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Introduction
For the majority of real-world cyber-physical systems, includ-
ing the domain of humans interacting with robots, intuitive
procedures for designing controllers are needed. While one
such approach is to teach a robot via demonstration, the con-
trol behaviors produced by this data-driven technique are
unable to be verified for feasibility or stability. In contrast,
sophisticated stability analysis is possible for control behav-
iors derived via optimal control, but such formulations are
rarely intuitive and often require substantial expertise to use.

We propose an approach that creates a synergy between in-
tuitive design interfaces for a physical system and the formal
verification that control provides. In particular, our approach
derives control behaviors using optimal control while simul-
taneously engaging a human operator to provide physical
guidance for adaptation via corrective demonstration. A fun-
damental technical challenge lies in the fact that the operator
may well destabilize a system that operates in the physical
world, subject to dynamics and sources of uncertainty; more-
over, the risk to the system changes from one operator to
another. Controllers developed under our approach are ver-
ified for stability and robustness, and a formal measure of
trust in the teacher is used to decide whether to cede control
to the teacher during physical correction.

For many systems, physically demonstrating motion need
not be a particularly challenging task. When a system is suit-
ably quasi-static, simply utilizing some form of impedance
control may well allow for physical demonstration—and
because there is no risk of destabilization, only the most
rudimentary knowledge of the system kinematics is needed.
Within Learning from Demonstration (Argall et al. 2009),
typically an intuitive understanding by the teacher of the
kinematics and dynamics of the learner holds—either be-
cause s/he has a good understanding of the system platform,
or a good idea of how to perform the task with their own
body. In contrast, our work specifically allows for differences
in dynamics and controls between the learner and teacher. We
additionally aim to quantify limits on what the teacher is re-
quired to know about the learner for demonstrated corrections
to be effective.

We consider the fact that for cyber-physical and human-
robot systems, an understanding of each by the other is of
crucial importance. That is, not only does the human oper-
ator need to understand the automated system in order to

provide good shaping guidance and sound control input, but
likewise the automated system needs to understand the qual-
ity limitations on the guidance and controls provided by the
operator. Moreover, this circular dependence has been shown
to be quite problematic in that the more complex the software
system is, the harder it is for the human operator to interact
with it in a meaningful and predictable manner. The proposed
automated system therefore will reason explicitly about its
trust in the operator’s instruction.

We present a mathematical formalism for a computable
measure of trust in human instruction. We frame this formal-
ism within the more general scope of cyber-physical systems,
for which a human teacher instructing a robot learner is a
specific instance. For physical systems like a robot, reasoning
about the stability and utility of instruction is essential not
only for good performance but also for safety.

A Framework for Mutually Controlled Motion
Key to our vision for how mutually controlled motion can be
achieved while respecting stability is a computable measure
of control-based trust in the teacher: its establishment and
update, its incorporation into controller updates, and its role
in shared control during physical interaction.

Our approach first derives an initial control behavior via
optimal control, then engages a human teacher to provide
physical guidance for corrective demonstration, and finally
verifies that the controller produced as a result of the inferred
corrections is in fact stable. This verification furthermore is
used to estimate a measure of trust in the teacher—relevant
for real-world systems learning from multiple teachers with
perhaps varying levels of proficiency in providing instruction.
Whether to incorporate the teacher’s instruction is decided
by this trust measure, as well as whether to cede control to
the teacher during correction. Given state x, input u, state
perturbation z and input perturbation v, we assume that a
system has dynamics ẋ = f(x, u) where f is piecewise
smooth and that ż = ∂f

∂x (t)z +
∂f
∂u (t)v is at least sometimes

a locally controllable and observable system.

Operator Demonstration Interpretation Given some
initial trajectory qi(t) (where x = (q, q̇)) and control input
ui(t) of a system, the operator is allowed to perturb the tra-
jectory by ηi(t) to obtain a new trajectory qi(t) + ηi(t). One
natural option for how to interpret ηi(t) is to infer from it the
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objective of the operator; this is called inverse optimal control
(IOC) or imputed control (Keshavarz, Wang, and Boyd 2011).
Viewing ηi(t) as an incremental, local improvement to the
original trajectory thus makes the computation feasible and
leads to an implementable embedded system. Another option
is to treat the operator’s perturbation ηi(t) as an exaggera-
tion. Exaggeration plays a fundamental role in human motion
learning. Machine learning techniques like novelty detection
and statistical variance can be used to identify exaggeration,
and techniques like dimensionality reduction can be used
to infer its salient characteristics (i.e. a relevant subset or
projection of the state dimensions).

Human Operator Evaluation In the case of physical in-
teraction, trust between the system and operator becomes
substantially more important because injury is a possibility.
We propose that, in addition to metrics such as improved per-
formance, a measure of trust could include the (i) stability of
a perturbed trajectory and (ii) second-order optimality of per-
turbations. The idea is that a human instructor should never
propose new trajectories outside the domain of attraction of
a stabilizing controller. Moreover, for a subset of canonical
motions the locally “best” perturbation can be derived ana-
lytically by solving an infinite-dimensional local quadratic
model (Hauser and Saccon 2006). The machine thus has a
metric, intimately tied to its dynamics, by which it can decide
whether or not an operator can be trusted.

Computing Control-Based Trust Consider Figure 1,
which illustrates an iteration of an optimal control algorithm.
A perturbation ηi(t) applied by the operator might need to be
scaled down by step size γ if the local feedback law obtained
for qi(t) is to be able to stabilize the perturbation (Armijo
1966). Local stability implies that there exists a γk that guar-
antees the resulting trajectory will be stable, and how large γ
is depends on ηi(t) (for a Newton step, γ = 1 will work).

Hence, we can use γ as a computable measure of quality
for ηi and accordingly also of trust (τa). Moreover, in some
scenarios with a known reference trajectory, the optimal per-
turbation can be computed explicitly and compared to the
operator’s perturbation, as another factor in the measure of
trust (τb). Lastly, note that the new, perturbed trajectory is
initially stabilized using the previous controller, but then a
new set of controllers about the new trajectory are computed.
If this new controller is badly conditioned (e.g. near singular)
then this can also be incorporated into the estimate of trust
(τc).

A single metric for trust τ will be established for each
human operator, which is learned over time and updates
with each trust interaction (i.e. {τ0a , τ0b , τ0c , τ1a , ...}). Straight-
forward formulations for τ might consider only the most
recent trust interaction (i.e. τ t = τ tc ) or simply compute a run-
ning average (i.e. τ t = τ t−1+ 1

t
((τ ta+τ

t
b +τ

t
c)−τ t−1)). Other

formulations might weigh trust interactions temporally—for
example to give higher weight (α� 1

2
) to past interactions,

for a slowly adapting metric (e.g. τ t = α(τ ta + τ tb + τ tc) +
(1 − α)τ t−1), α ∈ [0, 1]). Still others might weight by trust
type—for example to give higher weight to τb than τc, in-
dicating that it is worse to demonstrate outside of the basin
of attraction than to demonstrate a badly conditioned con-

Figure 1: Starting with a feasible trajectory qi(t) at iteration
i, and desired trajectory qd(t), a descent direction ηi(t) can
be computed (or demonstrated). From the projection P a
feasible trajectory can be computed via P(qi(t) + γηi(t))
(where γ is a step size), which may be outside the basin
of attraction for the projection if γ is too large (red line).
However, it is guaranteed that there exists a γk small enough
so that the resulting curve qi(t) + γkηi(t) is within the basin.
The largest such γk is a good measure of the quality of ηi(t).

troller (e.g. τ t = α(w0τ
t
a +w1τ

t
b +w2τ

t
c) + (1− α)τ t−1), α ∈

[0, 1],
∑

i wi = 1). A worse-case choice also could be made,
using τ t = min

{
τ ta, τ

t
b , τ

t
c

}
.

Control Authority Transfer Once a measure of trust has
been established, nontrivial instruction is allowed to com-
mence. The system only issues a warning if the other states
are destabilizing, and the threshold on issuing this warning
goes up with trust. After the motion is complete, the per-
turbed trajectory ξ is stored and P(ξ+γη) can be computed
(Fig. 1), looking for the largest γ that is still stable. Note that,
with regards to exaggeration, this means the operator can ex-
aggerate instruction and the choice of γ will scale the result
back down, but the system will only allow exaggeration after
significant trust has been established.

This paper has proposed a computable notion of trust that
allows an embedded system to assess the safety of instruction,
as a step towards addressing the question: How much should
a person be allowed to interact with a robot?
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