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Introduction
Low-level motion planning techniques must be combined
with high-level task planning formalisms to generate realis-
tic plans that can be carried out by humans and robots. A rep-
resentative example is planning for fenceless assembly cells
where robots can collaborate seamlessly with humans to per-
form assembly tasks. Key constituent components include
assembly sequence generation (Morato, Kaipa, and Gupta
2013), task decomposition between human and robot (Kaipa
et al. 2014), system state monitoring (tracking human, robot,
and assembly parts) (Morato et al. 2014a), instruction gen-
eration for humans (Kaipa et al. 2012), safety (Morato et al.
2014b), and error recovery (Morato et al. 2014a). In order
to enable a coherent integration among these components,
a high-level planner, interleaved with motion planners, is
needed at several levels of the system hierarchy.

For example, given a CAD model of a product to be
assembled, motion planning methods can generate im-
proved assembly precedence constraints (Morato, Kaipa,
and Gupta 2013), which can be compiled into a high-level
planning problem. Humans and robots share complimen-
tary strengths. The planning framework can incorporate this
knowledge to decompose the tasks effectively. Further, an
integral planner must be able to perform plan-repair in order
to handle contingencies: (1) low-level deviations in the ge-
ometric state without affecting the corresponding symbolic
state (e.g., human places part in a wrong posture), which can
be corrected at the motion planning level, or (2) deviations
in the symbolic state (e.g., human picks incorrect part; im-
proved alternative sequence may or may not exist), which
needs to be corrected at both levels of planning.

Task planning formalisms typically used to achieve
this integration are Classical Planning (Cambon, Alami,
and Gravot 2009; Erdem et al. 2011; Dornhege et al.
2009; Burbridge and Dearden 2013) and Hierarchical Task
Network (HTN) Planning (Kaelbling and Lozano-Pérez
2011; Hadfield-Menell, Kaelbling, and Lozano-Perez 2013;
Wolfe, Marthi, and Russell 2010). Whereas Classical plan-
ning is not scalable, HTNs impose stringent complete-
ness requirements on domain models, which are difficult
to guarantee in open, dynamic environments. Recently, we
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developed a new planning formalism called Hierarchical
Goal Networks (HGNs) (Shivashankar et al. 2012; 2013)
that combines scalability and expressivity advantages of
HTNs and heuristic-search/reasoning capabilities of Classi-
cal planning into a single framework. In this work, we ex-
ploit the advantages of HGNs to tightly integrate it with mo-
tion planners. Our aims are twofold: (1) Design a general-
purpose planning-and-execution framework that combines
HGN planning and execution-time plan-repair algorithms
with off-the-shelf motion planners, and (2) Formulate this
planning framework in the context of planning for human
robot collaboration in assembly cells.

The system takes as input the planning problem P (pro-
vides descriptions of the initial state, goals to be achieved,
base action models at the task-planning level, control prim-
itives at the motion planning level, and procedures to trans-
late between symbolic and geometric state descriptions). P
is input into an Offline Planning module, in which HGN
planners and low-level motion planners interactively synthe-
size an executable plan structure Π that achieves the given
goals when applied from the initial system state. Π is then
input into an Execution-time Reasoner module to (1) mon-
itor plan execution, and (2) repair Π in case the deviations
from expected state render the current plan inexecutable.

Planning Formalism
Task Planning Domain. We define the task planning model
MTP as a five-tuple (VD, VC ,O,M, γ). VD is the set of
discrete state variables in the domain; they evaluate to ei-
ther true/false or to a discrete object in the domain.
VC on the other hand represents the set of continuous
state variables in the domain, which can evaluate to a real
number. O represents the set of primitive operator mod-
els in the domain, which are model actions that are exe-
cutable in a single step at the task planning level. Each o ∈
O is a four-tuple (name(o),pre(o),eff(o),cost(o)).
M represents the set of HGN methods, which models
domain-specific knowledge that suggests ways to decom-
pose goals into subgoals. Each m ∈ M is a four-tuple
(name(m),post(m),pre(m),subgoals(m)). Finally,
γ represents the state transition function. A ground instance
a of an operator o is applicable in a state s if s satisfies
pre(a); the resulting state s′ = γ(s, a) reassigns the state
variables according to the assignments in eff(a).
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A planning problem is a triple P = (MTP , s0, gn), where
MTP is a task planning model, s0 is the initial state, and gn
is a network of goals that need to be accomplished.

Motion Planning. Let χ = Rd, d ≤ |VC | be the configu-
ration space of the system. Let χobs be the obstacle region;
thus χfree = χ \ χobs represents the obstacle-free space. A
motion planning problem is a triple P = (χfree, x0, χgoal)
where x0 is an element of χfree and the goal region χgoal

is a subset of χfree. A path σ : [0, 1] → Rd is a valid so-
lution to P if (1) it is continuous, (2) it is collision-free, i.e.
σ(τ) ∈ χfree for all τ ∈ [0, 1], and (3) the boundary condi-
tions are satisfied, i.e. σ(0) = x0 and σ(1) ∈ χgoal.

Connecting Task and Motion Planning. For this pur-
pose, we must first provide a way to switch between these
two state spaces by generating: (1) candidate geometric
states consistent with a symbolic state, and (2) symbolic
state corresponding to a given geometric state. We assume
the following domain-specific procedures: (1) Gensymwhich
takes as input a geometric state sgeom and generates the cor-
responding symbolic state ssym, and Gengeomwhich takes
as input a symbolic state ssym and generates a candidate ge-
ometric state sgeom.

Thus, the overall planning problem P is a 3-tuple
(〈MTP , χfree,Gensym,Gengeom〉, s0, gn) where s0 and gn
are the initial state and the goal network respectively.
The definition of solutions for P is as follows. Let πsym
be a solution of the underlying HGN planning problem
Psym = (MTP , s0, gn) (Shivashankar et al. 2013): [Case
1] If πsym is empty, then Π = 〈〉 is a solution for P .
[Case 2] Let πsym = a ◦ π′

sym. Furthermore, let ssym1

be the symbolic state after a is executed. Let sgeom0 be
the projection of s0 onto the variables in VC , and sgeom1
be the geometric state generated by Gengeom for s1. If
there exists a valid solution σ to the motion planning prob-
lem (χfree, s

geom
0 , sgeom1 ) and Π′ is a solution to P ′ =

(〈MTP ,Gensym,Gengeom〉, 〈ssym1 , sgeom1 〉, gn), then Π =
σ ◦Π′ is a solution to P .

Planning Algorithm
We have developed an integrated task-and-motion planning
algorithm that combines GoDeL, a HGN planning algo-
rithm (Shivashankar et al. 2013) with heuristic search mo-
tion planners (Likhachev et al. 2008; Likhachev and Stentz
2008). The algorithm takes as input a planning problem
P = (D, s0, gn) and does the following: (1) it recursively
decomposes the given goals using the given HGN methods
until a primitive action a can be applied, (2) if a is to be ex-
ecuted by a robot, we further refine it into a motion plan by
sampling a goal configuration cg consistent with a’s effects
and running the motion planner (MP) on that.

The novelty in this approach comes from the particular
way in which the planners are integrated. GoDeL, when in-
voking MP, also passes to it an upper bound τcost(a),
where τ is a user-specified tolerance parameter. MP, being a
heuristic search planner, can detect when the lower bound on
the best possible solution it can generate exceeds this bound,
and can return failure at that point. This is especially useful
in cases when a bad goal configuration has been sampled,

Figure 1: MR0 and MR1 are mobile robots, human0 and
human1 are humans, and SR is a static robot. The goal is
to assemble obj0, obj1 and obj2 together using tool0.

leading to unsolvable problems. Similarly, motion plan costs
are also propagated to the task-planning level to update the
heuristic estimates of the symbolic actions, and used to de-
termine whether other actions might lead to better plan costs.

Example Domain

One of our aims is to ground the proposed planning archi-
tecture in a manufacturing domain (Fig. 1). The shop floor is
divided into four regions: (1) Part storage, (2) Tool storage,
(3) Subassemblies building, and (4) Final assembly.

We model the actions of the domain in Planning Domain
Description Language (PDDL, a language to encode task-
level planning domain descriptions) and the domain specific
knowledge using HGN methods. The proposed system per-
forms the following: (1) takes the product CAD model and
generates assembly precedence constraints (Morato, Kaipa,
and Gupta 2013) and compiles them into an HGN planning
problem. (2) Offline planning (Use the proposed planning al-
gorithm to generate an executable plan structure Π− actions
to be performed by humans can be provided at the symbolic
level, while those performed by robots need to be refined
into low-level motion plans. Protocols that need to be fol-
lowed by agents (such as reserving a tool before using it,
etc) can be modeled as HGN methods), and (3) Execution-
time Reasoning (execute Π, while continuously monitoring
the geometric state of the system using sensors, both vision-
based and otherwise, that monitor locations of workers, tools
and parts, as well as other information such as battery levels
of robots, stress in robot arms while carrying heavy loads,
etc. The system will repair Π using HGN and motion plan
repair algorithms, when deviations from both the expected
symbolic and geometric states are observed.

We believe that the techniques presented in the paper can
address the above mentioned planning problems and we are
currently in the process of prototyping the system.
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