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Abstract

This paper proposes the use of the Brownian distance correla-
tion to conduct a lead-lag analysis of financial and economic
time series. When this methodology is applied to asset prices,
the non-linear relationships identified may improve the price
discovery process of these assets.
The Brownian distance correlation determines relationships
similar to those identified by the linear Granger causality
test, and it also uncovers additional non-linear relationships
among the log prices of oil, coal, and natural gas.

1 Introduction
The final report of the bi-partisan Project 88 of the US
Congress (Stavins 1989) concluded that the environmental
and economic debt the nation has acquired by not establish-
ing appropriate environmental regulations was ineludible.
The negative effects of SO2 emissions have been thoroughly
evaluated, especially, health deterioration issues caused by
acid rain and other unwanted impacts which generate signif-
icant social costs. Acid rain caused by sulfate acid deposi-
tion can be detrimental to ecosystems, plants and animals,
both aquatic and terrestrial (Smith et al. 2010).

The US Congress passed the Clean Air Act (CAA)
Amendments of 1990 that included, under Title IV, an al-
lowance market for the control of sulfur dioxide (SO2) emis-
sions, by way of the acid rain control initiative. This consti-
tuted a market based mechanism for controlling the cost of
abating SO2 emissions and a movement away from more
traditional command-and-control regulations. (Carlson et al.
2000) argued that savings in SO2 emissions abatement costs
in the electric power sector were $700 to $800 million per
year when adopting this mechanism compared to traditional
command and control regulation procedures.

The regulation of SO2 andNOx emissions mostly affects
the electric power sector (Banzhaf, Burtraw, and Palmer
2002). This is mainly because 37.4% of the electricity pro-
duced in the US in 2012 is based on burning coal (see Ta-
ble 1), which accounts for nearly 70% of the total SO2

emissions. Furthermore, coal-sourced electricity is likely to
be a principal source of energy for at least several more
decades given that the US has the largest amount of coal
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Year Coal Oil Nat.gas Nuclear Ren.En. Other

2000 51.72% 2.92% 15.81% 19.83% 9.38% 0.35%
2001 50.96% 3.34% 17.10% 20.57% 7.70% 0.32%
2002 50.10% 2.45% 17.91% 20.22% 8.90% 0.42%
2003 50.83% 3.07% 16.74% 19.67% 9.15% 0.55%
2004 49.82% 3.05% 17.88% 19.86% 8.85% 0.53%
2005 49.64% 3.01% 18.77% 19.28% 8.82% 0.48%
2006 48.97% 1.58% 20.09% 19.37% 9.49% 0.51%
2007 48.51% 1.58% 21.57% 19.40% 8.49% 0.45%
2008 48.21% 1.12% 21.44% 19.57% 9.25% 0.42%
2009 44.45% 0.98% 23.31% 20.22% 10.57% 0.45%
2010 44.78% 0.90% 23.94% 19.56% 10.36% 0.45%
2011 42.27% 0.74% 24.72% 19.27% 12.52% 0.48%
2012 37.42% 0.56% 30.35% 18.97% 12.22% 0.47%

Table 1: Net electricity generation: Participation of energy
source. Ren. en. refers to renewable energy. Source: US En-
ergy Information Administration

reserves in the world (World Energy Council 2010). In the
US alone in 2008, the electric power industry produced
and emitted nearly 7.9 million tons of SO2 emissions as a
byproduct of their activity, out of a total of 9.5 million tons
(Environmental Protection Agency 2008). SO2 emissions
generated by electric power plants accounted for 83.3% of
the total sulfur emissions in 2008. Despite the fact that SO2

emissions have consistently been reduced since the start of
the CAA Amendments in 1990, they are still considered to
be high and new restrictions are being planned.

The major contaminant effects of coal and the reduc-
tion of natural gas prices since 2005 have led to a con-
traction in the proportion of coal and an increase in the
share of natural gas used in the production of electric-
ity in the US since the year 2000 (see Table 1). Accord-
ing to one of the future scenarios considered by the EIA
(U.S. Energy Information Administration 2013), natural gas
and coal will account for 43% and 27% of total electricity
generation in 2040, respectively. The share of oil on elec-
tricity generation has also decreased since 2000 in the US;
however, it is still important at the world level, where its
share is about 5% (U.S. Energy Information Administration
2011).

This analysis shows that the main fossil fuels (oil, coal
and natural gas) have some common elements that affect all
fuels, such as emissions control. Markets and political forces
also affect fuel prices, especially, in the case of oil. It is
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also possible their prices are mutually determined or that one
price depends on another one. (Mohammadi 2011) finds that
in the case of the US, the oil and natural gas prices are glob-
ally and regionally determined, respectively, and coal prices
are defined by long-term contracts. (Mohammadi 2009), us-
ing cointegration analysis, exposes a strong relationship be-
tween electricity and coal prices and an insignificant rela-
tionship between electricity and oil and/or natural gas prices.
(Asche, Gjolberg, and Volker 2003) and (Bachmeier and
Griffin 2006) find very weak linkages among oil, coal and
natural gas prices using cointegration analysis, while crude
oil and several refined product prices are integrated (Asche,
Gjolberg, and Volker 2003). (Hartley, Medlock, and Ros-
thal 2008) notice an indirect relationship between natural
gas and oil prices. Even more, (Aruga and Managi 2011)
detect a weak market integration among a large group of en-
ergy products: WTI oil, Brent oil, gasoline, heating oil, coal,
natural gas, and ethanol futures prices.

(Mjelde and Bessler 2009) observe that oil, coal, natural
gas and uranium markets are not fully cointegrated. (Asche,
Osmundsen, and Sandsmark 2006) indicate that the U. K.
energy market between 1995 and 1998 was highly integrated
where the demand was for energy rather than for a particu-
lar source of energy. (Brown and Yucel 2008) show that oil
and natural gas prices have been independent since 2000;
however, when weather and inventories are taken into con-
sideration in an error correction model, crude oil prices have
an effect on natural gas prices. Similar results are obtained
by (Ramberg 2010) using cointegration analysis. (Amavilah
1995) observes that oil prices influence uranium prices.

The causality analysis is also used to evaluate the rela-
tionship between spot and future commodity prices. (As-
che, Gjolberg, and Volker 2008)–using a non-linear Granger
causality test–shows that neither the futures nor the spot
crude oil market leads the relationship.

Most of the studies mentioned are based on cointegration
analysis and Granger causality; however, none of these stud-
ies have used a non-linear correlation measure to evaluate
the lead-lag relationship among the fossil fuels.

This paper proposes to use the Brownian distance corre-
lation to conduct a non-linear lead-lag dependence analysis
of coal, oil and gas. Section 2 introduces the different meth-
ods explored in this study; Section 3 presents the data used;
Section 4 explains in detail the estimation techniques; Sec-
tion 5 presents the results of our tests; Section 6 discusses
the results, and Section 7 draws some conclusions and final
comments.

2 Methods
2.1 Granger causality
Granger causality ((Granger 1969; 1980) and (Granger
2001)) is a very popular methodology used in economics,
financial econometrics, and in many other areas of study,
such as neuroscience, to evaluate the linear causal relation-
ship among two or more variables. According to the basic
definition of Granger causality, the forecasting of the depen-
dent variable Yt with an autoregressive process using Yt−l as
its lag-l value, should be compared with another autoregres-

sive process using Yt−l and the vector Xt−l of independent
variables. So, Xt−l Granger causes Yt when Xt−l happens
before Yt, and Xt−l has unique information to forecast Yt
that is not present in other variables.

Typically, Granger causality is tested using an autore-
gressive model with and without the vector Xt−1, such as
in the following bivariate example:
Yt =

∑L
l=1 αlYt−l + ε1

Yt =
∑L
l=1 αlYt−l +

∑L
l=1 βlXt−l + ε2

where the residual is a white noise series:

εj ∼ N(0, σ), j=1,2.

Xt−l Granger causes Yt if the null hypothesisH0 : βl = 0
is rejected based on the F-test. The order of the autoregres-
sive model is selected based on the Akaike information cri-
terion (AIC) or the Bayesian information criterion (BIC).

2.2 Brownian distance
(Székely and Rizzo 2009) have proposed a multivariate de-
pendence coefficient called distance correlation that can be
used with random vectors of multiple dimensions.

(Székely and Rizzo 2009) also proposed the Brownian
distance covariance, which captures the covariance with re-
spect to a stochastic process. Distance covariance (ν(X,Y ))
between the random vectors X and Y measures the distance
between fXfY and fX,Y and is obtained as the square root
of ν2(X,Y ) = ‖fX,Y (t, s) − fX(t)fY (s)‖2 where ‖.‖ is
the norm, t and s are vectors, fX and fY are the characteris-
tic functions of X and Y respectively, and fX,Y is the joint
characteristic function of X and Y.

Empirically, ν(X,Y ) evaluates the null hypothesis of in-
dependence H0 : fXfY = fX,Y versus the alternative hy-
pothesis HA : fXfY 6= fX,Y . In this paper this test is the
distance covariance test of independence.

Likewise, distance variance (ν(X)) is the square root of
ν2(X) = ‖fX,X(t, s)− fX(t)fX(s)‖2.

Once distance covariance is defined, the distance cor-
relationR(X,Y ) is also defined in the following expression:

R2 =

{
ν2(X,Y )√
ν2(X)ν2(Y ))

. ν2(X)ν2(Y ) > 0

0, ν2(X)ν2(Y ) = 0

Distance correlation takes a value of zero in case of inde-
pendence and one when there is complete dependence.

This paper proposes to evaluate the non-linear depen-
dence of the current value of Y (Yt) on the l lagged
value of X (Xt−l) with the Brownian distance correlation
R(Xt−l, Yt). We particularly want to explore the lead-lag
relationship among the time series under study. In general,
if R(Xt−l, Yt) 6= 0 and l > 0, then Xt−l leads the series
Yt. Additionally, if R(Xt−l, Yt) 6= 0, R(Xt, Yt−l) = 0 and
l > 0, then there is an unidirectional relationship from Xt−l
to Yt. However, if R(Xt−l, Yt) 6= 0, R(Xt, Yt−l) 6= 0 and
l > 0, then there is a feedback relationship between X and
Y . On the contrary, if R(Xt−l, Yt) = 0 and R(Xt, Yt−l) =
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Figure 1: Log prices by product. Horizontal lines repre-
sent structural breaks according to the Bai-Perron test of the
Coal/WTI log prices ratio

0 then there is no lead lag relationship between X and Y
(Tsay 2010).

3 Data
We used the daily time series of one month forward futures
log prices of the fossil fuel series for the period 2006-2012:
West Texas Intermediate oil (WTI), the Central Appalachian
[bituminous] coal (Coal) and natural gas (Gas) from the New
York Mercantile Exchange (NYMEX) (see Figure 1). These
series have some relevant autoregressive effects according
to the autocorrelation function (ACF) and the partial ACF
(see Figure 2); however, the emphasis of this paper is on the
lagged cross-correlation, which will be explored in the next
sections.

4 Estimation Techniques
We evaluated the stationarity of the series using the aug-
mented Dickey-Fuller (ADF) test. We applied the Bai-
Perron (Bai and Perron 1998) test to detect structural breaks
of the coal/WTI log prices ratio, considering that these are
the most dominant products of the causality analysis. The
Bai-Perron test is particularly useful when the break date
is unknown and there is more than one break date. For the
complete series and for each of the periods identified with
the Bai-Perron test, we tested the non-linearity of the se-
ries using the White (Lee, White, and Granger 1993) and
the Terasvirta test (Terasvirta, Lin, and Granger 1993). We
also conducted a non-linear lead-lag relationship analysis
using the Brownian distance correlation between each pair
of variables and up to seven lags (one week). We compared
these results with the Granger causality test and evaluated
the cointegration of the different pairs using the Johansen
test (Johansen 1988b; 1988a) to decide if we had to use the
VAR error correction model. In our analysis,→ denotes re-
lationship. For instance, X → Y indicates that X Granger
causes Y when Granger causality is used or Y is dependent
of X when the Brownian distance correlation is used. There-
fore, the p-value of every test only evaluates the effect of one
variable into another one, and is not affected by other time
series.

2006-12 Pre-crisis Crisis Recovery
WTI -1.70 1.72 -1.21 -2.48
Coal -2.13 -1.57 -1.14 -2.74
Gas -2.78 -3.36 -1.43 -1.35

(a) Log Prices

2006-12 Pre-crisis Crisis Recovery
-13.25∗∗ -7.07∗∗ -9.24∗∗ -8.13∗∗
-10.93∗∗ -7.61∗∗ -9.54∗∗ -7.72∗∗
-11.09∗∗ -8.11∗∗ -8.86∗∗ -7.88∗∗

(b) Log returns

Table 2: ADF test by product and period for log prices and
log returns. ∗: p ≤ 0.05, ∗∗: p ≤ 0.01.

5 Results
The ADF test indicates that all log price series are non-
stationary (see Table 2) and, as expected, the log return se-
ries are stationary. So, we used the log returns (the first dif-
ference of the log price) to conduct the causality tests. The
Bai-Perron test applied to the coal/WTI ratio series split the
data into the following periods: January 3, 2006 - January
17, 2008 (pre-crisis period), January 18, 2008 - November
17, 2010 (financial crisis period), and November 18, 2010
- December 31, 2012 (recovery period) (see Figure 1). We
conducted our analysis in these different periods and in the
complete series 2006-2012.

Table 3 includes the descriptive statistics of the log price
series and their cross-correlation values. The correlations be-
tween the series significantly increase during the crisis pe-
riod, as can be observed by the convergence of all the series
in Figure 1. In the pre-crisis period the correlation between
WTI and Coal is 0.64; however, after the crisis this correla-
tion falls to 0.08. The opposite happens with the correlation
between Coal and Gas where this value increases from 0.29
to 0.82, while the correlation between Gas and WTI changes
from 0.07 to -0.15. These cross-correlation changes indicate
a high interrelationship among the three fossil fuel series;
however, the long-term dynamic linkages are better captured
by the lead-lag and Granger causality analysis included in
Table 4.

As none of the log price pairs are cointegrated in the dif-
ferent periods at the 5% significance level according to the
Johansen test, we used a vector autoregressive (VAR) model
of the log return series to run the Granger causality test with
7 lags instead of using the VAR error correction model.

6 Discussion
During the complete period 2006-2012, WTI and Coal show
a feedback relationship according to the Brownian distance,
and only the WTI → Coal relationship is maintained con-
forming to the Granger causality test with a 5% significance
level (see Table 4). Coal also Granger causes Gas for the lags
5 and 6. Additionally, the Brownian distance recognizes the
following dependences (lags between parentheses): Gas (1,
7) → Coal, Coal (2, 3) → Gas, and WTI (1) → Gas. Very
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Figure 2: ACF and Partial ACF by product

2006-12
Coal WTI Gas

Mean 4.08 4.37 1.62
St.dev. 0.26 0.25 0.41
Skewness 0.79 -0.47 0.05
Kurtosis 0.34 0.48 -0.63

Correlation Matrix: 2006-12
WTI 0.64
Gas 0.16 -0.03 1

Pre-crisis
WTI 0.55
Gas 0.29 0.07 1

Crisis
WTI 0.67
Gas 0.85 0.65 1

Recovery
WTI 0.08
Gas 0.82 -0.15 1

Table 3: Descriptive statistics and correlation matrix of the
log price series

similar relationships are observed during the crisis period
(2008-2010). Both tests indicate that the Gas→WTI depen-
dence is relevant during the pre-crisis period, and the Brow-
nian distance recognizes the importance of the relationship
WTI (1) → Coal and Gas (1,2)→ Coal. During the recov-
ery period, only the Coal→ Gas relationship is relevant for
both tests, especially for the Granger causality tests. Most
of the additional relationships observed using the Brown-
ian distance test, which were not recognized by the Granger
causality test, were confirmed to be relevant non-linear re-
lationships according to the White and Terasvirta tests (see
Table 4). Hence, the Brownian distance correlation recog-

Figure 3: Evolution of net electricity generation by energy
source. Source: US Energy Information Administration

nizes an important number of dependences, and some of
them are confirmed by the Granger causality test. The non-
linear relationships identified by the Brownian distance cor-
relation challenge the traditional view that commodity prices
are mostly determined by international market and political
forces. Examples of these forces are the decisions of the Or-
ganization of the Petroleum Exporting Countries (OPEC) to
curtail oil production or a political crisis in the Middle East.
These non-linear relationships may have an impact on the
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Periods Lags/Effects 1 2 3 4 5 6 7

2006-12 WTI→ Coal ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
Coal→ Gas ∗∗ ∗∗ ∗

Pre-crisis Gas→WTI ∗∗ ∗∗ ∗∗ ∗ ∗
Crisis WTI→ Coal ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Coal→ Gas ∗ ∗
Recovery Coal→ Gas ∗∗ ∗∗ ∗∗ ∗ ∗

(a) Granger Causality: significance level

Periods Lags/Effects 1 2 3 4 5 6 7

2006-12 WTI→ Coal 0.12∗∗ 0.07∗∗ 0.09∗∗ 0.07∗∗ 0.08∗∗ 0.08∗∗ 0.07∗∗
Gas→ Coal 0.06∗ 0.06 0.05 0.04 0.04 0.06 0.07∗
Coal→WTI 0.09∗∗ 0.08∗∗ 0.09∗∗ 0.10∗∗ 0.08∗∗ 0.09∗∗ 0.07∗
Coal→ Gas 0.05 0.08∗∗ 0.07∗ 0.05 0.06 0.05 0.05
WTI→ Gas 0.09∗∗ 0.05 0.04 0.04 0.04 0.05 0.04

Pre-crisis WTI→ Coal 0.18∗∗ 0.09 0.09 0.09 0.07 0.07 0.09
Gas→ Coal 0.12∗ 0.11∗ 0.08 0.07 0.08 0.09 0.09
Gas→WTI 0.12∗ 0.08 0.07 0.08 0.07 0.07 0.08

Crisis WTI→ Coal 0.16∗∗ 0.11∗ 0.11∗ 0.10∗ 0.11 0.11∗ 0.10
Gas→ Coal 0.08 0.07 0.09 0.06 0.07 0.08 0.11∗
Coal→WTI 0.13∗∗ 0.11∗ 0.12∗∗ 0.14∗∗ 0.13∗∗ 0.13∗∗ 0.09
Coal→ Gas 0.08 0.11∗ 0.12∗ 0.07 0.10 0.07 0.09
WTI→ Gas 0.11∗ 0.07 0.07 0.07 0.07 0.06 0.08

Recovery Gas→ Coal 0.07 0.09 0.09 0.07 0.08 0.09 0.07
Coal→ Gas 0.09 0.13∗ 0.08 0.07 0.08 0.07 0.09

(b) Brownian distance correlation

Table 4: Granger causality (panel a) and Brownian distance correlation (panel b) of log return series. Granger causality panel
only includes this information. Non-relevant relationships are not are excluded. Yellow indicates non-linearity according to
either the White or Terasvirta test, and green means that both tests detect non-linearity with a 5% significance level.
∗: p ≤ 0.05, ∗∗: p ≤ 0.01.

selection of inputs used to generate electricity in the US.
Figure 3 shows that electricity generated with coal reached
its peak in 2007 and substantially decreased afterwards. On
the contrary, electricity generated with natural gas has been
increasing since 1990, especially since 2009. Between the
years 2000 and 2012, the proportion of electricity gener-
ated by coal and oil have decreased from 51.7% and 2.9% to
37.4% and 0.6% respectively while the proportion of elec-
tricity generated by natural gas almost doubled from 15.8%
to 30.4% (see Table 1). The increase of the electricity gener-
ated with natural gas is equivalent to the contraction of elec-
tricity generated with coal. This can be partially explained
by the decline of natural gas log prices since December 2005
to April 2012 (see Figure 1). The CAA restrictions on SO2

emissions and the relative reduction of natural gas prices led
the power plants to partially substitute coal with natural gas
as their main input. As more power plants have increased
their consumption of natural gas, its price has also increased
following similar trends of oil and coal. The linear and non-
linear lead-lag analysis also indicates that coal’s price has an
important effect on natural gas price, especially during the
crisis and recovery period. This particular case illustrates the
non-linear dynamic among the prices of the different com-
modities studied and the major interrelationship that exists
among the three fossil fuel series. The main application of
these non-linear relationships is to improve the forecast of
commodity prices as demonstrated by (Creamer 2015).

7 Conclusions

This paper proposes the use of the Brownian distance cor-
relation to conduct a lead-lag analysis of financial and eco-
nomic time series. When this methodology is applied to as-
set prices, the non-linear relationships identified may im-
prove the price discovery process of these assets.

The Brownian distance correlation determines relation-
ships similar to those identified by the linear Granger causal-
ity test, and it also uncovers additional non-linear relation-
ships among the log prices of oil, coal, and natural gas. The
reduction of gas prices since 2005 shifted the demand from
coal to natural gas by US electric power plants; however, this
change eventually led to an increase in gas prices.

This research can be extended to explore the lead lag re-
lationship between spot and future prices of complex assets
such as commodities and foreign currencies applied to dif-
ferent markets.
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