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Abstract
In this paper we address the task of extracting risk events
and probabilities from free text, focusing in particular on the
biomedical domain. While our initial motivation is to en-
able the determination of the parameters of a Bayesian be-
lief network, our approach is not specific to that use case.
We are the first to investigate this task as a sequence tag-
ging problem where we label spans of text as events A or B
that are then used to construct probability statements of the
form P (A|B) = x. We show that our approach significantly
outperforms an entity extraction baseline on a new annotated
medical risk event corpus. We also explore semi-supervised
methods that lead to modest improvement, encouraging fur-
ther work in this direction.

1 Introduction
Probabilistic risk analysis has long been applied to the
biomedical domain for either punctual decision support
(Deleris et al. 2006; Pietzsch and Pat-Cornell 2008), risk
prediction and detection (Watt and Bui 2008; Steele et al.
2012), or as the inference engine within a decision support
system (Warner et al. 1988; Fuller 2005; Hoffer et al. 2005).
Bayesian belief networks (BBNs) (Pearl 1988) are a popular
underlying modeling framework for such analysis. A simple
BBN of only three nodes can be seen in Figure 1. A BBN is
composed of (i) a structural layer (the nodes and arcs linking
them) that depicts the variables and their associated depen-
dence and independence relationships and of (ii) a quantita-
tive layer, typically captured in the form of conditional prob-
ability tables (CPTs), which are composed of statements of
the form P (C = true|A = true, B = false) = 0.01. The
focus of the present paper is on extracting information to
better evaluate the quantitative layer, i.e., the parameters of
the CPTs. When sample data is not available, the tradi-
tional method to evaluate those parameters has been to rely
on expert elicitation. In fact, a large body of research has
focused on designing methods to ensure high quality elicita-
tion (Cooke and Goossens 1999). However, such approaches
are time consuming (e.g., 10 hours were spent to evaluate
the 900 probabilities of a 39-variable model as reported in
(van der Gaag et al. 2002)); costly (as they require experts’
and analysts’ time); and finally, cognitively difficult for the
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experts. In addition, the manual effort spent eliciting prob-
abilities can usually not be used in another context or even
updated as newer medical knowledge is acquired. Ideally,
we would like to automatically build the quantitative layer of
a BBN, assuming the structural layer has been provided sep-
arately, but ensure that we are still using high-quality expert
information. Our solution for this is to (i) extract relevant
medical quantitative risk information from published (med-
ical) literature, (ii) normalize the extracted events to match
the variables in the BBN structure provided, and finally (iii)
use the quantitative information extracted to determine the
quantitative parameters of the network. In this paper we con-
centrate on the first step, leveraging NLP techniques for the
extraction of these medical risk events.

The rest of the paper is structured as follows. In Section 2,
we further describe the risk event extraction task and its as-
sociated challenges. Our approach for tackling this problem
is covered in Section 3. Then in Section 4 we present our
results along with some discussion. This paper relates to
work in several different areas of the literature, which are
reviewed in Section 5. Finally, we conclude in Section 6.

2 Task Description
2.1 Background
Our focus is on the extraction of quantitative risk informa-
tion in the form of probability statements. In this section,
we describe the probability terms (numbers) that we extract
along with the events A (the conditioned event) and B (the
conditioning event) that are part of the conditional state-
ment. Event extraction is an active area of BioNLP research
(Nédellec et al. 2013) that identifies bio-molecular events on
proteins and genes, and we must distinguish our risk event
extraction from that body of work. Bio-events from the
BioNLP shared task (e.g., gene expression or binding) define
the relations between different entities (e.g., genes, proteins,
or RNA types). Instead, we use “event” in the probabilistic
sense, which means that risk event detection is more similar
to entity detection in BioNLP research.

Risk events are quite heterogeneous and exhibit a broader
semantic variety than the bio-molecular entities. “1977-
1990”, “breast cancer”, “homozygous carriers”, “> or = 10
years”, and “younger than age 35” are all examples of differ-
ent events taken from our corpus. This variety owes mainly
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false 0.4 0.6
true 0.01 0.99

C
A B true false

false false 0.4 0.6
false true 0.01 0.99
true false 0.01 0.99
true true 0.01 0.99

Figure 1: Example of Bayesian belief network with three variables

Odds odds = P (A)/P (¬A)

Odds ratio OR =
P (A|B)
P (¬A|B)
P (A|¬B)
P (¬A|¬B)

Relative risk RR = P (A|B)
P (A|¬B)

Hazard ratio HR = P (A(t)|B)
P (A(t)|¬B)

Population attributable risk PAR = P (A|B)− P (A)

Table 1: Probability terms used in medical journals

to the fact that only the explicitly mentioned part of the event
has been annotated. We will need to develop new techniques
for detecting ellipses, metonymy, and anaphora resolution to
obtain more complete event definitions. In this initial work,
we focus on common risk events with a stronger signal in
the corpus, such as “disease-free survival” or “breast cancer
incidence”. Those will eventually constitute the variables
that appear in the BBN.

Probability expressions can take a number of forms. Even
the simplest probability statements can be complicated in
free text, represented as different combinations of words
and numbers, e.g., “Thirty-six percent”, “78.2 percent”,
“51.7%”, “5/1124”, or “51 out of 118”. Two of the most
common forms of probability statements are odds ratio (OR)
and relative risk (RR). In probability, the odds of an event is
defined as the probability that the event will occur divided
by the probability that the event will not occur. Odds ratios
are ratio of odds for different subgroups. For instance, if
we were to compare nulliparous women (no live birth) with
women having at least one live birth (mono/multiparous)
for the risk of developing breast cancer, then the odds ratio
would be:

OR =

P (breast cancer|nulliparous)
P (no breast cancer|nulliparous)

P (breast cancer|mono-/multiparous)
P (no breast cancer|mono-/multiparous)

Table 1 summarizes some of the more common probabil-
ity terms found in the medical literature and their equiv-
alent probability equations. As in our example, variables
A, B, and ¬B (the complement of B) could be replaced
with values “breast cancer”, “nulliparous”, and “mono-
/multiparous” respectively.

Along with the probability terms we would like to iden-

tify and extract the events A and B from text. Risk event
identification presents multiple challenges. Consider the ex-
ample “Carriers of the AC haplotype, which represents the
variant alleles of both SNPs, were at an increased risk (OR =
1.41, 95% CI 1.09-1.82).” We have an odds ratio probability
term “OR = 1.41” and two events. However, determining
the boundaries of the events is not straightforward. Should
the conditioning event be the whole subject including the
relative clause, only “Carriers of the AC haplotype,” or even
simply “AC haplotype”? Another problem illustrated by this
example is that from this limited context we do not know
that “risk” refers to risk of breast cancer. Anaphora reso-
lution should be added to the pipeline by linking “risk” to
“breast cancer” before construction of the BBN. This is left
for future work.

There are other problems not found in the above example.
In some cases one of the events may not be explicitly ex-
pressed in the sentence and must be inferred by the reader.
Finally, although it is usually clear to a human reader, it can
be challenging to determine automatically which is the con-
ditioned event and which is the conditioning event. The dis-
tinction, however, is essential from a probability perspective,
as typically P (A|B) 6= P (B|A). Consider for instance the
case where A represents Winning the lottery and B repre-
sents Playing the lottery.

After identifying probability terms and extracting the re-
lated events, we can construct the conditional statements,
which after some post-processing will be used to evaluate
the parameters of a BBN. To better understand the task, we
annotated a corpus of probabilities and risk events. We cover
some details of how this corpus was created in the next sec-
tion.

2.2 Corpus
Our risk event probability corpus is comprised of 200 ab-
stracts returned from PubMed that match the query “breast
cancer AND parity”. This follows in the tradition of other
biomedical corpora: GENIA (Kim et al. 2003), for example,
started as a set of abstracts from PubMed, which contained
the terms “human,” “blood cell,” and “transcription factor.”

Some statistics of the corpus can be seen in Table 2. Prob-
ability and event annotation was conducted in two rounds.
For the first round, three annotators independently annotated
each sentence in the corpus as a probability sentence or not
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Abstracts 200
Sentences 2045

w/ events or probability 376
w/ event A 315
w/ event B 316

Avg. sentence/abstract 10.2
Avg. sentence length (tokens) 37.9
Avg. event/abstract 4.5
Avg. length event A (tokens) 2.3
Avg. length event B (tokens) 2.3
Avg. event A/prob. sentence 1.1
Avg. event B/prob. sentence 1.3

Table 2: Risk Event Corpus statistics

(i.e., containing at least one probability expression) and then
for each probability sentence the eventsA andB were anno-
tated. We measure inter-annotator agreement for probability
sentence detection by averaging Cohen’s kappa, κ = 0.920.
For the second round of annotation, a risk expert with expe-
rience assessing risk in the biomedical domain resolved an-
notation disagreements and corrected the event boundaries
when they differed between annotators. Although, the anno-
tators are not experts in the biomedical domain, this type of
annotation does not require medical expertise. The goal of
the annotation is to identify events in a conditional statement
and this task is fairly domain independent. For instance, an-
notators can identify eventsA andB in “Average duration of
breast-feeding of 11-12 months reduced risk of breast can-
cer by 54% compared with the duration of 1-4 months” and
“At least 75 percent of all hydraulic systems fail due to con-
taminated or aging hydraulic fluid” without being experts in
either medicine or mechanical engineering.

3 Labeling Risk Events
3.1 Choice of Algorithm
Our goal is to accurately identify the probability terms and
events in conditional statements in medical texts. As we nor-
malize event text before using them for probability aggrega-
tion, it is not highly critical to extract the exact boundary.
For example, it would still be acceptable in our system that
only “breast cancer” would be detected when the annotated
event is “development of breast cancer” (or vice versa).

We chose to explore whether sequence labeling could be
relevant for risk event identification. In particular we use
conditional random fields (CRF) (Lafferty, McCallum, and
Pereira 2001) which have been shown to work well for re-
lated NLP tasks (Sha and Pereira 2003; Settles 2004). We
use a linear-chain CRF defined as:

P (y|x) = 1

Zx
exp(

T∑
t=1

∑
k

θkfk(yt−1, yt,xt))

where Zx normalizes over the entire input sequence (e.g.,
sentence), Zx =

∑
y exp(

∑T
t=1

∑
k θkfk(yt−1, yt,xt)).

With a first-order CRF, features can be defined on the pair
of output tags yt−1 and yt.

word dependency label*
lemma head POS*
POS tag predicate*
position distance to predicate*
word shape

Table 3: Feature list. Features marked with an asterisk (*)
were extracted but did not improve classification and were
removed in feature selection.

3.2 Features
Our experiments use standard sequence tagging features
which are summarized in Table 3. We look at features at
different levels of linguistic complexity – from simple sur-
face forms to dependence relations from a parse tree.

Features are extracted for each token, t, that is to be
tagged with the CRF. Our first features are simply the sur-
face form of the word (wt), lemma (lemmat), and the part-
of-speech tag (post). The word shape feature (shapet) is
extracted using Stanford CoreNLP1 with the default word
shape algorithm similar to the one in Bikel et al. (1997).

We explored deeper linguistic features taken from
dependency-based parsing. For example, we use the arc la-
bel pointing to t and the POS tag of t’s head. Using the
dependency parse we also retrieve the predicate of the sen-
tence and include a feature measuring the distance to the
predicate via dependency arcs. These features did not help
classification on the development set and are not included
in the experiments in Section 4. In preliminary experiments
we used a semantic feature – a UMLS tag – obtained via
MetaMap2 (Aronson 2001). This is a potentially useful fea-
ture but is expensive to extract (cf. Wang and Fan 2014),
and does not scale well with the semi-supervised solutions
we propose later in Section 4.1.

One of the advantages of using a sequence tagger
like CRF is that it utilizes the features from adjacent
tokens. The linear-chain CRF we use defines feature
templates for zeroth-order features and first-order fea-
tures. Not all of the features listed above are effec-
tive as context features, and not all are useful as first-
order features. We start by looking at the following
context features: words (wt−2, wt−1, wt+1, wt+2), lem-
mas (lemmat−2, lemmat−1, lemmat+1, lemmat+2), part of
speech (post−2, post−1, post+1, post+2), and word shape
(shapet−2, shapet−1, shapet+1, shapet+2), and then use fea-
ture selection to choose the optimal amount of context to the
left and right for each feature.

4 Results
4.1 Experimental Setup
We take all of the sentences which contain any event or prob-
ability annotation from the corpus described in Section 2.2.
This certainly is an idealized dataset containing only sen-
tences with event and/or probability annotation, but we as-

1http://nlp.stanford.edu/software/corenlp.shtml
2http://metamap.nlm.nih.gov/

28



sume that we can accurately filter probability sentences.
In preliminary experiments we could reliably identify sen-
tences as having a probability or not, using only bag-of-
word features (achieving macro-F1 of 92.3 with a MaxEnt
model (Manning and Klein 2003)). The 376 probability sen-
tences are divided into training, development, and test sets
(268/52/56 sentences respectively). To establish a baseline,
we borrow from the BioNLP/NLPBA 2004 shared task (Kim
et al. 2004). Specifically, all events found in the training
set are labeled as events in the test set. Then for our initial
fully-supervised classification we train a CRF on the labeled
training set.

We have chosen CRF++3 as the CRF implementation for
our experiments. We perform feature selection and param-
eter tuning on the development set. We start with feature
selection to determine which context features from posi-
tions t − 2 to t + 2 are beneficial and settle on the fol-
lowing features: wt−2, wt−1, wt, wt+1, wt+2, lemmat−1,
lemmat, post, shapet, shapet+1, plus the CRF++ first-
order features (referred to as “bigram” features in CRF++)
bi-wt, bi-lemmat, bi-post. Because our dataset is rather
small, we need to restrict our feature set to avoid overfitting
(and improve run times). Using these context features and
the remaining features from Table 3, we fit the regularization
parameter, c, from {.5, .3, .1, 1, 3, 5}.

4.2 Self-training
Due to the facts that we have a relatively small labeled set
and there exists a wealth of unlabeled medical data (e.g., ab-
stracts and articles from MEDLINE), we also want to ex-
plore semi-supervised approaches which can leverage the
vast amount of data available, and still be directed in a
way as to improve classification performance. We include
some initial experiments in this direction by employing a
standard semi-supervised learning approach, self-training.
Self-training is an iterative process that essentially labels in-
stances from an unlabeled set and adds them to the labeled
set for the next iteration of model training. The risk of this
approach is that if incorrectly labeled instances are included
in the labeled set, the self-training will start going in the
wrong direction.

We start with a self-training algorithm similar to the one
described in (Abney 2007) (see Algorithm 1). The label
function is our CRF classification. Abney covers variations
of this basic self-training algorithm and covers a number of
the possible selection criteria. In this paper we try two dif-
ferent heuristic thresholds in the select function, which
chooses the instances to add to the labeled set, L. To start,
our unlabeled set is a sample of 5000 abstracts taken from
PubMed.

The first threshold (hereafter “self-training”) simply
checks if the unlabeled instance (i.e., sentence) has been as-
signed an event A or B and has probability output from the
CRF greater than 0.7, i.e., that P (y|x) > 0.7. The sec-
ond threshold (hereafter “PubMed self-training”) relies on
PubMed. Our intuition is that we can use PubMed to pro-
vide additional support in deciding whether events A and B

3http://crfpp.googlecode.com/svn/trunk/doc/index.html

Algorithm 1 Self-training
L0 is labeled data, U0 is unlabeled data
µ← train(L0)
i← 1
repeat
Li ← Li−1 + select(label(Ui−1, µ))
Ui ← Ui−1 − select(label(Ui−1, µ))
µ← train(Li)
i← i+ 1

until stopping criterion is met
return µ

are likely to occur together in a probability statement. For
this threshold, first the unlabeled instance must be assigned
both events A and B and have a probability greater than 0.3
(P (y|x) > 0.3). Then we submit two queries to PubMed:
1) the text in event B (e.g., “anti-inflammatory drugs”), and
2) events A and B combined with the AND search opera-
tor (e.g., “anti-inflammatory drugs AND cancer”). We use
the number of hits returned from each of these queries to
estimate how likely it is that event A occurs given event B,
P̂ (A|B) = PubMed hits forA+B

PubMed hits forB . If this estimate, P̂ (A|B), is
greater than 0.1, we add the instance to the labeled set, oth-
erwise it remains in the unlabeled set. These are just a cou-
ple of a number of possible selection criteria and we aim to
explore better selection criteria in future work, along with
more sophisticated semi-supervised learning algorithms.

4.3 Development Results
Results are presented in Tables 4 and 5. They are calculated
using the conlleval Perl script4 and we report the preci-
sion, recall, and F1 score for individual tokens (Table 4) and
for phrases (Table 5). As mentioned previously, the exact
boundary is not as critical for our task as in other contexts
as the phrases “development of breast cancer”, “breast can-
cer”, and “breast cancer risk” should all be normalized to
the same node in our BBN model. Therefore, token-based
performance results are informative as well. However, it is
standard practice to measure entities or text chunks by F1,
despite its drawbacks,5 which is why we include those re-
sults. As can be seen in Table 4, the baseline that we have
chosen has good precision and weaker recall. It takes events
from the training data that are likely to also be events in the
development set. Naturally, events not seen in training will
not be labeled, lowering recall.

The CRF method outperforms the baseline with higher
overall F1. Considering the token-based results in Table 4,
recall for both events A and B exceeds the baseline, while
CRF precision only improves for event A. We test statisti-
cal significance of overall F1, and F1 for each event, using
approximate randomization (Noreen 1989). F1 differences
overall and for event A are significant, but there is no sig-
nificant difference for event B. The overall results are much

4http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
5http://nlpers.blogspot.com/2006/08/doing-named-entity-

recognition-dont.html
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Baseline CRF
Pre. Rec. F1 Pre. Rec. F1

Event A 51.9 30.2 38.1 53.4 46.3 49.6
Event B 51.7 25.0 33.7 37.5 32.5 34.8
Prob. term 41.2 35.8 38.3 93.4 92.7 93.0
Overall 46.9 30.5 37.0 64.0 58.3 61.0

Self-training PubMed self-training
Pre. Rec. F1 Pre. Rec. F1

Event A 51.6 46.3 48.8 50.9 43.4 46.8
Event B 40.0 33.3 36.4 46.2 30.0 36.4
Prob. term 92.0 92.7 92.4 94.7 90.5 92.5
Overall 63.9 58.5 61.1 67.4 55.7 61.0

Table 4: Token-based results on development set

higher than the baseline due to the performance of probabil-
ity term extraction, but we are more interested in the perfor-
mance for events A and B.6

The baseline approach tends to find more, but shorter
phrases than the CRF: the baseline has 56 event A phrases
with an average length of 1.41 words and 55 eventB phrases
with an average length of 1.05 words, while the CRF has 32
event A phrases with an average length of 2.53 words and
38 event B phrases with an average length of 2.29 words.
Because of this, the event B phrase baseline performs quite
well. Most of the event B true positives are single words;
12 of the 23 true positives come from the phrase “women”
which frequently occurs as an event B. If the event B la-
beled by the CRF is “British women” this counts as a false
positive and false negative with no partial credit for identi-
fying “women”.

We ran self-training and PubMed self-training for three it-
erations because scores began to drop on the third iteration.
We report the results after the second iteration, which are the
best for both self-training and PubMed self-training. The
overall token-based F1 results for self-training are slightly
better than fully-supervised CRF, and the PubMed self-
training results do just as well as fully-supervised CRF.
These results are modest, but promising. Self-training runs
the risk of decreasing performance and has led to negative
results in other domains, so these improvements are very en-
couraging and will push us to improve our selection criteria
to get further improvements.

4.4 Error Analysis
We initially argued for measuring F1 on tokens (Table 4)
along with phrases (Table 5) because exact boundaries are
less critical for our task. However, looking more closely at
the phrase results, the CRF performs well in terms of iden-
tifying the correct boundaries. Only 12 of the 204 phrases
in the development set had incorrectly labeled boundaries,
and of those, four also had erroneous event labels (e.g., A

6We also tested some regular expressions to capture the proba-
bility term but the F1 results were similar to those from this base-
line, so we use only this baseline for simplicity.

Baseline CRF
Pre. Rec. F1 Pre. Rec. F1

Event A 23.2 22.0 22.6 58.3 35.6 44.2
Event B 41.8 36.5 39.0 42.5 27.0 33.0
Prob. term 39.4 34.2 36.6 91.4 90.2 90.8
Overall 35.2 31.4 33.2 71.3 54.9 62.1

Self-training PubMed self-training
Pre. Rec. F1 Pre. Rec. F1

Event A 48.8 35.6 41.2 53.9 35.6 42.9
Event B 47.2 27.0 34.3 41.0 25.4 31.4
Prob. term 91.4 90.2 90.8 91.3 89.0 90.1
Overall 70.0 54.9 61.5 69.6 53.9 60.8

Table 5: Phrase-based results on development set

instead of B or vice versa). A few of these errors involve
tricky cases with adjectives that are not consistently anno-
tated as part of an event. An example error that illustrates

this is the following: (i) “... being
A

current drinkers ...” (from

the training corpus) and (ii) “of current
A

HER2 testing
A

may

...” (gold labels above with superscript and classifier labels
below with subscript; no annotation means it has the label
“O”). In (i), “current” is part of event A, while in (ii) it is
not. There are similar errors for other adjectives and also
past tense verbs that can have the tags VBD or VBN. For
example, “improved” can be simple past (VBD) or a past
participle (VBN); in the latter case it often acts as an adjec-
tive.

Although these boundary errors doubly penalize F1 –
counting as both a false positive and false negative – they oc-
cur relatively infrequently for our task, and will likely have
little negative impact in our overall system, which would
cluster “current drinkers” and “drinkers” when necessary.
There were only three phrases which mislabeled A instead
of B and vice versa, and all three contribute to the above
errors in boundary detection.

Overall, the majority of the errors involve missing entire
phrases. There are 75 event A and B phrases that are not
tagged at all (i.e., have label “O”) and only 29 phrases which
should not be tagged, but have some labelA orB. These are
the errors we plan to tackle in future work, in particular the
high number of false negatives. One solution for this might
be to use another classifier with higher recall and stack our
CRF model on top using the high-recall classifier output as
a new feature. Another option would be to constrain proba-
bility sentences to have variables A and B since most errors
come from the lack of event A and B labels in the classifi-
cation and not the misclassification of these events.

4.5 Test Results
We see similar results for the test data. Scores from CRF
classification are actually higher for the test set indicating
that we did not tune the algorithm to perform well only
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Baseline CRF
Pre. Rec. F1 Pre. Rec. F1

Event A 49.5 27.8 35.6 69.6 47.3 56.3
Event B 60.6 27.2 37.6 60.6 38.0 46.7
Prob. term 38.3 33.1 35.5 100.0 84.5 91.6
Overall 47.3 29.3 36.2 78.2 55.8 65.1

Self-training PubMed self-training
Pre. Rec. F1 Pre. Rec. F1

Event A 64.8 46.8 54.3 65.2 44.4 52.8
Event B 63.5 38.6 48.0 58.4 41.8 48.7
Prob. term 100.0 85.1 92.0 99.2 85.1 91.6
Overall 77.3 56.0 65.0 75.2 56.2 64.3

Table 6: Token-based results on test set

on the development data. Self-training and PubMed self-
training were run for two iterations like for the development
set. CRF, self-training, and PubMed self-training all sig-
nificantly improve over the baseline for overall F1, as well
as for event A and B (using approximate randomization).
These three do not significantly differ from each other. Like
in the development set, F1 increases for event B and drops
for event A.

5 Related Work
BioNLP event extraction (Kim et al. 2009; Nédellec et al.
2013) is similar to our probability extraction in that it ex-
tracts entities, analogous to our probabilistic events A and
B, and the relations between entities, i.e., bio-molecular
events. Instead, we extract conditional probability relations
that include a probability term (see Section 2). In the most
recent BioNLP shared task, Björne and Salakoski (2013)
achieved the best results for 6 of the 10 tasks, including event
extraction. They use a chain of SVM classifiers to detect,
e.g., entities, relations, speculation, and negation. We use
CRFs to globally optimize labels in the sentence and avoid
cascading errors using a chain of classifiers, however, we
have not yet been able to try our approach on the GENIA
event extraction corpus.

Fiszman et al. (2007) are also interested in extracting risk
factors and diseases7 from medical literature, but differ from
us in their approach. They convert the biomedical text into
a semantic representation, using the UMLS Semantic Net-
work, and define a set of rules which identify risks and dis-
orders based on the semantic expression. Their approach
requires considerable effort and expertise in defining and
crafting the semantic rules, however, it could be beneficial
to bootstrap our statistical approach using their risks and dis-
orders. In fact, Abacha and Zweigenbaum (2011) conclude
that such a combination of statistical approaches with medi-
cal domain knowledge sources leads to better results. Their
approach is similar to ours, using a CRF with medical fea-
tures from MetaMap, but the task differs.

7Risks and disorders are subsets of events A and B, but do make
up a significant part of each.

Baseline CRF
Pre. Rec. F1 Pre. Rec. F1

Event A 22.6 21.9 22.2 53.9 32.8 40.8
Event B 27.0 21.8 24.1 61.5 30.8 41.0
Prob. term 41.1 30.0 34.7 100.0 78.0 87.6
Overall 30.8 25.2 27.7 78.9 50.8 61.8

Self-training PubMed self-training
Pre. Rec. F1 Pre. Rec. F1

Event A 52.4 34.4 41.5 53.5 35.9 43.0
Event B 61.0 32.1 42.0 60.0 34.6 43.9
Prob. term 100.0 78.0 87.6 100.0 77.0 87.0
Overall 77.6 51.7 62.0 77.0 52.5 62.4

Table 7: Phrase-based results on test set

There has been previous work that builds Bayesian net-
works from medical data, however, none extracts condi-
tional probability statements for building BBNs as we do.
Sanchez-Graillet and Poesio (2004) build Bayesian net-
works by focusing on causal relations. Their approach
relies on a fixed list of causal relation patterns (from
Girju and Moldovan (2002)) that they use for extracting
(cause,connective,effect) tuples. The conditional probabil-
ities are estimated using maximum likelihood estimation
(MLE) on these tuples and not on the whole dataset. Sim-
ilarly, Theobald, Shah, and Shrager (2009) use MLE for
estimating probabilities but use co-occurrence information
from a much larger dataset. This approach for extract-
ing conditional probabilities from the medical text is sim-
ple, requiring no real linguistic processing. They sim-
ply count the co-occurrences of treatments, diseases, and
genes in PubMed data for constructing conditional state-
ments of the form P (treatment|disease, gene). In other
words, both approaches assume that probabilities are related
to co-occurrences in some specific patterns. While practi-
cal, and possibly leading to meaningful results, it is slightly
troubling to think that, for instance, the probability of de-
veloping breast cancer given a person is a man8 is estimated
by counting the ratio of times both terms are present in the
same sentence of a chosen set of texts. Corpus selection
thus would play a large role in probability estimation. In
addition, this would mean that when an author in a medical
paper seeks to clarify a point by rephrasing a sentence, he
may influence the probability estimation. As presented in
this paper, we have chosen a different approach where we
seek to extract only explicit probability statements.

6 Conclusions
In this paper, we describe a model for extracting conditional
probability statements, in the form of P (A|B) = x from
medical texts. This is a difficult task due to the wide variety
of forms a conditioned eventA and conditioning eventB can
take. Nonetheless, a satisfactory solution to this problem

8Men can develop breast cancer though incidence is lower than
for women.
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would prove useful, not only to generate input to simplify
the process of building Bayesian belief networks for health
risk analysis, but also to be able to automatically extract and
synthesize probabilistic statements made in a given corpus.
The automation of the process makes it possible to perform
the analysis over time and identify trends. In addition, other
domains, such as finance, auditing, and maintenance, could
find time-saving benefits of automatic probability extraction.

Our proposed approach, based on CRFs, improves over
an established baseline and shows that this task is better
handled as a sequence tagging problem. Using standard se-
quence tagging features we are able to identify events A and
B as well as probability terms. We also got small improve-
ments from using self-training, which we intend to build
upon with better selection criteria.

There are a number of other improvements that can be
made to reliably use the extracted probability terms and risk
events to generate a BBN for a given disease. We would like
to look at other semi-supervised approaches to access larger
amounts of unlabeled medical data. We also plan to test
integer linear programming (ILP) for adding additional con-
straints to our models (Roth and Yih 2007). Finally, we will
explore whether hybrid methods, i.e., those involving both
expert knowledge and NLP algorithms can provide further
improvements.
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