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Introduction
Developing collaborative robots that can productively op-
erate out of isolation and work safely in uninstrumented,
human-populated environments is critically important for
advancing the field of robotics. The development of such
systems, those that handle the dynamics of human environ-
ments and the complexities of human interaction, is a strong
focus within Human-Robot Interaction and involves under-
lying research questions deeply relevant to the Artificial In-
telligence community.

Especially in domains where modern robots are ineffec-
tive, we wish to leverage human-robot teaming to improve
the efficiency, ability, and safety of human workers. As a
community, we desire to create collaborative robots that can
provide assistance when useful, remove dull or undesirable
responsibilities when possible, and provide instruction or
guidance when necessary.

Doing so requires addressing a multitude of deep and
challenging research questions. Inferring the intentions of
one’s collaborators is critically important for effective team-
ing, yet remains an extremely complex problem even under
instrumented environments. Optimally planning one’s own
actions under uncertainty is also a necessary field of study,
as human populated environments are dynamic and often
contain nigh-unpredictable actors. Task comprehension and
knowledge transparency, particularly building shared mental
models with teammates, is crucial to multi-agent collabora-
tion. Finally, user modeling plays a large role in optimizing
team behavior, yet remains an open problem as feature se-
lection, extraction, analysis, and exploitation are difficult to
generalize across scenarios.

Research Overview
Our work focuses on creating agents capable of human-
robot teamwork, in particular the case where a team of hu-
mans and robots are working together towards a common
goal. This research exists at the intersection of a host of
important robotics problems (Hayes and Scassellati 2013a).
These include learning motor primitives from demonstration
(LfD), learning hierarchical task networks (Hayes and Scas-
sellati 2014a), performing multi-agent planning and state
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Figure 1: One human-robot teaming domain we focus on is
the Collaborative Workbench platform, designed for shared
workspace, close proximity human-robot teaming exercises.

estimation, inferring other agents’ intentions (Hayes and
Scassellati 2013b), collaborative manipulation, and legibly
conveying internal knowledge and understanding. In par-
ticular, we focus on collaboration between a lead worker
and robotic assistant, complementing prior work that devel-
ops collaborative robots as peers (Knepper et al. 2013) and
those that learn from demonstration (Konidaris et al. 2011;
Cakmak and Thomaz 2012).

The research we perform is singularly focused on build-
ing the technology required to produce a capable robot as-
sistant that comprehends complex tasks and is trainable by
non-technical subject matter experts. To be effective, this as-
sistant must be able to learn to anticipate the physical and
materials-related needs of its collaborators, adapting to and
constantly evaluating its own desired plans against the pref-
erences of its teammates. Further, our work introduces meth-
ods for an assistive robot teammate to become an instruc-
tor, using learned task information to autonomously gener-
ate strategies for training novice teammates.

Human-Robot Collaboration
Two popular paradigms for collaboration are ‘leader-
follower’ and ‘equal partners’. In leader-follower teaming,
one agent drives the progression of the task while the fol-
lower facilitates subtask completion. In equal partners, each
agent takes a lead role in task execution. Both paradigms
require an awareness of one’s collaborators and the ability
to appropriately react to them. Our work focuses primarily
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on the leader-follower paradigm of human-robot teamwork.
Within this model of collaboration, we examine two distinct
roles for a robot to assume: assistant and mentor. As each
teaming strategy is dependent upon the robot having a thor-
ough understanding of the task being performed, task com-
prehension is a core component of our work.

Task Comprehension
By leveraging a combination of kinesthetically trained dy-
namic movement primitives (DMPs), Partially Observable
Markov Decision Processes (POMDPs), and Active Learn-
ing, we develop a robot capable of learning hierarchical task
networks (HTNs). While collaborating, maintaining situa-
tional awareness and accurately predicting coworker intent
is critical. Thus, using a novel graph transformation algo-
rithm, we are able to use these HTNs to build hierarchi-
cal, goal-centric (as opposed to environment-state centric)
POMDPs that are used to infer co-workers’ intentions.

Having developed the ability to transform a task into a
hierarchical network of subtask-level goals, we have the in-
formation necessary to design algorithms for enabling pro-
ductive assistive and instructive behaviors.

Assistive Roles
We predominantly consider application domains in which
a human is performing a task while physically sharing a
workspace with a robot (Figure 1). The central contribution
of this research is a means of learning different types of as-
sistive behaviors and the contexts in which to apply them
(Hayes and Scassellati 2014b). Learned behaviors take the
form of DMPs, which can range from simple materials sta-
bilization constraints to joint object manipulations. Primary
concerns for this operating mode include building shared
mental models with teammates (having comparable concep-
tions of the task steps and progression) and performing so-
cial modeling to learn user preferences (e.g., proxemics or
subtask completion ordering).

Our work takes these subproblems into account while de-
veloping algorithms that allow for the robot to associate
LfD-acquired assistive behaviors with relevant nodes in a
HTN. Collaborators are able to teach a robot, via gesture-
based instruction or kinesthetic manipulation, how to be
helpful throughout task execution. These assistive behaviors
can be generalized by applying them across similar substruc-
tures within the HTN. We utilize human-in-the-loop rein-
forcement learning to build personalized user models for de-
termining which assistive behaviors to apply at a given HTN
node, tracking features such as ‘duration to action response’
and ‘user {accepted|rejected} action’. This work contributes
towards enabling an experienced worker to improve her ef-
ficiency, work quality, and personal safety throughout task
completion.

Instructive Roles
A distinct but related challenge we address is developing
algorithms that allow a robot to guide a teammate through
a task, providing training for required skills and action
sequences. In these scenarios, we imagine introducing a

novice or uninformed agent to a novel task. Using infor-
mation from the robot’s HTN and the learned assistive be-
haviors, the robot is able to provide materials and usage
context to its teammates. Of fundamental importance within
this work is the ability to generate instructional behaviors by
autonomously adapting existing functional, task execution-
based information.

When providing instruction, It is important to use appro-
priate levels of abstraction to guide the learner at an accept-
able pace. Merely providing instruction that specifies each
action with precise detail will quickly frustrate and bore the
learner, losing engagement. Overzealous abstraction leads
to confusion and potentially invalid task executions. To ap-
propriately balance this abstraction, we use timing informa-
tion and observed object manipulations to evaluate learner
progress and subtask competency. With this information, we
base the sophistication and explicitness of instruction upon
hypotheses of the learner’s level of understanding.
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