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Introduction
The goal of transfer is to use knowledge obtained by solving
one task to improve a robot’s (or software agent’s) perfor-
mance in future tasks. In general, we do not expect this to
work; for transfer to be feasible, there must be something in
common between the source task(s) and goal task(s). The
question at the core of the transfer learning enterprise is
therefore: what makes two tasks related?, or more generally,
how do you define a family of related tasks? Given a pre-
cise definition of how a particular family of tasks is related,
we can formulate clear optimization methods for selecting
source tasks and determining what knowledge should be im-
ported from the source task(s), and how it should be used in
the target task(s).

This paper describes one model that has appeared in sev-
eral different research scenarios where an agent is faced with
a family of tasks that have similar, but not identical, dynam-
ics (or reward functions). For example, a human learning to
play baseball may, over the course of their career, be exposed
to several different bats, each with slightly different weights
and lengths. A human who has learned to play baseball well
with one bat would be expected to be able to pick up any
similar bat and use it. Similarly, when learning to drive a
car, one may learn in more than one car, and then be ex-
pected to be able to drive any make and model of car (within
reasonable variations) with little or no relearning. These ex-
amples are instances of exactly the kind of flexible, reliable,
and sample-efficient behavior that we should be aiming to
achieve in robotics applications.

One way to model such a family of tasks is to posit that
they are generated by a small set of latent parameters (e.g.,
the length and weight of the bat, or parameters describing
the various physical properties of the car’s steering system
and clutch) that are fixed for each problem instance (e.g., for
each bat, or car), but are not directly observable by the agent.
Defining a distribution over these latent parameters results
in a family of related tasks, and transfer is feasible to the
extent that the number of latent variables is small, the task
dynamics (or reward function) vary smoothly with them, and
to the extent to which they can either be ignored or identified
using transition data from the task. This model has appeared

∗Both authors are primary authors on this occasion.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

under several different names in the literature; we refer to
it as a hidden-parameter Markov decision process (or HIP-
MDP).

HIP-MDPs
A single Markov decision process is defined by a tuple
〈S,A,R, T, γ〉, where S is a state space, A is a set of avail-
able actions, R(s, a, s′) defines the reward obtained when
executing action a in state s and transitioning to state s′,
T (s, a, s′) defines the probability of arriving in state s′ given
that action a has been executed at state s, and γ ∈ (0, 1] is
a discount factor expressing the extent to which immediate
rewards are preferred over future ones.

HIP-MDPs model a distribution of tasks where the varia-
tion in the dynamics (or the reward function, though we do
not discuss that case here) across the family of tasks can be
captured by a set of hidden parameters, θ, encountered with
probability Pθ. Consequently, the transition function T is
conditioned on θ: T (s, a, s′|θ). Thus, a HIP-MDP describes
a class of tasks, and any setting θb ∼ Pθ results in a single
task instance MDP. The values of θb are not observed.1 We
also assume that θb is drawn once, at the beginning of the
task instance, that it does not change until the beginning of
the next instance, and that the agent is made aware that a
change has occurred.

Properties
Some early publications (Fern and Tadepalli 2010; Bai, Hsu,
and Lee 2013a) using a HIP-MDP model emphasized its
similarity to the partially-observable Markov decision pro-
cess, or POMDP, model (Kaelbling, Littman, and Cassandra
1998). Here, the hidden θb values are likened to the hidden
state of the POMDP, and the state observed during an in-
dividual task is similar to an observation in a POMDP. In
particular, Bai, Hsu, and Lee (2013a) showed that we can
use a POMDP planner to produce a policy for solving tasks
drawn from a known HIP-MDP. Such a planner will natu-
rally and automatically trade off information-gathering ac-
tions that actively determine the value of θb with reward
seeking actions.

1If the values of θb were observed, we have a parametrized skill
learning problem (da Silva, Konidaris, and Barto 2012).
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However, HIP-MDPs have some useful properties which
suggest that they merit study in their own right. One is
that any specific task instance is an MDP, and can be
solved independently as one. More specifically, given some
fixed (but unknown) task parameters θb, the state space S is
Markov. When solving one task instance, we need not nec-
essarily worry about the overall family of tasks. This allows
us to model scenarios where the source tasks for transfer
learning can be solved directly by reinforcement learning.

Moreover, the hidden parameters θ are constant for
each task (i.e., the unobserved variables have no dynam-
ics). We also assume that new task instances are drawn from
Pθ independently from previous task instances. These prop-
erties allow us to gather large batches of transition data that
correspond to fixed settings of θ, easing model learning.

Finally, the latent parameters are a sufficient statis-
tic for specifying an individual task (given that you are
solving a problem drawn from this family of tasks). Conse-
quently, if we have a model of the family of tasks, learning
reduces to determining the values of θ for the current task
(Bai, Hsu, and Lee 2013a). Once these have been identified,
we can simply compute a policy for the resulting MDP and
use it. Thus, if we have a model of the HIP-MDP, we can
expend great computational effort offline to solve various
task instances, and then synthesize a parameterized policy
(da Silva, Konidaris, and Barto 2012) to be deployed given
the agent’s belief over θb at runtime. Online execution will
then correspond to filtering over θb and swapping in the ap-
propriate policy. This type of approach will be most useful
when the number of task parameters |θ| is very much smaller
than the size of the state space S, and when observed transi-
tions allow us to determine θb quickly.

Existing Research Using HIP-MDPs
Whiteson et al. (2011) proposed the notion of a gener-
alized environment—where a distribution of environments
is generated using a set of latent parameters and a distri-
bution over those parameters—as a means of constructing
generalized methodologies for avoiding environment over-
fitting, which is often problematic in reinforcement learn-
ing research. They report experimental results using gen-
eralized versions of the common Mountain Car, Acrobot,
and Puddle World benchmarks, and point out that several
of the reinforcement learning competitions (Whiteson, Tan-
ner, and White 2010) have used such generalized environ-
ments, including generalized helicopter control (Koppejan
and Whiteson 2009).

Bai, Hsu, and Lee (2013a) used a POMDP planner to pre-
compute a policy that naturally and automatically trades off
exploration and exploitation when planning for an uncer-
tain model. One of their domains is a HIP-MDP: the Ac-
robot problem where one of the robot arms has an unknown
mass, drawn from a fixed distribution. The goal of planning
in this case is to produce a single policy capable of solving
all members of the class of tasks. This is accomplished by
treating the HIP-MDP as a POMDP and planning in belief
space—in this case the joint space of observed state and suf-
ficient statistics of the distribution over latent variables—so
that the plan naturally trades off information-gathering and

reward-maximizing actions. A similar approach is taken in
Bai, Hsu, and Lee (2013b).

Doshi-Velez and Konidaris (2013) learn a HIP-MDP
model given experience obtained while learning to solve
several task instances. The effect of the latent parameters are
modeled using semi-parametric regression, inferring both
the number of latent parameters and their effect on the tran-
sition function. They learn models for the Acrobot with two
unknown parameters (the masses of each arm) and the cart-
pole problem with a pole of unknown length and mass.

Wilson, Fern, and Tadepalli (2012) introduced hierarchi-
cal model-based transfer, where a family of tasks is gener-
ated through a task class prior which in turn generates a dis-
tribution of models. This can be considered a hierarchical
HIP-MDP, where θb is used to generate a focused distribu-
tion over MDPs (rather than a single MDP) from which an
observed MDP is drawn. Their method was used to success-
fully transfer policies across a class of colored mazes and a
real-time strategy game.

Several researchers have explored problems that can be
modeled as HIP-MDPs with a single, discrete hidden vari-
able, often called a type. Each task instance is then one
of a fixed number of MDPs, but the MDP identity is not
observed. Mahmud et al. (2014) consider the problem of
personalizing user-interfaces to users with different skill
levels, and use Bayesian model selection to find a regret-
minimizing solution. Here, the user’s behavior is the MDP,
and the hidden parameters correspond to user skill type;
the learning agent changes the interface presented to the
user to better match their type. Rosman (2014) presents a
Bayesian policy reuse algorithm, where several domains (a
golf club selection problem, a telephone interface personal-
ization system, a PacMan agent, and a surveillance domain)
are modeled as HIP-MDPs with hidden types. Fern and
Tadepalli; Fern et al. (2010; 2014) use a hidden type variable
in the context of an interactive assistant which must infer a
user’s hidden goals. Azar, Lazaric, and Brunskill (2013) and
Brunskill and Li (2013) consider the transfer problem across
a finite number of multi-armed bandits.

Most recently, Ammar et al. (2014) describe a method for
transferring learned policy parameters across families of re-
lated tasks using policy gradient methods. Rather than at-
tempting to infer the hidden parameters, they synthesize a
new policy as a linear combination of policies obtained by
solving previous task instances. This paper uses four differ-
ent domains, each of which is a HIP-MDP: a spring-mass
damper system with three unknown variables; cart-pole with
unknown mass, cart length, and damping parameter; three-
link inverted pendulum with unknown cart mass and mass,
length, inertia, and damping parameters for each link; and
a quad rotor system with unknown arm length and inertia
around the x, y, and z axes. Each domain had a fixed range
from which each parameter was drawn uniformly at random,
generating a distribution of related tasks across which trans-
fer is affected.

HIP-MDPs for Model Uncertainty in Robotics
The majority of the papers we have cited in the preceding
section use a particular type of HIP-MDP: a physical model
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has some parameters (e.g., the mass of a link, or the inertia
around an axis), and these parameters are unknown to the
agent in advance. This kind of physics-based prior (Scholz
et al. 2014), where physical quantities are modeled as latent
variables, is of particular relevance to robotics.

In general, it is reasonable for us to assume that we have
a good model of our robot, since we either built it ourselves
or can demand such a model from the company we bought
it from. However, when our robots must operate in unstruc-
tured or semi-structure environments, it is almost never rea-
sonable to expect a perfect model of the rest of the world.
Nevertheless, it is also unreasonable to assume no knowl-
edge of how the world works. A robot encountering a novel
ball cannot expect to have a good model of how that particu-
lar ball works, but it should be able to use general knowledge
of how balls move to drastically simplify the model estima-
tion problem that it faces.

Approaches based on HIP-MDPs can thereby serve as
a middle-ground between the reinforcement learning (Sut-
ton and Barto 1998) setting, where we assume little or no
knowledge of the world dynamics, and the motion planning
(LaValle 2006) setting, where the environmental dynamics
are always precisely specified. In such a setting, transfer
learning has a very direct and important application: how
can we generalize knowledge about the world, in terms of
physical models and their latent variables, to be able to very
rapidly (or even virtually instantly) achieve general com-
petence when interacting with novel objects and environ-
ments?

In robotics (and many other applications), the assump-
tion that the agent has repeated interaction with exactly the
same problem, down to the smallest detail, over and over
again, is unrealistic. Similarly, the assumption that the robot
is gifted an accurate model of the environment is also unre-
alistic. Modeling the natural variations in task dynamics and
reward functions via HIP-MDPs offers a natural approach to
precisely defining the goal of transfer in these scenarios, and
thereby provides a route to principled and practical transfer
algorithms that could substantially improve robustness and
autonomy in real robot applications.
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