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Introduction
The goal of this research is to enable robots to learn new
things from everyday people. For years, the AI and Robotics
community has sought to enable robots to efficiently learn
new skills from a knowledgeable human trainer, and prior
work has focused on several important technical problems.
This vast amount of research in the field of robot Learning
by Demonstration has by and large only been evaluated with
expert humans, typically the system’s designer. Thus, ne-
glecting a key point that this interaction takes place within
a social structure that can guide and constrain the learning
problem. We believe that addressing this point will be es-
sential for developing systems that can learn from everyday
people that are not experts in Machine Learning or Robotics.

Our work focuses on new research questions involved
in letting robots learn from everyday human partners (e.g.,
What kind of input do people want to provide a machine
learner? How does their mental model of the learning pro-
cess affect this input? What interfaces and interaction mech-
anisms can help people provide better input from a machine
learning perspective?) Often our research begins with an in-
vestigation into the feasibility of a particular machine learn-
ing interaction, which leads to a series of research questions
around re-designing both the interaction and the algorithm
to better suit learning with end-users. We believe this equal
focus on both the Machine Learning and the HRI contri-
butions are key to making progress toward the goal of ma-
chines learning from humans.

In this abstract we briefly overview four different projects
that highlight our HRI approach to the problem of Learning
from Demonstration.

Keyframe-based Learning from
Demonstration

In the typical LfD teaching interaction, each demonstration
is an entire state trajectory, that is, the teacher provides a
continuous uninterrupted demonstration of the skill to the
robot. Alternatively, we proposed learning from much more
sparse keyframe trajectories, which are sequential points that
the teacher demonstrates to the robot. In a series of user
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studies, we evaluated keyframe demonstrations against tra-
jectory demonstrations from an HRI perspective, revealing
a set of advantages and disadvantages for each (Akgun et
al. 2012). Some users’ trajectory demonstrations were in-
consistent and noisy making learning difficult or impossi-
ble. However, all the users were able to utilize keyframe
demonstrations to teach successful skills. On the other hand,
keyframes cannot be directly used to provide dynamics in-
formation. We have proposed hybrid demonstrations, which
can have both trajectory or keyframe segments, to combine
the advantages of both types of demonstrations. An example
LfD interaction can be seen in Fig. 1a.

We have also observed that users concentrate on achiev-
ing the goal of the demonstrated skill rather than on consis-
tent demonstrations of how to achieve it. We interpret this
as people being task-oriented. This fits well with keyframe
demonstrations. Users can use them to highlight salient parts
of the skill, which is difficult to extract from trajectories.

Learning Action and Task Models
Simultaneously

Based on our observations about the users being task-
oriented, we propose to learn both action and task models
simultaneously. The action corresponds to how the robot
moves and the task corresponds to the desired change of
state associated with the demonstration. This is most rele-
vant for object oriented tasks, for example closing a box. The
action component would be the robot’s end-effector getting
under the lid moving up and then moving down on top the
box. The task component would be to the state change of a
previously opened box being closed.

The action model is responsible for executing the skill.
Hence, the action model is learned using the data from
robot’s joint space, end-effector space or the control space.
The task model is responsible for monitoring the execution
success. Since we are interested in object-oriented skills, the
task models are learned from object data, extracted from an
RGBD camera. Both types of data are gathered during the
same set of demonstrations.

Goal Learning from Demonstration
In addition to learning primitive actions, we also work on
learning high level tasks comprised of sequences of these
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(a) (b) (c)

Figure 1: (a) A kinesthetic interaction for skill learning. The user guides the robot’s arm to demonstrate the skill. Both action data and object
data are collected. (b) A valid goal state for the Make Sandwich task, composed of four pick-and-place(object, location) actions: place the
top slice of bread, meat, cheese, and bottom slice of bread (c) Affordance learning: force data captured during closing the box (label B) and
scooping beans tasks (label S). Subscripts S and F represent success and failure. Highlighted portions are when the robot touched the object.

actions. We are interested in object-directed tasks, whereby
the goal is achieved by some configuration of objects. Our
prior work focuses on learning a generalized model of the
task goal; We explored the use of active learning to introduce
transparency into the learning process and refine the goal
representation based on human feedback (Chao, Cakmak,
and Thomaz 2010) and examined the transfer of knowledge
from known tasks in order to learn novel tasks faster (Chao,
Cakmak, and Thomaz 2011).

Our current work extends this learning of task goals to
learning the goal representation for the entire sequence of
actions. Fig. 1b shows a goal state for the make sandwich
task abstraction. It is composed of four pick and place ac-
tions on a top slice of bread, meat, cheese, and a bottom
slice of bread. During a demonstration, the teacher pro-
vides the sequence of actions, while an image of the robot’s
workspace is recorded, before and after each action. Each
action is represented by preconditions and postconditions.
Since each action is object-directed, preconditions charac-
terize the object to be selected (e.g. color, shape, size) and
postconditions characterize placement of the selected object
(e.g. location). The hypothesis for preconditions consists of
conjunctions of discrete object attribute values, and the hy-
pothesis postconditions is a two-dimensional Gaussian dis-
tribution of the object’s goal location. The preconditions are
learned by pruning the object attributes and the postcondi-
tions are learned by fitting the distribution. To meet the pre-
conditions, an object must possess all of the relevant values.
To meet the postconditions, the object must be placed within
some variance of the distribution.

Teachers will have limited time and patience in a realistic
scenario, resulting in a limited set of demonstrations. With
such a limited data set, the resulting learned models will be
uncertain. We are currently developing an active learning
framework to address this.

Affordance Learning from Demonstration
In the two previous examples, only visual features were con-
sidered in the expected perceptual state change over an ac-
tion. To improve the execution of skills and tasks, we want

to incorporate haptic information into the robot’s model of a
manipulation skill. Specifically, we are interested in under-
standing how force/torque (F/T) data and LfD can play a role
in affordance learning. Affordances, defined as “action pos-
sibilities” by psychologist J.J. Gibson (Gibson 1977), look
at the relationship between agents, actions, and the environ-
ment. For example a robot arm (agent) tapping (action) a ball
on a flat surface (environment) has the affordance of rolling.
Once learned, affordances can be used for many tasks such
as planning for task execution (Krüger et al. 2011) and imi-
tation learning (Montesano et al. 2008).

Research in this area has traditionally focused on visual
information and building controllers to execute the motion
primitives. By using LfD, we can seed motion primitives for
the robot to execute rather than creating a controller for each
primitive. Furthermore, prior work in this area (Thomaz
and Cakmak 2009) demonstrate that humans are particularly
good at providing rare environment configurations that can
improve and speed up the affordance learning process.

Initial results where we collected F/T information from a
robot arm performing a series of tasks demonstrated from
a human operator show that LfD is a viable solution for
exploration for affordance learning. The robot successfully
performed five unique tasks (e.g tightly closing a box or
scooping beans) that traditionally would have taken an ex-
pert weeks to tune a controller for. The data collected from
the F/T sensors can be seen in Fig. 1c and show promise for
integrating haptic information to develop a richer model of
affordances using both visual and F/T information.

Conclusion
Our research aim is to develop interactions and algorithms
for learning from naı̈ve human teachers through demonstra-
tion. In all of the four aforementioned projects, we take an
HRI approach to the problem of LfD. In our work, we have
introduced ways to get better demonstrations from users
with keyframes and active learning for both low level and
high level tasks. We leverage the user behavior with learn-
ing task models during low level skill demonstrations and to
learn otherwise difficult to discover affordances.
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et al. 2011. Object–action complexes: Grounded ab-
stractions of sensory–motor processes. Robotics and Au-
tonomous Systems 59(10):740–757.
Montesano, L.; Lopes, M.; Bernardino, A.; and Santos-
Victor, J. 2008. Learning object affordances: From sensory–
motor coordination to imitation. Robotics, IEEE Transac-
tions on 24(1):15–26.
Thomaz, A. L., and Cakmak, M. 2009. Learning about
objects with human teachers. In Proceedings of the 4th
ACM/IEEE international conference on Human robot inter-
action, 15–22. ACM.

12




