

sometimes ambiguous data.  How does the network 

structure of collaboration and competition, of data sharing 

and information transfer, affect knowledge acquisition in 

the community at large?  What kinds of network structures, 

of what kinds of agents, will best achieve scientific goals—

scientific goals of accuracy, for example?  In what ways 

will those structures be sensitive to the specific form of the 

problem, or to the distribution or uncertainty of data?  

Those are questions central to this new approach, and 

questions for which the work outlined below offers some 

early and partial clues. 

Given what we know of networks in general, it is to be 

expected that the dynamics of information acquisition and 

exchange across an epistemic network will not be reducible 

to any simple aggregate measure across individuals.  The 

modeling results offered here substantiate that expectation 

in full.  One of the implications of epistemic networks, 

tracked here in terms of thresholds, is the robust and 

surprising finding that a scientific community may learn 

more when its individual scientists learn less.  In terms of 

central scientific goals such as accuracy, increased 

informational linkages between scientists may not always 

be a good thing.   

17
th

 century science was characterized by distributed 

informational networks with limited linkages between 

investigators.  21
st
 century science is characterized by 

totally connected networks across the internet.  One way of 

phrasing a central result in what follows is that for some 

central scientific goals, including accuracy, and for some 

topics of investigation, the network structure of 17
th

 

century science appears to be superior to our own.   

Section 2 outlines the notion of epistemic landscape 

crucial to the model, with details in section 3 of initial 

networks surveyed.  The core result that a scientific 

community can learn more when individual scientists learn 

less is presented in section 4.  Sections 5 and 6 further 

explore the question of precisely what properties of 
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networks are important for that result.  Here results show 

clear thresholds for epistemic maximization of certain 

types with increasing number of links in random networks.   

Epistemic maximization on networks of the type at 

issue, it turns out, exhibits clear threshold phenomena. But 

it also turns out that the epistemic thresholds at issue are 

surprisingly independent from other network; they do not 

correlate cleanly with thresholds in any of the other 

network properties one might expect.   

Results here are intended as an introduction, with first 

hints regarding some of the surprises and subtleties of 

informational dynamics across epistemic networks.  These 

are offered as a first word on the topic, rather than the last 

word; it quickly becomes clear how much we do not yet 

understand, and how much more work remains to be done.   

2. Epistemic Landscapes  

   We can envisage an epistemic landscape as a topology of 

ideal data—data regarding alternative medical treatments, 

for example (Fig. 1).  In such a graph points in the xz plane 

represent particular combinations of radiation and 

chemotherapy, or particular hypotheses regarding the best 

combination.  Graph height on the y axis represents some 

measure of success: the proportion of patients in fact cured 

with combinations of radiation and chemotherapy at that 

rate.  If you use radiation therapy at rate x, and 

chemotherapy at rate z, you will get the proportion of cures 

represented on the y axis hovering over that point.   

 
Fig. 1  A three-dimensional epistemic landscape.  Points on the xz 

plane represent hypotheses regarding optimal combination of 

radiation and chemotherapy; graph height on the y axis represents 

some measure of success. 

 

 This first epistemic landscape is a medical one, but the 

specific topic of investigation is unimportant for our 

broader epistemic concerns.  One might have an epistemic 

landscape of magnetology readings for different 

hypothetical locations of a shipwreck, or of irridium 

stratigraphy world-wide as feedback regarding different 

hypotheses regarding the timing of the K-T asteroid 

collision, or any measurable variable y that confirms some 

hypotheses rather than others regarding the interplay of 

variables x and z.   

It is important to emphasize, however, that the concept 

of an epistemic landscape represents ideal data across a 

full range of possible hypotheses.  Different investigators 

will test different hypotheses and will get differential 

feedback regarding those hypotheses.  As an individual 

investigator, however, one will not be able to see the 

epistemic landscape as a whole.  One will see results only 

at a point in the graph, in a small area or in a scattering of 

points.   

Despite those limitations, our job description as 

epistemic agents is to find the theory that is best supported 

by data.  The goal of investigation is to find the highest 

points in the epistemic landscape—the best confirmed 

hypotheses, or the most warranted predictions, the most 

reliable medical treatments.  Fortunately, we do not work 

alone: we are linked to other investigators as part of a 

larger network.   

 The model at issue here employs simpler two-

dimensional epistemic landscapes (Fig. 2).   

 

 
 

 
 

 
 
Fig. 2  Two-dimensional epistemic landscapes.  Values on the x 

axis represent alternative hypotheses.  Values on the y axis 

represent the ideal epistemic payoff for particular hypotheses.  

 

54



In the first landscape data converges smoothly to a 

single best hypothesis or medical treatment.  The second 

represents a slightly more complex landscape, in which 

particular combinations of drugs do well, perhaps, but 

combinations in between do worse.  The third is a still 

more complex landscape, in which some peaks are smooth 

and easily climbed, but represent inferior outcomes.  The 

hypotheses or medical treatments they lead to are not the 

best.  The best outcome, however—that hypothesis that 

would be best confirmed, or that medical treatment that 

would be most effective—is hidden in a spike with a 

narrow base, and is thus harder to find. 

3. Modeling Epistemic Networks

Suppose we have a population of agents, each of whom 

starts with a hypothesis.  Here that hypothesis is 

represented by a single point on the x-axis 

landscape.  In testing their hypotheses, our agents 

accumulate data as feedback—a percentage of patient 

cures, for example.  But our agents are also networked to 

others; they can see not only the success rate of their own 

hypothesis but the success rate for the hypotheses of those 

to whom they are linked.     

 Agents change their hypotheses based on the success 

rates of those to whom they are linked.  As an agent in this 

model, you can see how well the hypotheses of some other 

agents are doing; if their hypotheses are better supported 

by the data than yours, you shift your hypothesis in their 

direction.  If your hypothesis is the best of those visible to 

you, on the other hand, you stick with it.   

 With even a network model this simple there are a 

number of intriguing parameters.  One of the 

built into this model is a ‘shaking hand’: when you aim to 

duplicate another’s hypothesis, you may be slightly off.  

Your lab conditions may be slightly different

the other agent, or your chemicals impure, or your sample 

slightly biased.  You therefore end up with a hypothesis 

that is not a precise match of that you are imitating but is 

merely close by.  One result, of course, is that you 

therefore explore more of the epistemic landscape.  The 

model used here builds in a ‘shaking hand’ that puts one in  

random region within 4 points either side of a target 

hypothesis. 

 The model also incorporates elements of ‘speed’ and 

‘inertia’.  In pursuing a more successful hypothesis, does 

one jump to that conclusion or approximate it halfway each 

time?   This model employs the latter assumption, with a 

‘speed’ of 50%.  It also builds in an ‘inertia’ factor of 50%, 

representing agents’ stubborn investment in 

hypothesis.  In each of 100 steps each agent has only a 

50% probability of shifting in the direction of a superior 

hypothesis.   

 The crucial parameter the model is designed to 

investigate, of course, is network structure (Fig. 3).  

In the first landscape data converges smoothly to a 

single best hypothesis or medical treatment.  The second 

esents a slightly more complex landscape, in which 

particular combinations of drugs do well, perhaps, but 

combinations in between do worse.  The third is a still 

more complex landscape, in which some peaks are smooth 

ior outcomes.  The 
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would be best confirmed, or that medical treatment that 

is hidden in a spike with a 

Networks  

Suppose we have a population of agents, each of whom 

starts with a hypothesis.  Here that hypothesis is 

 of an epistemic 

ses, our agents 

a percentage of patient 

.  But our agents are also networked to 

; they can see not only the success rate of their own 

hypothesis but the success rate for the hypotheses of those 

Agents change their hypotheses based on the success 

As an agent in this 

model, you can see how well the hypotheses of some other 

agents are doing; if their hypotheses are better supported 

data than yours, you shift your hypothesis in their 

direction.  If your hypothesis is the best of those visible to 

model this simple there are a 

One of the parameters 

‘shaking hand’: when you aim to 

duplicate another’s hypothesis, you may be slightly off.  

Your lab conditions may be slightly different from that of 

, or your chemicals impure, or your sample 

ased.  You therefore end up with a hypothesis 

not a precise match of that you are imitating but is 

merely close by.  One result, of course, is that you 

therefore explore more of the epistemic landscape.  The 

d’ that puts one in  

within 4 points either side of a target 

elements of ‘speed’ and 

‘inertia’.  In pursuing a more successful hypothesis, does 

that conclusion or approximate it halfway each 

time?   This model employs the latter assumption, with a 

‘speed’ of 50%.  It also builds in an ‘inertia’ factor of 50%,  

stubborn investment in their current 

eps each agent has only a 

50% probability of shifting in the direction of a superior 

the model is designed to 

se, is network structure (Fig. 3).   

     
               ring                               

 

     
           ring radius 2                         wheel

 

     
           wheel                                  random

 

                     
                                  complete 

 
Fig. 3  Structures of epistemic networks used in the model.  

Shown here with 20 nodes for visibility, networks used in the 

model linked a population of 50 nodes.  

 

Working with 50 agents, we studied networks in which the 

network structure is: 

(1) a simple ring, with contacts to a single agent on each 

side;  

(2) a small world network, here a simple ring with a 9% 

probability of rewiring; 

(3) a ring with double radius, in which each agent has 

contacts with two agents on each side;

(4) a wheel, also known as a ‘royal family

economics literature, in which each agent on the ring also 

has contact with a central agent; 

 
                               small world 

 
ring radius 2                         wheel 

 
wheel                                  random 
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Shown here with 20 nodes for visibility, networks used in the 

50 nodes.   

Working with 50 agents, we studied networks in which the 

tacts to a single agent on each 

(2) a small world network, here a simple ring with a 9% 

(3) a ring with double radius, in which each agent has 

contacts with two agents on each side; 

(4) a wheel, also known as a ‘royal family’ in the 

economics literature, in which each agent on the ring also 
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(5) a hub, in which agents have contact only through that 

central agent; 

(6) a random network, here with a 10% probability of 

combination between any two nodes; 

(7) A total, connected, or complete network, in which all 

nodes are linked to all others.   

Though illustrated in terms of 20 agents in Fig. 3, the 

model employed the network types above with 50 agents.  

With the noted parameters for shaking hand, speed, and 

inertia outlined above, each agent in the network updated 

on those two which it was linked through a series of 100 

steps.  100 runs were performed for each network with re-

randomization of agent hypotheses and network structure 

in the case of small world and random networks.   

4. Network Effects in Epistemic Maximization  

 In which networks, exploring which epistemic 

landscapes, will agents succeed in finding the optimal 

hypothesis?  Here our measure was whether any agent in 

the network found the optimal hypothesis; assuming a 

process of convergence to the highest all in a connected 

cluster would eventually follow suit.   

 For the simpler two epistemic landscapes in Fig. 2, with 

smooth climbs to their peaks, all of the networks surveyed 

found the highest point in all 100 cases.  Those networks 

which systematically found it most quickly were those with 

the highest connection and degree.  In these studies it was 

the total or connected network which most quickly found 

the peak.   

Results were intriguingly different for the more complex 

network represented by the epistemic landscape in Fig. 4, 

in which the optimal hypothesis is hidden in a narrow 

peak. 

 

 
 

Fig. 4.  The more complex epistemic landscape, in which the 

optimal hypothesis is hidden in a narrow peak.   

 
In this case none of the networks surveyed found the 

optimal hypothesis in all 100 runs.  The percentages of 

successful runs, moreover, show a wide variance with 

different network structure (Fig. 5). 

For this epistemic landscape, a regular ring of networked 

agents connected to a single neighbor on each side, with a 

'shaking hand' of 4 points and using speed and inertia 

factor of 50%, converges on the highest point in 66% of 

the runs. 

For a 'small world' variation, with a 9% probability of 

rewired connections, the success rate drops immediately to 

55%.   

Connect each node not with a single neighbor on each 

side, as in the single ring, but with two neighbors on each 

side and the success rate drops immediately to 40%.   

 Networks configured as wheels and hubs give a 42% 

and 37% success rate in finding the optimal hypothesis.   

Random networks with a 10% probability of connection 

between any two nodes give a success rate of 47%.   

Worst of all, operating on this epistemic landscape with 

the background assumptions noted, are total or connected 

networks.  Here the chance of finding the epistemic 

optimum is a mere 32%--approximately half the success 

rate of a simple ring.   

 

    
          ring                                       small world 

 

    
    ring radius 2                               wheel

   
         hub                                         random 

 

 
complete 

 
Fig. 5  Percentages of 100 runs in which networks of different 

structures found the optimal hypothesis in the epistemic 

landscape of Fig. 4. 
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Scientific exploration has multiple desiderata.  For 

central scientific goal of accuracy—here represented by 

finding the optimal hypothesis in an epistemic landscape

it is clear that informational linkages between investigators 

is thus not an unadulterated good.  Given a tendency to 

follow the lead of a more successful hypothesis, even with

an ‘inertia’ parameter of 50% and a 50% restriction on 

‘speed,’ increased linkages between nodes can result in a 

convergence on a suboptimal hypothesis.  The problem 

with increased linkages is that there is convergence

hypothesis that is ‘best in show’—the best presently 

occupied by anyone in the network—but which is not the 

highest in the landscape or the best in fact.  Epistemic 

networks with increased linkages have a tendency to let 

exploitation trump exploration, resulting in quick 

convergence to a sub-optimal epistemic outcome.  

 A scientific community may therefore learn 

its individual scientists learn more—more, that is, 

regarding others’ immediate results.  

networks of the 21
st
 century, massively connected through 

the internet, approach the character of a total or connected 

graph.  The scientific networks of the 17

significantly more distributed: investigators communicated 

in large part on an individual basis and by letter, perhaps in 

a structure as distributed as that of a ring network.

agent updating assumptions used here, and in cases in 

which the epistemic landscape has something of the 

character of Fig. 4, it is science on a 17
th

 century network 

rather than a 21
st
 century network that could be expected to 

prove more successful.   

5. Increased Linkages in Random Networks: 

An Epistemic Threshold

 Precisely what property is it of the networks above that 

facilitates epistemic success in such a case?  

To this point we have been working with a small sample 

of assorted networks.  The results are suggestive, but 

further exploration is needed. What is required for a deeper 

understanding is observed variability in epistemic success 

with variation in a single network parameter or small 

combination of parameters.  In pursuit of that 

understanding, the results that follow leave 

wide variety of networks surveyed above, concentrating 

instead on a single form.  The goal within that focus is to 

track the effect on epistemic outcome of varying the 

number of links between nodes. 

 A number of assumptions are retained from the studies 

above.  We again use the epistemic landscape of Fig. 4, 

with networks of 50 agents, a ‘shaking hand’ of 4 points 

variability, and using an updating ‘speed’ and ‘inertia’ of 

50%.  Here our networks will be random networks 

throughout, however—perhaps the most studied of all 

network structures.  None of the networks used, therefore, 

have the clear symmetry of a simple ring, and none will be
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linkages between investigators 

is thus not an unadulterated good.  Given a tendency to 
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of systematically varying the single parameter of number 

of links between agents to track implications for 

network success on the given landscape.  

 

 10 

 

50  

 
Fig. 6  Sample random networks with increasing numbers of 

links.  Giant cluster shown in black in each case, with other links 

in gray. 

 

 How does increased connectivity in random networks 

affect epistemic outcome?  The results appear in Fig. 7, 

showing the result of increasing number of random links 

between nodes from 5 to 300.  Shown for each

links at intervals between 5 and 300 is the percentage o

1000 runs in which random networks with that number of 

links succeeded in finding the highest point on the 

epistemic landscape.   
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Fig. 7  Percentage of 1000 runs in which random networks 

nodes with the given number of links succeeded in finding the 

optimal hypothesis in the epistemic landscape of Fig. 4.  

 

The results show a clear epistemic 

approximately 25 nodes.  Although this is 

results outlined above, it is nonetheless surprising that 

those random epistemic networks did best in which the 

number of links was so low.  Within the assumptions 

noted, those random epistemic networks did best in which 

the number of links was approximately half the number of 

nodes.  From that peak at approximately 25 

success of networks decays as links increase to 

approximately 100, the point at which there are twice as 

many links as nodes.  From that point on decay in 

epistemic success continues, though at a much slower rate.  

6. Comparing Threshold Phenomena

 One reason for using random networks in this study is 

that they are among the best understood.  There are, in 

particular, well established threshold phenomena regarding 

increased linkages in random networks.  A primary 

question, therefore, is this: Does the epistemic threshold of 

increased linkages documented above merely track some 

more familiar threshold in network phenomena?

 What is it about a network that accounts for

success of the sort detailed here?  The usual suggestion I 

have heard in response to that question is ‘clustering 

coefficient’: the mean probability that two nodes linked to 

a common node will also be linked to each other (Watts & 

Strogatz 1998; for clarification see Barrat and Weigt 2000 

and Newman et. al. 2001).   

The hypothesis that it is variability in clustering that is 

responsible for variation in epistemic success fits perfectly 

the extremes of results outlined in earlier sections.  A ring

network has a clustering coefficient of precisely 0: none of 

an agent’s neighbors are also neighbors of each other.  

Fully connected networks have a clustering coefficient of 

1: all of each agent’s neighbors are also agents of each 

other.   

If it were clustering coefficient that were the deciding 

factor regarding epistemic success of the sort outlined, 

however, we would expect the graph of epistemic success 

in Fig. 7 to mirror the graph of changes in clustering 

coefficient.  Figure 8 shows mean clustering 

across our 1000 runs at each number of links between 

nodes. 

Whatever network property is responsible for threshold 

phenomena in epistemic nets, Fig. 8 makes it clear that it 

cannot be clustering coefficient.  Clustering traces a clear 

linear ascent with increased number of nodes, with no 

reflection of the epistemic thresholds evident in the graph 

of epistemic success.   
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Fig. 8  Mean clustering coefficient across 1000 runs at each 

number of links in random networks of 50 nodes.  

 

 There is a well-known threshold in random nets with 

increasing number of links: the size of the g

component, or largest number of connected links.  As 

established quite early (Erdos and Renyi 

increase in size of the giant component 

numbers of links in random networks 

shows a clear threshold at approximately the number of 

nodes.  At that point there is a dramatic increase in the size 

of the giant component.   

 For the networks at issue, that threshold appears 

9.  The chart shows the average giant component size in 

our 1000 runs across each number of added links.

 

 

In attempting to explain results regarding epistemic 

success, however, the threshold of giant component size 

seems to be in the wrong place.  It begins at approximately 

half the number of nodes, tapering off at slighly more than 

the number of nodes.  This threshold, of course, is also 

unidirectional.  Though it may be a contributing factor to 

the epistemic success threshold noted, it cannot o

complete explanation. 

 

Fig. 8  Mean clustering coefficient across 1000 runs at each 

number of links in random networks of 50 nodes.   

known threshold in random nets with 

increasing number of links: the size of the giant 

component, or largest number of connected links.  As 

quite early (Erdos and Renyi 1959, 1960), the 

increase in size of the giant component with increased 

numbers of links in random networks is far from linear: it 

shows a clear threshold at approximately the number of 

At that point there is a dramatic increase in the size 

For the networks at issue, that threshold appears in Fig. 

average giant component size in 

our 1000 runs across each number of added links. 

 

In attempting to explain results regarding epistemic 

success, however, the threshold of giant component size 

t begins at approximately 

half the number of nodes, tapering off at slighly more than 

This threshold, of course, is also 
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the epistemic success threshold noted, it cannot offer a 
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 Here we offer a final candidate for a network property 

that might correlate with epistemic threshold: the average 

path length within the giant or largest cluster.  Simple 

average path length is not a useful measure here, becau

is defined only for connected graphs that contain 

isolated nodes or sub-graphs.  That requirement does not 

hold uniformly for networks at issue below approximately 

150 links, and so cannot be used to measure across the 

spread.  Average path length within the giant component, 

however, can be used as a measure.  Graphed across our 

runs that measure generates the threshold shown in Fig. 10.  

 

Fig. 10  Average path length within the largest cluster across 

1000 runs at each number of links in random networks of 50 

nodes.   

 

Here finally we have a network property with a threshold 

similar in shape to that we are tracking.  On that basis 

mean path length in the giant cluster of a network seems a 

prime candidate for a factor that favors epistemic success 

on the particular epistemic landscape at issue here.

 Questions remain, however.  Although the graph of 

mean path length has much the shape of the g

epistemic success, its peaks are at the wrong points.  

path length peaks at that point that the number of links 

equals the number of nodes.  Epistemic success, in 

contrast, peaks at the point that the number of links is half 

that.  Epistemic success seems to level when links equal 

twice the number of nodes, whereas the decay in mean 

path length is more gradual.   

Although qualitative comparison of effects indicagtes 

mean path length in giant cluster as a primary candidate 

among contributing causes, therefore, it does not appear to 

give us the whole story.  Even if the general shape of 

success qualitatively tracks that of mean path length in the 

largest cluster, we do not yet understand why it tracks it at 

a different point.  Although the similarities in thresholds is 

striking, we don’t yet understand the differences.  

Here we offer a final candidate for a network property 

that might correlate with epistemic threshold: the average 

path length within the giant or largest cluster.  Simple 

average path length is not a useful measure here, because it 

is defined only for connected graphs that contain no 

t requirement does not 

hold uniformly for networks at issue below approximately 

150 links, and so cannot be used to measure across the 

within the giant component, 

Graphed across our 

runs that measure generates the threshold shown in Fig. 10.   

 
Fig. 10  Average path length within the largest cluster across 

1000 runs at each number of links in random networks of 50 

Here finally we have a network property with a threshold 

similar in shape to that we are tracking.  On that basis 

length in the giant cluster of a network seems a 

prime candidate for a factor that favors epistemic success 

on the particular epistemic landscape at issue here. 

remain, however.  Although the graph of 

mean path length has much the shape of the graph of 

its peaks are at the wrong points.  Mean 

path length peaks at that point that the number of links 

equals the number of nodes.  Epistemic success, in 

contrast, peaks at the point that the number of links is half 

uccess seems to level when links equal 

, whereas the decay in mean 

qualitative comparison of effects indicagtes 

as a primary candidate 

ses, therefore, it does not appear to 

give us the whole story.  Even if the general shape of 

success qualitatively tracks that of mean path length in the 

largest cluster, we do not yet understand why it tracks it at 

ities in thresholds is 

we don’t yet understand the differences.   

6. Further work

The results above are confined to particular assumptions 

regarding updating dynamics within networks, using a 

specific epistemic landscape for comparison throughout

Further work is required to explore the effect of changing 

some of those updating assumptions, perhaps mirroring 

different incentive structures for investigators.  

work is also required in order to explore the relation of 

thresholds noted to particular characteristics of epistemic 

landscape: to track what characteristics of networks 

optimize epistemic success on specific landscapes.  

In the long run, such an exploration promises a new 

epistemology, offering a better understanding of the 

dynamics of knowledge acquisition in science.  In the long 

run, goals may be normative as well as descriptive.  Such 

an exploraiton might also offer the possibility of 

optimizing ongoing scientific exploration.  Given first 

indications of what an area of investiga

glimpse of an epistemic landscape

tell whether such a landscape would most effectively be 

investigated by big science or small, by a few groups of 

closely linked investigators, a scattered set of 

independents, or some combination of the two. 

As indicated in introduction, these results are intended 

as a brief introduction to some of the surprises and 

subtleties of informational dynamics across epistemic 

networks—a first word on the topic, 
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The results above are confined to particular assumptions 

regarding updating dynamics within networks, using a 
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optimize epistemic success on specific landscapes.   

In the long run, such an exploration promises a new 

epistemology, offering a better understanding of the 

of knowledge acquisition in science.  In the long 

run, goals may be normative as well as descriptive.  Such 

an exploraiton might also offer the possibility of 

optimizing ongoing scientific exploration.  Given first 

indications of what an area of investigation is like—a first 

glimpse of an epistemic landscape—we might be able to 

tell whether such a landscape would most effectively be 

investigated by big science or small, by a few groups of 

closely linked investigators, a scattered set of 
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