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Abstract

As robot algorithms for manipulation and navigation
advance and robot hardware is becoming more robust
and readily available, industry demands robots to per-
form more sophisticated tasks in our homes and fac-
tories. For many years, direct teleoperation was the
most common and traditional form of control for robots.
However, due to the complexity of robot motion, human
operators must focus most of their attention on solving
low-level motion control which leads to their height-
ened cognitive load. In this abstract, we propose a goal-
directed approach to programming robots by providing
a tool to model the world and provide goal states for a
given task. Operators will be able to set the initial po-
sitions of objects and their affordances along with their
goal positions by imposing three dimensional (3D) tem-
plates on point clouds. Robots will solve the given task
using the combination of task and motion planning al-
gorithms.

Introduction
Direct teleoperation (or simply remote control) with no au-
tonomous intervention has been the traditional and most
common form of robot control, due to its reliability and
adaptability. Especially for manipulation, human operators
directly controlled their robots’ pose and configuration to
accomplish a given task. Due to the complexity of robot mo-
tion, human operators must focus most of their attention to
solving low-level motion control instead of the goal of task.
This leads to heighten the operator’s cognitive load. Direct
teleoperation becomes even harder when a user is only pro-
vided with a computer screen which shows a two dimen-
sional (2D) projection of a three dimensional (3D) scene and
a mouse.

In this abstract, we describe a goal based teleoperation in-
terface in which operators provide the model of the world
and their goal states to accomplish a given task. Operators
will be able to set the initial positions of objects and their af-
fordances along with their goal positions by imposing affor-
dance templates on point clouds. Robots will solve the given
task using the combination of task and motion planning al-
gorithms. The goal is to eventually helps average users to
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easily operate a highly sophisticated two-armed wheeled
robot, such as PR2, without any special devices and consid-
eration of direct joint controls in completing manipulation
tasks in highly cluttered environments.

Problem
The main problem is to provide end-users with a goal-driven
teleoperation interface to effectively conduct a task in a clut-
tered environment such as our everyday home. The below
are the list of sub problems to be solved.
• How to effectively model the world that task and motion

planning algorithms can operate on.
• Provide an effective way to conduct goal-driven tasks us-

ing both task and motion planning algorithms.
• Provide a way to measure the effectiveness of a proposed

interface in comparison with the existing teleoperation
methods.

Related Work
This work revisits and builds upon “put-that-there” modes
of user input originally proposed by Bolt (1980) for inter-
active computer graphics, and applied shared human-robot
control by Cannon (1992) and Kemp et al. (2008). In this
mode, the operator view and specify goals with respect to an
estimate of the robot’s environment (as a form of a seman-
tic map). Such an interface would allow improved shared
autonomy (Goodrich et al. 2001) such that the robot could
autonomously perform low-level control based on sequential
goals provided by an operator.

Most of the work in combining task and motion plan-
ning algorithms started off from the AAAI 2010 Workshop
on ‘Bridging the Gap between Task and Motion Planning’.
Among them, this work revisits and builds upon hierarchical
task and motion planning techniques devised by Kaelbling
and Lozano-Perez (2011) and the method by Srivastava et al
(2014). which use an extensible planner-independent inter-
face layer to combine task and motion planning.

As a baseline for common approaches to robot motion
programming, we picked three recent works which are im-
plemented for PR2.

The interactive marker system developed by Leeper et al.
(2012) allows a user to control the robot’s end effector’s po-
sition and elbow posture by dragging a mouse. A pose of a
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(a) (b) (c)

Figure 1: (a) Using only interactive markers (b) Program-
ming by demonstration (c) Using a series of planned mo-
tions

robot at a given time is computed using the combination of
Jacobian transpose and pseudo inverse. The programming
by demonstration interface first introduced in Akgun et al.
(2012) learns different trajectories that human teachers per-
form using the Gaussian mixture model. This interface al-
lows a user to save a series of robot poses and play back the
saved ones. The robot’s arms are physically dragged by a
human demonstrator, but can be controlled using the same
interactive markers introduced by Leeper et al. (2012). The
MoveIt framework of Şucan and Chitta allows a user to pro-
vide the start and end state of a robot pose and infer a motion
plan which avoids obstacles in the environments. In com-
parison with the programming by demonstration approach,
a user provides only the start and end pose of a robot’s arm
instead of providing intermediate poses to avoid possible ob-
stacles. Three interfaces on the ‘rviz’ tool of Robot Operat-
ing System (ROS) are depicted in Fig. 1.

Approach
In this paper, we aim to develop a goal-directed robot pro-
gramming tool that human operators do not need to provide
specific trajectories to perform a given task. The proposed
interface also aims to consecutively perform such actions by
either providing a sequence of actions to be taken or a goal
state of an object.

To achieve this, we bring humans in the loop to provide
perceptions of the world, especially where the objects are
and how to grasp them. Operators are asked put bounding
boxes, an object template, around segments in a point cloud
to specify objects’ location and size and their grasp loca-
tions. The actions such as ‘pick’, ‘place’, ‘go to’, and ‘pour’
are given by the system which can be parameterized and
such parameters can be modified by human operators during
the programming phase. Human operators can sequentially
place each actions or specify goal states of objects depend-
ing on contexts of a given task. When goal states are given, a
generalized planner inside the system calculates a sequence
of primitive actions. When actions are given, prerequisites
can be checked and perform a necessary action given by a
planner.

A generalized planner can plan such high level actions via
affordance based object templates. Object templates define
an affordance of an object, here it is ‘grasp’. Object tem-

Figure 2: Planning of the pick-and-place task

(a) (b) (c)

Figure 3: (a) Basic pick-and-place task with obstacles (b)
Moving a configuration of blocks to another spot (c) Moving
a configuration of blocks to another spot with obstacles

plates are directly placed upon a point cloud scene not upon
a category of an object. This makes the system bypass the
vision system which is used to register an object’s position
and pose and its class in a RGB-D scene. We assume that
when the object is fully grasped by a robot’s end effector, it
will not change its pose while moving. Otherwise, the sys-
tem will need to consistently detect an object’s pose in a
RGB-D scene when an action is being executed. Each ac-
tion template contain a sequence of action to be taken to
achieve a single goal state. For example, ‘pick’ action will
need an object and a robot’s arm as prerequisites, and will
perform an approach action to go to the grasp location of an
object and perform gripper close action. Then it will play-
back a joint trajectory that directly lift up the end effector
to a certain distance. A motion planning algorithm with ob-
stacle avoidance mechanism will be used for an approach
action. Other actions can also be played back in simulation
and can be checked if an action make a robot collide with
any existing objects in the world. ‘Go-to’ action will be just
a motion planned action to move an end effector’s pose from
one to the other.
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