
AI Dimensions in Software Development for Human-Robot Interaction Systems

Arunkumar Ramaswamy,1,2 Bruno Monsuez 1

1Department of Computer and System Engineering,
ENSTA-ParisTech, 828 Blvd Marechaux, Palaiseau, France

2VeDeCom Institute, 77 rue des Chantiers, 78000 Versailles, France
Email:{arun-kumar.ramaswamy; bruno.monsuez; adriana.tapus}@ensta-paristech.fr

Adriana Tapus 1

Abstract

In this paper, we highlight the usage of AI in software devel-
opment process for Robotic systems, in general and HRI sys-
tems, in particular. The software as well as the software de-
velopment methodology and associated tools are knowledge-
based systems. The key challenge is to represent domain
knowledge that enables the process and model evolution to
built complex software intensive HRI systems.

1 Introduction
Robots are becoming more social with the help of under-
lying software that employs cognitive processes behind user
mental models. Currently, the software development process
for designing and implementing Human-Robot Interaction
(HRI) systems are ad-hoc in nature and are mainly concen-
trated on delivering ’proof of concepts’ in order to substan-
tiate researcher’s idea. The software thus developed are least
reusable and the researchers have to re-develop from scratch
in order to built on existing work. Not only the software
(product), but also the software development methodology
(process) that facilitates the development of HRI systems
can be considered as knowledge-based systems. In this pa-
per, we highlight the application of AI in our software devel-
opment framework - Self Adaptive Framework for Robotic
Systems (SafeRobots).

2 SafeRobots Framework
SafeRobots is model-driven software development toolchain
that supports systematic software development for robotic
and HRI systems. It is based on three orthogonal soft-
ware engineering paradigms - knowledge-based engineer-
ing, model-driven software engineering, and component-
based software development. The software development
process in SafeRobots resides in four conceptual spaces -
knowledge space, problem space, solution space, and opera-
tional space, as illustrated in Figure 1. The application of AI
techniques in SafeRobots framework can be broadly catego-
rized into two parts: Search-based software engineering and
Semantic knowledge supported model evolution.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Search-Based Software Engineering
Search-Based Software Engineering (SBSE) reformulates
software engineering as a search problem (Harman 2012).
Our research work (Ramaswamy, Monsuez, and Tapus
2014b) on problems faced during software development in
robotics indicates that the existence of large solution space
available for system designers leads to poor software quality.
Multiple algorithms are available for implementing a func-
tionality in robotics and early decisions assuming future op-
erating conditions tend to degrade the software quality. We
have proposed a modeling language called Solution Space
Modeling Language (SSML) that models the solution space
of a given problem. Once the solution space for a given
problem is modeled, computational search techniques can
be applied to evaluate the system objectives and to converge
to a reduced set of solutions. The system can be a robot
or human-robot team with a goal specified in the problem
space. For example, the system’s objective to maximize its
Quality of Service (QoS) can be defined as:

Maximize

k∑
i=1

QoS(mi) (1)

where mi is an abstract term that represents an algorithm
(algorithmic sequence), model (human or automation), or
a control flow. Detailed discussions on QoS and NFP, and
its modeling benefits for HMI systems can be found in our
previous research paper (Ramaswamy, Monsuez, and Tapus
2014a). We have demonstrated this by modeling NFP of hu-
man driver, automation and their interaction in an assistive
lane keeping system for vehicles. The QoS of the mi can be
defined as:

QoS(mi) =
n∑

j=1

cijxij (2)

where, cij are application-specific coefficients and xij are
model parameters.

Offline Solution Search In offline search of solution
space, the system designer computes the optimum solution
using the application context and design time information.
For example, in the case of a human-machine system, the
design decisions include the task allocation to human or ma-
chine counterparts. Consider the case of cruise control in

128

Artificial Intelligence for Human-Robot Interaction: Papers from the 2014 AAAI Fall Symposium



Figure 1: Overview of conceptual spaces, modeling lan-
guages, and models involved in SafeRobots Framework

today’s cars, the steering control is allocated to the human
driver while the automation is responsible for applying ac-
celeration. In contrast, for an assisted parking application,
the steering is controlled by the machine while the accelera-
tion is provided by the human driver. This is an example for
static function allocation considering the QoS of composed
agents (

∑
mi).

Online Solution Search The offline search will not con-
verge to a single solution in many applications. It is due
to the fact that there may be multiple solutions that sat-
isfy the given constraints or due to the partial context in-
formation available during design time. For example, in
adaptive human-machine systems the function allocation
is a run-time problem. For example, assistive lane keep-
ing in automobiles is a perfect example for dynamic func-
tion allocation in Human-Machine system. The automation
part is the lateral control of the vehicle to keep the vehi-
cle in the same lane. The system takes control by apply-
ing the required torque on the steering wheel in case of
lane departure situations. For explanatory purpose, in the
Equation 1, there will be two model compositions - m1

and m2 representing human steering control and
automation steering control respectively. In this
example we use ACT-R human driver model proposed by
(Salvucci, Boer, and Liu 2001). The QoS of m1 and m2 is
defined as:

QoS(m1) =c11.lane change score

+ c12.production cycle time
(3)

QoS(m2) =c21.response time

+ c22.confidence level
(4)

where {c11, c12, c21, c22} are application-specific coeffi-
cients that determine the interaction policies between hu-

man and automation models. The parameters (xij), such as
lane change score, are ACT-R driver model parame-
ters. The QoS composition represented by Equation 1 is sub-
ject to the following constraints:

lane change score ≥ b1 (5)
production cycle time ≤ b2 (6)

response time ≤ b3 (7)

where, {b1, b2, b3} are context-specific parameter that are
dynamically determined during run-time.

Semantic Knowledge Supported Model Evolution
The conceptual spaces in SafeRobots framework is hierar-
chically arranged in such a way that the lower layer uses the
knowledge gained in the upper layer. The knowledge space
consists of domain concepts represented using ontologies.
The problem is modeling in the form of goals (i.e., hard
goals and soft goals) and requirements modeled using Goal
and Requirement Language (GRL). By applying the func-
tional constraints provided by the problem space on the do-
main conceptual knowledge, the solution space for the given
problem is modeled using SSML. The SSML can be ex-
tended by users to define domain-specific semantics, for ex-
ample, ACT-R cognitive architecture semantic model. The
NFP properties are specified along with their functionalities
in the solution model. The strategy is to shift the decisions
on NFP at a later stage when more information on operating
context such as external environment, hardware, operating
system, etc., are available. The operational model is filtered
from solution model by applying non-functional constraints.
The operational model contains concrete architectural model
with variabilities that are resolved dynamically during run-
time. The SafeRobots toolchain is being implemented using
Eclipse Modeling Framework. The model evolves during the
software development by incorporating the knowledge cre-
ated in the form of models and helps to shift the critical de-
cision when more information is available. There is a close
relationship between machine learning and model evolution
in software engineering complex HRI systems as both in-
volves progress during optimization that can be viewed as a
learning process.

3 Conclusion
In this paper, we discussed how AI techniques are applied
in intelligent software tools and process to develop com-
plex HMI systems. The main challenge is to adopt a sys-
tematic software development process so as to identify the
parameters and optimization strategies to develop efficient
and reusable software for HRI systems.

References
Harman, M. 2012. The role of artificial intelligence in soft-
ware engineering. In First International Workshop on Real-
izing Artificial Intelligence Synergies in Software Engineer-
ing (RAISE), 1–6. IEEE.

129



Ramaswamy, A.; Monsuez, B.; and Tapus, A. 2014a. Mod-
eling non-functional properties for human-machine systems.
In 2014 AAAI Spring Symposium Series, Formal Verification
and Modeling in Human-Machine Systems, Palo Alto, USA.
Ramaswamy, A.; Monsuez, B.; and Tapus, A. 2014b. Solu-
tion Space Modeling for Robotic Systems. Journal of Soft-
ware Engineering for Robotics (JOSER) 5(1):89–96.
Salvucci, D. D.; Boer, E. R.; and Liu, A. 2001. Toward an
integrated model of driver behavior in cognitive architecture.
Transportation Research Record: Journal of the Transporta-
tion Research Board 1779(1):9–16.

130




