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Abstract

The ability to make decisions that balance conflicting needs
and variable-quality inputs is a skill that is inherently human.
In emergency situations, such capabilities are tested under
pressure, as needs and inputs change—often rapidly—and de-
liberation must take place quickly or else opportunities are
lost. This short paper identifies challenges faced when emer-
gency services personnel are supported by human/multi-robot
systems. Several strategies are proposed to address these chal-
lenges, with deployment geared toward emergency services
agencies within the next 5-10 years.

Introduction

Many problems face today’s emergency services organisa-
tions. Budget cuts reduce personnel and access to state-of-
the-art equipment, while new technologies are emerging and
agencies are under pressure to modernise. Meantime, offi-
cials are challenged by citizens’ ready access to and par-
ticipation in a wide range of information sources enabled
through social media. When large-scale incidents occur, per-
sonnel from multiple agencies are often thrown together in
ad hoc teams, led by senior officers who are ultimately held
accountable for their decisions.

The approaches outlined here aim to support emergency
services by providing intelligent systems that collect and
manage data during a critical incident. Multi-robot teams
can assist operational (“bronze”) personnel at the scene by
providing surveillance information and communicating with
victims trapped in remote locations. Agent-based coordi-
nation mechanisms can assist factical (“silver”) personnel
charged with real-time allocation of resources. Logical rea-
soning agents can assist strategic (“gold”) personnel via in-
telligent, data-backed decision support tools. Our vision is
that intelligent technologies will improve response time and
overall success rates in the field. However, many significant
challenges lie between approaches demonstrated in labora-
tories and practical solutions ready to be deployed by emer-
gency services agencies. In this short paper, we identify sev-
eral challenges for the AI, Robotics and Agents communities
and propose strategies to address these challenges, with de-
ployment geared toward emergency services agencies within
the next 5-10 years.
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Challenges

During an emergency incident, the top-priority goal is to
identify and rescue victims, reducing or eliminating loss of
human life. We highlight four challenges for deployment
of human/multi-robot systems in real-world emergency ser-
vices operations: (1) multi-robot coordination, (2) human-
multi-robot collaboration, (3) human-robot agreement, and
(4) data-backed deliberation.

Multi-Robot Coordination

The idea of deploying a team of robots to assist first respon-
ders in search-and-rescue operations is not new (Wong, Seet,
and Sim 2011). The robotics community has investigated
various aspects of multi-robot teamwork, including: multi-
robot routing (Dias et al. 2006; Koenig et al. 2006), collision
avoidance (Guy, Lin, and Manocha 2010; Kimmel, Dobson,
and Bekris 2012), distributed sensing (Howard, Matari¢, and
Sukhatme 2002; Parker 2002; Onosato et al. 2006), and
task allocation (Matari¢, Sukhatme, and Ostergaard 2003;
Liu and Nejat 2013). We focus on task allocation, for ex-
ploration and surveillance, and adapt methods derived in
the multi-agent systems community, primarily market-based
mechanisms which have the advantage of a strong the-
oretical basis (Wellman and Wurman 1998; Feigenbaum
and Shenker 2002; Parsons, Rodriguez-Aguilar, and Klein
2011). We evaluate these methods using deployment met-
rics, such as the amount of time it takes to complete the tasks
once they have been allocated and the amount of time robots
spend avoiding collisions in a crowded environment. In con-
trast, assessment of mechanism design methods in the multi-
agent systems community is limited to measuring computa-
tional properties of the allocation procedure. Different task
allocation methods can be used by teams to self-organise
and execute a range of independent and constrained (de-
pendent) tasks in static and dynamic environments (Gerkey
and Matari¢ 2004; Landén, Heintz, and Doherty 2012). We
have demonstrated that the performance of these alloca-
tion mechanisms is sensitive to robots’ starting conditions
and congestion of task locations, and we have showed that
our deployment-oriented performance metrics rank mecha-
nisms differently compared with measures based on compu-
tational properties of the allocation algorithms (Schneider et
al. 2014a; 2014b)—a key result that can help officers select
which methods to deploy in different situations.



Human/Multi-Robot Collaboration

A small number of studies address the human factors in-
volved in deployment of rescue robots in emergency situ-
ations (e.g., (Murphy 2004)). Some approaches focus on
increasing the autonomy of the robot team (Doroodgar et al.
2010; Liu and Nejat 2013), reducing the amount of direct
human control required and improving situational aware-
ness. However, a fully autonomous multi-robot team is not
realistic: in any real-world deployment, a human will ul-
timately be responsible for the robot team’s actions, typ-
ically a senior officer at tactical or strategic level. If this
officer does not understand how the robot team is organ-
ised, e.g., autonomous allocation of exploration tasks to
robots, then the officer’s trust in the solution will be di-
minished. We are investigating human-centric approaches
to semi-autonomous task allocation in real-time, dynamic
environments containing a range of independent and con-
strained tasks. The members of our robot team can operate
autonomously to complete navigation and sensing tasks, but
the distribution of tasks to robots can either be performed
autonomously (e.g., using a market-based mechanism), or
manually (by a human, at run-time), or semi-autonomously
(where a human assigns some of the tasks and then lets the
robots self-organise to assign the rest). We have defined a
human-centric representation of complex task environments,
called the Task Assignment Graph (TAG), and validated this
representation in a user study (Ozgelen and Sklar 2014a;
2014b). Our results showed that self-reported mental de-
mand for a human charged with manual task allocation is
higher when scenario complexity increases due to the num-
ber of available choices; consequently, humans tend to as-
sign constrained tasks first and then independent tasks.

Human-Robot Agreement

In traditional human-robot systems, the human takes the
initiative by providing supervisory control (Goodrich and
Schultz 2007). Mixed initiative approaches, like adjustable
autonomy (Tambe, Scerri, and Pynadath 2002), offer a
means for alternating the locus of control, but the human and
robot do not share control or discuss decisions. HRI work
on discussion is largely about natural language architec-
tures (Lemon, Gruenstein, and Peters 2002), delivery meth-
ods (Bohus et al. 2011), and social intelligence (Breazeal
2003; Dautenhahn 2007). In contrast, our focus is on human
and robot reaching agreement. We have defined a formal
structure (Sklar et al. 2013), based on logical argumenta-
tion (Rahwan and Simari 2009; Prakken 2010) and dialogue
games (Walton and Krabbe 1995; McBurney and Parsons
2002; Prakken 2006). Such games are characterised by rules
that govern what each participant in the dialogue can say,
based on their beliefs and the game state. Using our ArgHRI
formalism, a human and robot can argue in favour of a de-
cision (conclusion), or against the other’s decision, by pre-
senting evidence that supports (or refutes) the decision. Our
mixed initiative approach allows the locus of control to shift
dynamically based on the belief and game states. A prelimi-
nary user study (Azhar et al. 2013) tested implementation of
our approach, and another is forthcoming.
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Data-backed Deliberation

The use of new technologies for gathering data during criti-
cal incidents is becoming commonplace, but emergency ser-
vices personnel are not prepared to manage the quantity and
range of information streams available, for example: sen-
sor data from multi-robot teams, status reports from oper-
ational personnel belonging to different agencies, and on-
the-scene updates from citizens posting on social media. We
have developed a decision-making tool that helps users bal-
ance information from different sources, of varying quality
and trustworthiness. This tool is based on the ArgTrust (Tang
et al. 2012) engine, which constructs data-backed arguments
for and against specific conclusions, modulated by user-
specified measures of trust in the provenance of the data.
We tested our software with users charged with making de-
cisions in a static humanitarian relief scenario (Salvit et al.
2014) and showed that trained users found the tool helped
them manage data and make more informed decisions (than
without using the tool). Our current work involves collab-
oration with emergency services personnel by facilitating
and managing data collection in live training exercises dur-
ing which large-scale emergencies are enacted, requiring
(mock) rescue, decontamination and/or evacuation. Data is
collected at bronze, silver and gold levels, as well as mock
social media data provided by human subjects, and robot
sensor data. These data can be accessed by ArgTrust and
used by officers to deliberate during a crisis, while main-
taining a “data trail” that can justify their decisions later.

Next Steps

Our current work involves: adapting multi-agent market-
based mechanisms to handle constrained tasks in dynamic
operations; using TAGs to model dynamic environments;
applying argHRI to complex tasks and multi-robot settings;
and extending ArgTrust to handle live data streams.
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