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1 Introduction
Factory automation has revolutionized manufacturing over
the last 50 years, but there is still a large set of manufac-
turing tasks that are tedious or strenuous for humans to per-
form. We believe that human-robot collaboration can enable
safe and effective task execution while reducing tedium and
strain of the human. In this paper we address an important
step toward human-robot collaboration: learning a cost func-
tion for the robot motion planner which accounts for the
human-robot interaction constraints that arise when sharing
the workspace with a human.

Motion planning for robot manipulation in close proxim-
ity to humans poses two main challenges: first on the al-
gorithmic techniques to be used and second on the defini-
tion of safety and comfort metrics. Our prior work Main-
price et al. (2011) has focused on considering the human’s
safety, visibility, and musculoskeletal comfort directly in the
robot configuration space and solving motion planning us-
ing sampling-based and stochastic-optimization techniques.
More recently Dragan and Srinivasa Dragan and Srinivasa
(2013) have proposed a legibility metric inspired by the psy-
chology of action interpretation, which was applied to robot
motion planning. Our recent work Mainprice and Berenson
(2013), incorporates early prediction of human motion in a
dynamic motion planner capable of minimizing the interfer-
ence with the human and falling back quickly to a feasible
task by reasoning on a prediction of human workspace oc-
cupancy. All these approaches enforce human-robot inter-
action constraints by defining cost functions which the mo-
tion planner then uses to produce “human-aware” motions.
Defining such a function is generally assumed to be easier
than directly specifying the sequence of commands. How-
ever balancing the importance of each term in the function
to obtain a consistent robot behavior is generally performed
manually and can be quite unintuitive. In this work we hy-
pothesize that it is possible to mimic human-motion genera-
tion with a dynamic motion planning process. Thus we be-
lieve that it is possible to learn a cost function that encodes
the desired objectives of collaborative manipulation from a
library of human-human collaborative manipulation motions

In the next Section we first describe the Inverse Opti-
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Figure 1: Human-human experiment (right) and sampling of
manipulation motions for inverse optimal control (left).

mal Control (IOC) or Inverse Reinforcement Learning (IRL)
Abbeel and Ng (2004) method that enables us to recover the
cost function from a linear combination of abstract feature
functions. We then describe a set of features, inspired from
our previous work Mainprice et al. (2011, 2012) on “human-
aware” motion planning, to produce collaborative manipu-
lation motions. In Section 3, we present initial results that
illustrate the capacity of the IOC algorithm to learn a cost
function in a static setting using the features described in
Section 2. We have ran a human-human experiment (see Fig-
ure 1) and aim to use the collected data to learn a cost func-
tion for human-robot collaborative tasks from real demon-
strations with the presented framework in the near future.

2 Approach
In order to learn a cost function for motion planning of
collaborative manipulation tasks we proceed in two phases.
First we gather a library of human-human collaborative mo-
tions segmented in elementary reaching motions (i.e., from
a resting configuration to a grasping configuration). IOC is
then performed using the segmented motions as demonstra-
tions. In a second phase we use the learnt cost function in-
side a replanning loop to account for the human partner mo-
tions in real time.

Inverse Optimal Control Algorithm
We wish to perform IOC of human upper-body motions.
Such motions can be represented as time-parametrized
curves τ in the human’s configuration space. Because these
motions are inherently high-dimensional (in this work we
consider 15 DoFs), global optimality maybe unfeasible.
Hence we make use of the path integral inverse rein-
forcement learning algorithm Kalakrishnan et al. (2013),
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which can deal with high-dimensional continuous state-
action spaces, and only requires local optimality. We con-
sider an active human, whose trajectories are used as demon-
strations, and a passive human which is considered part of
the context associated with that motion. A context comprises
the passive human configuration as well as the locations of
objects in the scene. As we aim to recover cost functions for
a dynamic motion planning process, we then segment each
demonstration into several smaller trajectories by advanc-
ing the active human along the trajectory and modifying the
context with the current configuration of the passive human.

The original inverse optimal control problem solved by
the path integral inverse reinforcement learning algorithm
aims to recover a cost function composed of a control cost
term and a general (i.e., configuration dependent) cost term
that can be combined with a terminal cost term, which we do
not use here. Our formulation of the problem considers lin-
early parametrized cost functions. Each feature function is
user defined and models a desired property. A feature func-
tion penalizes motions which do not respect the associated
property, see Section 2 for a description of all features. The
cumulative cost C(τ), and feature count Φ(τ) of a trajectory
are defined as follows:

C(τ) = wT Φ(τ) ,Φ(τ) =

[
G(τ)
A(τ)

]
where Φ is a multi valued feature function defined by the
user, w are weights associated with the features which the
algorithm attempts to learn. A is a term enforcing smooth-
ness (i.e., control cost) and G a general term of the form:

G(τ) =

∫ T

t=0

φ(qt) dt '
N∑
i=1

φ(qi)δt

where qi is the configuration at index i along the trajectory.
The IOC algorithm samples trajectories with low con-

trol features around each demonstration from a multivari-
ate gaussian distribution with covariance R−1, for a defini-
tion see Kalakrishnan et al. (2011). The standard deviation is
tuned manually. The recovered weights are obtained by solv-
ing the folwing convex minimization problem using gradient
descent:

min
w
−

D∑
i=1

log
ew

T Φi

K∑
k=1

ew
T Φi,k

where D is the number of demonstrations and K the num-
ber of samples per demonstrations. For more details on the
path integral inverse reinforcement learning algorithm, see
Kalakrishnan et al. (2013).

Feature functions
We consider variants of the feature functions that have been
introduced in previous, inspired from the proxemics theory
Hall and Hall (1969), to account for human-robot interaction
constraints.

Distance between human links The goal of this feature is
to avoid collision risks. We consider multiple distances (e.g.,
wrist to wrist, wrist to elbow, wrist to pelvis).

Figure 2: Three trajectories computed using the STOMP
motion planner (a) with a user given weight (b) with the re-
covered weight (c) with an random weight vector.

Figure 3: Difference in cost using the recovered weight vec-
tor and the original weight vector, function of the number of
sample trajectories used by the IOC algorithm, planned on
the example of Figure 2

Visbility Humans generally feel more comfortable when
the other agent, robot or human, is manipulating within
his/her field of view. To enforce this, we consider multi-
ple points of interest on the active human body and measure
their distances to the center of the field of view of the passive
human.

Musculoskeletal effort This feature measures the comfort
of the active human. It is evaluated using three functions in-
troduced in Marler et al. (2005) : 1) a joint angle distance
from a resting posture to the actual posture, 2) the potential
energy of the arm by measured as the relative height of the
arm and forearm, and 3) the distance to the joint limits.

Smoothness This feature ensures that the trajectory re-
mains smooth. We measure, length of the configuration
space trajectory, length of the task space trajectory, and sum
of accelerations along the trajectory.

3 Results
In this section we present preliminary results illustrating the
capacity of the algorithm to recover a cost function using
distance between links and smoothness features. We first
planned a trajectory with a user input weight vector using
the STOMP algorithm Kalakrishnan et al. (2011), see Fig-
ure 2. We then used the IOC algorithm presented in Section
2 to recover a weight vector using this planned trajectory as
a demonstration. Figure 3 shows the difference in cost using
the original weights, between the original trajectory and the
trajectories planned using the recovered weights as the num-
ber of samples used by the IOC algorithm increases. The
results are averaged over 10 runs. The mean and standard
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deviation decrease as the number samples increases which
indicates the capacity of the algorithm to recover cost func-
tions for the type of reaching motions we consider.

We are currently gathering a library of human-motions us-
ing a motion capture system and we will apply the approach
described in this paper to the data and evaluate its efficacy.
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