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Abstract 
We describe a novel system for discovering and characteriz-
ing emerging events. We define event emergence to be a 
developing situation comprised of a series of sub-events. To 
detect sub-events from a very large, continuous textual input 
stream, we use two techniques: (1) frequency-based detec-
tion of sub-events that are potentially entailed by an emerg-
ing event; and (2) anomaly-based detection of other sub-
events that are potentially indicative of an emerging event. 
Identifying emerging events from detected sub-events in-
volves connecting sub-events to each other and to the rele-
vant emerging events within the event models and estimat-
ing the likelihood of possible emerging events. Each sub-
event can be part of a number of emerging events and sup-
ports various event models to varying degrees. We adopt a 
coherent and compact model that probabilistically identifies 
emerging events. The innovative aspect of our work is a 
well-defined framework where statistical Big Data tech-
niques are informed by event semantics and inference tech-
niques (and vice versa).  Our work is strongly grounded in 
semantics and knowledge representation, which enables us 
to produce more reliable results than would otherwise be 
possible with a purely statistical approach. 

1 Introduction and Background   
Broad-scale detection and characterization of emerging 
events in streams of textual data (e.g., a natural disaster, a 
new scientific breakthrough, or a terrorist event) is a vital 
technology for the advancement of “Big Data.”  This is an 
important capability for a wide range of applications such 
as analysis of news stories, understanding of scientific pa-
pers, analysis of social interactions, and building medical 
records.   In fact, any application that requires the pro-
cessing of large textual data could very well benefit from 
the detection and characterization of emerging events. 

Our team is investigating the development of a novel 
system for DIScovering and Characterizing EmeRging 
eveNts (DISCERN). Our approach transcends shallow-
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analysis techniques for event tracking and detection, such 
as those employed in the Rich Textual Entailment initiative 
(Dagan, Glickman, and Magnini, 2006), in that it applies 
deep semantic processing and inferencing to an unstruc-
tured textual input stream and is able to detect emerging 
events that may not be explicitly stated. 

Consider the following two examples:  
(1) The heavy rains and rising water led to flooding 

conditions. 
(2) I just saw a car floating down the street. 

We define event emergence to be a developing situation 
(e.g., flooding) that is potentially comprised of a series of 
sub-events (e.g., rising water).  In (1), the flooding condi-
tions are a superordinate event—referred to by some (e.g., 
Pustejovsky, 2013) as a “container”—for the sub-event ris-
ing water (which is enabled by the sub-event heavy rains).  
This necessitates a hierarchical organization of predicate 
argument representations.  In (2), the car floating down the 
street is another sub-event that is an indicator of flooding 
conditions, although flooding is not explicitly mentioned. 

Figure 1 depicts these two types of sub-events for the 
examples above, with solid lines used to link sub-events 
that are definitionally entailed by an emerging event, and 
dotted lines used to link sub-events that are indicators ena-
bled by an emerging event.1 

The notion of emergence may rely on a distributed set-
ting, constructed from sub-events that occur in a stream of 
                                                
1 For illustration, only the links relevant to this discussion are shown in 
Figure 1. The figure is not complete (e.g. the link for "Heavy Rain enables 
Flood" is not shown) and it contains implicit links that could be inferred 
via constraints on the enables/entails relationships. in the graph. 

Figure 1: Sub-Events Associated with Heavy Rain and Flood 
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seemingly uncoordinated and independent events.  For ex-
ample, one might imagine a social-media interaction that 
contains evidence that a flooding event may be emerging: 

A: I am watching TV... ... It's raining really hard...  
B: Anyone going to the party?...  Water is rising much 
faster than I expected.  
C: The pizza is burnt...  There is a car floating out on the 
street!...  

We address the following challenges: 
• Automatic detection of (explicitly mentioned) sub-

events from an input stream and filtering the content 
for downstream emerging event discovery. 

• Discovery and characterization of (potentially implicit) 
emerging events through deep semantic linking of the 
sub-events detected above. 

We focus on the extraction of knowledge from both 
verbs and other linguistic constructs such as resultatives, 
adjectivals, nominalizations, and pronominals (for event 
coreference)—as well as compositional structures that defy 
standard phrase-level approaches. Our approach enables a 
deeper level of understanding based on event semantics 
and hierarchical knowledge that enables detection of im-
plicitly conveyed emerging events. 

The overall architecture for the DISCERN system is 
shown in Figure 2. 

2 Broad-Scale Detection of Sub-Events for 
Event Emergence Detection 

We expect event emergence to arise when there is a sharp 
increase in the degree to which specific sub-events occur. 
Detecting sub-events and their compositional relationships 
in large volumes of streaming text requires: (1) characteri-
zation of a large variety of syntactically- and semantically-
grounded sub-event patterns; (2) tracking the large number 
of such patterns over time and computing aggregated sta-
tistics to identify outliers.   

We adopt a hierarchical pattern-based approach to ex-
tracting potential sub-events of emerging events, producing 
predicate-argument structures, and assigning relationships 
between them. We automatically construct sub-event pat-
terns that are later used for filtering input so that down-
stream inference processes will be applied to a smaller set 
of sub-events.   

2.1 Pattern Construction 
Three components of hierarchical patterns are: (1) Syntac-
tic structures (the full syntactic tree shown in Figure 3) 
produced by parsing text fragments that potentially contain 
sub-event mentions; (2) “Trimmed” sub-structures (smaller 
syntactic tree shown above the full parse in Figure 3) to 
represent indicative sub-event patterns for anomalous 
events; and (3) paraphrastic variants associated with lexical 
and phrasal items (available, but not shown in Figure 3).  
Each of these is described in turn below. 

 Sub-event Pattern Construction: One challenge in con-
structing such patterns is that sentences often contain con-
tent not directly related to a potential sub-event. Such con-
tent obstructs discovery of the structure intrinsic to a par-
ticular event. For example, in the sentence City officials 
agreed to fund flood relief efforts, the mayor said Tuesday, 
the phrase the mayor said Tuesday does not contain any 
additional content related to the main sentence.  In our pre-
vious work on text summarization (Zajic et al., 2008; Zajic 
et al., 2007; Qazvinian et al., 2013), we identified a set of 
rules that succinctly capture the structure of such “extrane-
ous” content as patterns on dependency trees using a sys-
tem called Trimmer. Removing these structures will sim-
plify the sentence, while preserving the core syntax struc-
tures related to the event.  In addition, event syntax struc-
tures need to be generalized into patterns Figure 3 shows a 
syntactic structure from our running example, I just saw a 
car floating down the street.  The pattern resulting from 
Trimmer’s removal of the extraneous content (I just saw) is 
indicated in the upper right corner.   

Another challenge is that the Trimmer approach was 
originally designed to eliminate portions of the tree based 
on what the system considers to be syntactic periphery 

Figure 2: DISCERN System Architecture

Figure 3: Example of a parse tree for a sub-event candidate, 
with an event-argument pattern indicated above. 
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(e.g., subordinate clauses are generally deleted), without 
taking into account the semantic contribution of these po-
tentially useful sub-trees. Thus, a clause like floating down 
the street would automatically be deleted in our ongoing 
example in Figure 3. We extend Trimmer rule application 
to take semantic context into account, e.g., retaining the 
car floating sub-event, by leveraging anomaly detection—
as described below.  

A third challenge is the restrictive nature of lexicalized 
patterns, e.g., the pattern above for car floating contains 
lexical items car and floating – these need to be general-
ized, so that other similar patterns will be constructed, e.g., 
for pig flying.  To address this, we use the patterns generat-
ed in the first step as a seed to find additional patterns in 
large text corpora. We expand the set of patterns from the 
previous step by mining for statistically similar patterns 
from large text corpora.  

Anomaly-based Detection of Indicative Sub-event Pat-
terns: Sub-events that are not entailed by an emerging 
event but are enabled by them are indicative in nature; the-
se typically provide information on emerging events based 
on an anomalous number of mentions (as in the repeated 
mention of rain and water in our running example) or on 
an anomalous co-occurrence of terms (as in the car float-
ing example above).  An anomaly is detected when there is 
a spike in the number of such occurrences (Figure 4) (Vla-
chos et al., 2004).   Such spikes are indicative of an anoma-
ly, and Trimmer uses this as a feature for retention of that 
portion of the syntactic structure during the construction of 
sub-event patterns. 

 Incorporation of Parphrasatic Variants: We are investi-
gating the use of the two paraphrasing techniques for cap-
turing event-oriented relations including, among others: (1) 
coreference; (2) sub-event:   
• Categorial Variation Detection to relate derivational 

variants that are paraphrastic, but are not necessarily 
the same part of speech (e.g., the verb raining and the 
noun rain—which may be leveraged to identify the 
raining activity as a potential indicator for the emerging 
flood event). 

• Targeted paraphrasing to relate phrasal units that may 
be used in the same context (e.g., heavy rains and ris-
ing water—which may be leveraged to identify sub-
event relationships between these two, ultimately lead-
ing to discovery of the sub-event relationship between 
rising water and flood). 
• We have extracted patterns associated with such 

relationships using the predicate-level annotations 
in ACE2005 and SemLink, as well as two addi-
tional sources described below from our prior 
work. Our approach transcends strictly verb-
focused techniques that are inherent in most cur-
rent event analysis frameworks (e.g., Rup-
penhover et al., 2009; UzZaman, 2013). We ex-
tract knowledge not just from verbs, but from oth-
er syntactic renderings of events, e.g., nominal-
ized events, adjectivals, and resultatives.  

Even more robust paraphrase-based detections are pos-
sible using a combination of paraphrasing and categorial 
variations.  For example, it is possible to tease apart se-
mantic equivalence (event coreference) from other event-
event relations.  Consider the paraphrases below: 

The flood killed 7 and injured 20 
As a result of the flood, 7 died 
Rising waters drowned 7 and wounded 20
The drowning of 7 people and injury of 20 
Heavy rains pelted the city, killing 7 and injuring 20 

In standard paraphrasing systems (Bannard and Calli-
son-Burch, 2005), due to the similarity in argument struc-
ture and contextual usage, it easy to see how terms like 
drowned and died (and injured and wounded) would be 
equated paraphrastically.  However, when these same fea-
tures are used, there may be cases identified as paraphrastic 
events that are not an exact match, as one event may be a 

Figure 5: Preliminary results over NIST Event 
Evaluations Pilot dataset.  

Figure 4: Anomaly detection in pattern/mention occurrences 
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sub-portion of the other. Our approach involves extraction 
of approximate paraphrase patterns (akin to the high-
recall/low-precision version of the paraphrase database at 
paraphrase.org) to provide fodder for the discovery of 
predicate-argument structures that express sub-event rela-
tions (flood, rising waters; flood, heavy rains) or causal re-
lations (flood, die; flood, drown; kill, die).  Categorial Var-
iations are leveraged for additional features to relate terms, 
e.g., injured and injury. 

As a preliminary step toward testing some of the com-
ponents described, most notably, Categorial Variations, we 
applied the DISCERN system to the Event Detection prob-
lem in the recent NIST KBP Evaluation. Figure 5 summa-
rizes our findings on the pilot data. The results of the final 
evaluations are currently pending NIST assessment. 

2.2 Scalable Processing 
 Pattern Extraction: To support scalable pattern extrac-
tion, we combine structured-pattern detection with anoma-
ly-based detection by introducing an explicit representation 
of event patterns which can be (1) mined from data and (2) 
efficiently extracted at scale using efficient structured pat-
tern matching. 

 Pattern representations will affect scalability when there 
are a large number of patterns. As the number of patterns 
increases, the processing time correspondingly increases: 
each pattern needs to be evaluated on every tree. When the 
number of patterns is large and a tree matches only a few 
patterns, it is beneficial to index patterns so that we quickly 
access only those that apply to a given tree. This requires 
computing commonalities between multiple patterns.  

 Event-Relationship Graph: The main challenge in scal-
ing up event emergence detection is achieving efficient ac-
cess to a large number of sub-events and indicators. We 
make use of HBase (DB in Figure 2), a state-of-the-art 
semi-structured database for the Hadoop platform, which is 
based on BigTable data model (Chang et. al., 2008).  

2.3 Related Work 
Prior work on broad-scale sub-event detection has concen-
trated primarily on two areas: complex event processing 
(Wu et al., 2006; Cugola et al., 2012; Eckert et al., 2011) 
and statistical event extraction from natural text (Galitsky, 
2013; Pradhan, 2005; Das et al.,2010).  

A novelty of our approach is the use of explicit, linguis-
tically motivated sub-event patterns—in contrast to the 
shallower, string-based techniques employed by purely sta-
tistical event-extraction systems. We are optimistic that 
this approach will be very efficient on large-scale data pro-
cessing, having obtained promising results from prior ex-
perimentation with pattern extraction on graphs (Petrovic 
et al., 2005a, 2005b; Liu et al., 2006, 2011) and semi-

structured data (Petrovic et al., 2003; Burcea et al., 2003; 
Wun et al., 2007).  

3 Deep Event Understanding and Emergence 
Detection 

We take advantage of a robust, broad coverage semantic 
parser to represent event semantics: TRIPS (Allen et al., 
2008).  TRIPS produces a representation that enables event 
understanding and event emergence detection. 

3.1 Representing Semantics of Events 
The TRIPS semantic lexicon provides information on the-
matic roles and selectional restrictions for about 5000 
verbs.  The parser constructs a semantic representation in a 
state-of-the-art logic (Manshadi et al., 2008; Manshadi and 
Allen, 2012).   

Figure 6 shows the semantic analysis of "I saw a car 
floating down the street." Each node captures a predicate or 
entity in the sentence, as well as the ontology type of the 
node in the hand-built TRIPS ontology and the WordNet 
sense (Fellbaum, 1998) for the predicate/entity. Predicate-
argument structure is indicated by links labeled with se-
mantic roles. In addition, the parser extracts temporal in-
formation, which is critical for capturing ongoing situa-
tions that signal emerging events. 

To attain broad lexical coverage beyond its hand-defined 
lexicon, the TRIPS parser uses a subsystem called Word-
Finder that accesses WordNet when an unknown word is 
encountered. This uses a hand-built mapping between the 
WordNet hypernym hierarchy and the TRIPS ontology. 
WordFinder uses the combined information from WordNet 
and the TRIPS lexicon and ontology to dynamically build 
lexical entries with approximate semantic and syntactic 
structures for words not in the core lexicon.   

TRIPS has demonstrated capability in parsing both dia-
logues (e.g., Allen et al., 2007) and arbitrary text (e.g., Al-
len et al., 2008), which allows us to tackle informal com-
munications such as the “emergent flood” example given 
earlier. The output of the parser is processed to identify 

Figure 6: The Semantic Representation for I saw a car 
floating down the street. 
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temporally located events of interest. In this example, the 
event of interest is the car floating, and the evidence for 
this event is the fact that the speaker saw it. Furthermore, 
we know the floating event occurred prior to the time of 
the utterance. This stream of temporally located events 
serves as input to the inference component described next. 

3.2 Acquiring Commonsense Models of Emerging 
Events 
We acquire commonsense models of emerging events au-
tomatically by reading dictionary definitions (Allen et al, 
2011; Allen & Teng, 2013). The Gloss system (Allen et al., 
2011, 2013) is a system that uses the TRIPS parser to pro-
cess the glosses in WordNet. These definitions provide a 
rich set of entailments, capturing many key relationships 
between events. For instance, WordNet contains the fol-
lowing definitions: 

Drown: kill by submerging in water 
Kill:  cause to die 

The Gloss system parses such definitions and then gener-
ates entailment axioms from the logical forms.   

Figure 7 shows the parse of the definition for drown. 
Chaining from this definition and that of kill allows DIS-
CERN to infer from Rising waters drowned 7 people that 7 
people died.  In addition, new ontology types are created 
for each new event (and other entities), producing a rich 
hierarchy to support inference.  

3.3 Mini-Theories 
From our own experience, simply chaining through lexical 
definitions has limited impact for identifying emerging 
events. Definitions are too vague and idiosyncratic by 
themselves. We address this in two ways. We first intro-
duce hand-constructed axioms for a selective set of key 
concepts that link into our reasoning system (Allen & 
Teng, 2013). These hand-built axioms “activate” the axi-
oms produced automatically.   

In addition, we then organize the derived knowledge 
around mini-theories, each capturing specific knowledge 
about particular aspects of our world, e.g., life/death, work-
ing, eating, and commonsense temporal cycles, e.g., 
day/night, sleeping. Mini theories are constructed automat-
ically by merging information from large clusters of defini-
tions, all related in some way to the theory being con-
structed. By focusing on a single transition (e.g., life/death, 
asleep/awake) we are able to use heuristic techniques en-
coded in a probabilistic optimization process, using Mar-
kov Logic Networks (Richardson and Domingos, 2006) to 
construct the best concise consistent models. 

A sample mini-theory regarding the process of drowning 
is shown in Figure 8. Note that we can have links between 
mini-theories. For instance, the mini-theory of flooding 
would involve things being submerged, which plays a key 

role in the mini-theory of drowning.  In the mini-theory for 
flooding, we would have key information such as the fol-
lowing: 

• Raining entails that water is falling 
• Rain can cause rising water levels 
• A flood requires abnormally high levels of water 

We employed heuristic approaches within a probabilistic 
framework yielding promising results for deriving mini-
theories from clusters of related definitions.  We encoded 
reasoning and heuristics in Markov logic and employed a 
probabilistic optimization technique to identify models that 
satisfy simplicity preferences.  

We adopt this probabilistic optimization framework to 
perform an associative search through WordNet, as well as 
using CATVAR (Habash and Dorr, 2003) and other para-
phrastic units (Madnani and Dorr, 2013), to identify the 
concepts related variously to the target central concept of 
the mini-theory.  All these concepts are linked by their def-
initions, thus allowing us to construct a graph of their de-
pendencies, within which we find key relations using an 
algorithm similar to PageRank. 

3.4 Detecting Event Emergence 
Consider the following sample input stream relating to an 
emerging flood event.  Unlike those given earlier, this ex-
ample is more complex in that it consists of a series of 
messages (with timestamps) posted by several people lo-
cated within the same general area. 

18:39 (Joan) I am watching TV. 
19:00 (Mike) It's been raining really hard. 
19:02 (Joan) Cats and dogs all day! 
19:13 (Michelle) I had lamb curry for dinner. 
19:15 (Mark) There are six inches of water in the yard. 

Figure 7: TRIPS parser output for drown defined as kill 
by submerging in water. 

Figure 8: Mini-Theory of Drowning 
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19:21 (Michelle) It's pouring like mad. 
19:32 (Jessica) I've been developing pictures in the darkroom 
all day. 
19:34 (Billy) I have a burst pipe.  
19:40 (Jessica) I haven't seen any rain. 
20:04 (News) Water level at Wahoo River is five feet above 
normal. 
20:13 (Billy) The whole kitchen got flooded! 
... 
<rain, more rain, a lot of rain> 
... 
23:17 (Alice) Water is seeping in around the door! 
23:32 (Bob) There is a car floating in the middle of the street! 
23:34 (News) A flock of sheep drowned in the heavy rains and 
rising water. 
With respect to the emerging flood event in the example, 

the messages I am watching TV and I had lamb for dinner 
are not relevant, while most of the rest can be fit together 
into a mini-theory of “flood,” much more coherently than 
into a mini-theory of, for example, “wildfire.” Thus, 
“flood” is much more probable than “wildfire” in this ex-
ample. Note that the messages that are irrelevant to “flood” 
could be supporting other events that are developing in 
parallel to the flood (e.g., lamb is becoming trendy).  At 
any given point, there can be multiple main and secondary 
mini-theories actively engaged according to how well the 
candidate sub-events can be accounted for by each mini-
theory.   

We will now examine a number of challenges in emerg-
ing event detection. 

 Paraphrasing: As mentioned in Section 2.1, paraphrase 
handling is pivotal in identifying implicit event-event rela-
tionships that can be expressed in a diverse number of 
ways, as is often the case in free text.  The methods dis-
cussed above for detecting categorial variations (e.g. rain-
ing—rain) and targeted paraphrasing (e.g. heavy rain—
rising water—drown—flood) are used to link sub-events 
into event mini-theories. 

 Identifying Spurious Evidence:  The example contains 
information seemingly contrary to an emerging flood: 

19:40 (Jessica) I haven't seen any rain. 
as well as information seemingly supportive of an emerg-
ing flood: 

20:13 (Billy) The whole kitchen got flooded! 
However, taking into account the larger context, we see 
that both cases are spurious, neither supporting nor under-
mining the bigger picture of an emerging flood: 

19:32 (Jessica) I've been developing pictures in the darkroom 
all day. 
19:40 (Jessica) I haven't seen any rain. 
19:34 (Billy) I have a burst pipe.  
20:13 (Billy) The whole kitchen got flooded! 

The event structures and mini-theories provide the back-
bone for inferring that, although on the surface these pieces 
of evidence appear to be relevant to flood (as an emerging 
widespread event), there are alternative, more plausible 
explanations and thus they likely do not contribute to flood 

either positively or negatively.  (It is of course possible, but 
less likely, that Billy's unlucky kitchen sustained flooding 
independently from both a burst pipe and the rain.)  To 
properly interpret the messages in their larger context, we 
need discourse management across messages/sub-events 
and the continuity and relational structure provided by the 
causal mini-theories. 
 Precursor Events and Filling in Gaps:  Consider these 
two messages: 

19:15 (Mark) There are six inches of water in the yard. 
19:34 (News) Water level at Wahoo River is five feet above 
normal. 

In these cases, there is no indication of flooding yet, but by 
approximately 23:00 when Alice and Bob are posting we 
can infer that, since it has not stopped raining (hard) in the 
last several hours, the water levels in Mark's yard and at 
Wahoo River are likely to have increased substantially.  

Often the incoming information is incomplete.  We can 
only obtain bits and pieces of what is going on, with gaps 
in between reported sub-events.  This is especially preva-
lent for informal sources.  For example, rising water is not 
explicitly mentioned in the above data stream, even though 
the water must have been rising.  With the commonsense 
knowledge captured in mini-theories we are able to infer 
the missing pieces and fill in the gaps.  This involves rea-
soning about properties of the world, including space, time, 
measurement and matter (e.g. rain/water).   

 Indicator Events:  By 23:00 we are starting to see initial 
evidence of a flood:   

23:17 (Alice) Water is seeping in around the door! 
23:32 (Bob) There is a car floating in the middle of the street! 

If we can project that the precursor events (for Mark's yard 
and Wahoo River) have likely reached flooding level by 
this time (23:00), we can conclude that there is an emerg-
ing “flood” event with more confidence and earlier than 
having to wait for more direct indicator events to appear in 
the data stream. 

3.5 Connecting the Dots and Bridging the Gaps 
Identifying emerging events involves two inter-related 
tasks: (1) connecting sub-events to each other and to the 
relevant emerging events within the event models; and (2) 
estimating the likelihood of possible emerging events.  
Each sub-event can be part of a number of emerging events 
and supports various event models to varying degrees.  Our 
approach is to build a coherent and compact model that 
probabilistically accommodates as many mini-theories in-
voked by the sub-events as possible.  This globally con-
strains possible solutions for relating sub-events, including 
discourse management across messages.  As discussed 
above, the combination of mini-theories and techniques, 
such as paraphrasing detection, provides the needed under-
lying structure for bridging gaps in the interpretation, infer-
ring and making use of information not explicitly men-
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tioned, and assigning probable cause and effect to the 
events.   

3.6 Related Work 
There is little work with comparable depth and coverage of 
the TRIPS system. Boxer (Bos, 2008) is a broad-coverage 
semantic parser, but does not perform word sense disam-
biguation, leaving its predicates as the lexical items. Fur-
thermore, its semantic role processing is limited to the few 
thousand words covered in VerbNet (Kipper et al., 2008). 
There is much recent work in learning semantic parsers 
(e.g., Brabavan et al, 2010; Chen & Mooney, 2011; 
Matusek et al, 2012; Tellex et al, 2013), but these systems 
operate only in highly restrictive domains and cannot be 
considered broad coverage.  The emergence detection ap-
proach above resembles processes developed for plan and 
intention recognition based on finding minimal explana-
tions (Kautz & Allen, 1986), most recently within proba-
bilistic frameworks (e.g., Cascading Hidden Markov Mod-
els in (Blaylock & Allen, 2014) and Temporal Markov 
Logic Networks in (Song et al, 2013a; 2013b)).  It shares 
many intuitions of the abductive approaches (e.g., Hobbs et 
al, 1993), but is cast in the framework of probabilistic op-
timization of event models. 

4 Evaluations and Future Work 
This is an opportune time to investigate events in great de-
tail, given the growth of Event-related workshops (e.g., the 
first Events Workshop last year at NAACL-2013) and in-
ternational evaluations of events at SemEval and the new 
NIST Event evaluation currently underway with our team’s 
participation. The evaluations are expected to run annually, 
with progressively more complex tests each year.  The 
metric used is an F-score over detected events and roles of 
participants based on s-precision and s-recall, where s re-
fers to three values: good, perfect, and semantically cor-
rect.   

In the NIST evaluation, systems are evaluated on their 
ability to extract explicit arguments from events.  For ex-
ample, in our running rain/flood example, systems would 
be expected to detect that 7 people drowned.  A deficiency 
of current event-oriented evaluations is that systems are not 
evaluated for their ability to infer implicit arguments or re-
lationships between sub-events.  That is, systems are not 
expected to infer that “rising water” is entailed by “flood-
ing conditions”, nor are they expected to infer flood as an 
emerging event.  

Our future work will evaluate our progress in an iterative 
fashion, with the results of each iteration being used to im-
prove the processing of the new resources in the next itera-
tion. We will employ the metric defined above, but we will 
apply it to inferred arguments and sub-event relationships, 

adopting human-produced gold standards from NIST (dis-
tributed by the Linguistic Data Consortium at the Universi-
ty of Pennsylvania). 
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