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Background and related work
Gestures can be characterized as body movements that are
used to convey information from one person to another
(Vaananen and Bohm 1993). As such, they are a crucial part
of human-human interaction. Gestures are even more im-
portant in the early stages of human development, where the
lack of speech promotes the gestures as the main commu-
nicative mode. However, even for humans, the context of a
gesture can vary considerably depending on a wide range of
factors. Even cultural differences can completely change the
meaning of a gesture.

The importance of gestures in human communication
makes them crucial in Human-Robot Interaction (HRI).
However, successful recognition, grounding and reproduc-
tion of gestures remain a major challenge in robotics. Apart
from visual realism, successful use of gestures by robots
must also adhere to behavioural realism. Behavioural real-
ism is more important than visual realism and a wrongly
used gesture can cancel the interaction loop needed for a
successful HRI. Early approaches were using only basic pre-
defined gestures. Machine vision could not provide accu-
rate tracking of the human body without cumbersome and
expensive sensors and great computational demands. Later,
the availability of cheap RGB-Depth sensors provided the
means for robots to easily and accurately track humans and
recognise some basic gestures, but still depending on a pre-
defined mapping of the gesture to be recognised and repro-
duced.

Newer approaches use training algorithms with manually
annotated data of human gestures as training data (Kipp
2003). While these approaches increase the efficiency of
the gesture recognition, they remain inflexible regarding the
context of the gesture. Other efforts for solving the problem
try to bypass the grounding issue by binding the information
load of a gesture to speech (Cassell 1998). Recognising what
the human is saying during the gesture is used to classify the
gesture (Salem et al. 2012), (Chiu and Marsella 2014).While
successful in certain scenarios, the obvious drawback is that
the gesture grounding issue is delegated to context extrac-
tion from speech recognition, itself also a major challenge
(Levine, Theobalt, and Koltun 2009). Also, these approaches
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fail to take into account what happens when speech is not
available or practical to be used during the interaction, mak-
ing them inapplicable in many HRI scenarios.

Proposed approach
The dynamic and adaptive approach proposed here is based
on contextually important points in time. These can be pre-
defined or automatically recognized. The idea is that these
important points of the interaction (e.g., the end of a turn
in turn-taking) carry their own information load, so gestures
that happen from one participant of the interaction around
these points are used as means to transfer this information to
the other participant.

Also, in HRI, these key points of the interaction timeline
have to identified anyway in most cases, regardless of the
need for gesture extraction and imitation. Therefore, an ap-
proach based on them does not significantly add to the cog-
nitive and computation load of the robotic system.

A diagram showing a simple application of the approach
is shown in Fig. 1. The gesture G1 performed by the human
at the end of the first turn (during which the human is the ac-
tor), is extracted using RGB-D sensors and used by the robot
at the end of turn 2 (with robot as the actor). The gesture G1
is internally stored and classified by the robot as a gesture
that signals the end of a turn.

Another secondary direction that is researched using this
approach, is the extraction of gestures that can be classified
as unconscious mannerisms not directly mapped to informa-
tion (Nehaniv et al. 2005). E.g., in Fig. 1, while the robot is
the actor, the human is performing a gesture G2. The robot
is storing this gesture to be performed later when the human
is the actor. While this type of gestures may not directly aid
the information exchange, they have the potential to increase
the behavioural realism of the robot.

System description and implementation
Our system was implemented in order to be used
in HRI studies regarding communicative imitation. The
robotic platform used was the iCub humanoid robot
(http://www.icub.org). The use of the iCub with its numerous
degrees of freedom contributed to the visual realism of the
produced gestures however, good results could be achieved
using other humanoid robots.
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The setup with which the system was tested, was a simple
interactive game between the iCub robot and a human. The
human was sitting in front of a table that had 4 large coloured
buttons that produce musical notes. The human was demon-
strating a tune to the robot and then the robot could play it
back or demonstrate its own tunes. In some cases, the hu-
man would choose to demonstrate the tune more than one
time before the robot would try to reproduce it. In the setup
used, the context-sensitive time points were the pressing of
the buttons and the end of each demonstration of the tune.

The gesture extraction and reproduction system is com-
prised of several software modules. Its structure can be seen
in Fig. 2. A module is constantly tracking and storing the hu-
man’s skeleton position and orientation for 15 joints receiv-
ing data from a Xtion Pro RGB-D sensor using the OpenNI2
API and the NiTE2 middleware for skeleton tracking. The
second sensor is used for tracking the five fingers of the dom-
inant hand of the human, using the FORTH middleware. The
finger tracking was used mostly for evaluating the possibil-
ity of integrating such data into the gesture recognition and
reproduction but focus was mainly on the arm imitation.

A Watchdog module is tracking important events and their
timing. In this case, the important events were the pressings
of the buttons and the end of a sequence played by the hu-
man. This module was needed for the purposes of our study
regardless of the gesture system.

The Gesture extractor module is notified from the watch-
dog that a keypoint is identified and retrieves the human’s
arm movements around that time point. Heuristic rules are
applied depending on the scenario. In the test case, the
movements after the button press are extracted.

The Safeguards filter module receives the extracted ges-
ture and checks if it conforms to rules that are necessary for
the safety of the robot. For example, if the imitation of the
gesture would mean that part of the robot’s arm would hit the
table, the gesture is limited in the direction that would cause
the breakage. Then, the gesture and its associated metadata
are stored in a database.

When the Gesture chooser module is informed that a time
point for a gesture reproduction is approaching, it retrieves
the associated gesture, and sends it to the robot’s kinematics
module for reproduction. If there is more than one gesture
with the same context stored (e.g., if there is more than one
gesture marked as end of turn), a similarity check is per-
formed and further heuristics are used to choose the one to
be reproduced.

Finally, the gesture is reproduced using velocity control.
The advantage of using velocity control is that the absolute
start and end positions of the human’s arms are not impor-
tant and only the relative orientation of the arm’s joints are
reproduced.

Conclusion
The approach presented has the advantage that extracts most
of its necessary context-related information from systems
that would have to be implemented, regardless of the need
for gesture extraction. At the same time, it avoids the need
for time-consuming training of the system. This model lends

Figure 1: Sample sequence diagram. G1 and G2 represent
gestures, T1,T2,T3,T4 represent turns 1-4. Gray areas rep-
resent the active actor (human or robot) for that turn.

Figure 2: Continuous gesture extraction and reproduction
system.

Figure 3: The iCub robot performing a suggestive gesture to
signal the end of its turn. The gesture was the same that the
human participant performed at the end of the previous turn.

itself well to the deferred nature of gesture imitation in turn-
taking scenarios in HRI. The main overhead has to do with
the safeguards and filters that have to be specific to robots
and setups.

While further work is needed to improve parts of the sys-
tem, the current implementation allows for gesture extrac-
tion and reproduction that appears to be visually and be-
haviourally realistic and at the same time is dynamic and
adaptive to individual users without the burden of speech-
based approaches and the inflexibility of predefined systems.

154



References
Cassell, J. 1998. Computer Vision in Human-Machine In-
teraction. Cambridge University. chapter A framework for
gesture generation and intepretation.
Chiu, C.-C., and Marsella, S. 2014. Gesture generation with
low-dimensional embeddings. In Proceedings of the 2014
International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS ’14, 781–788. Richland, SC: Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Kipp, M. 2003. Gesture Generation by Imitation: From
Human Behavior to Computer Character Animation.
Levine, S.; Theobalt, C.; and Koltun, V. 2009. Real-time
prosody-driven synthesis of body language. ACM Trans.
Graph. 28(5):172:1–172:10.
Nehaniv, C.; Dautenhahn, K.; Kubacki, J.; Haegele, M.; Par-
litz, C.; and Alami, R. 2005,. A methodological approach re-
lating the classification of gesture to identification of human
intent in the context of human-robot interaction. ROMAN
2005. IEEE International Workshop on Robot and Human
Interactive Communication 371–377.
Salem, M.; Kopp, S.; Wachsmuth, I.; Rohlfing, K.; and
Joublin, F. 2012. Generation and evaluation of com-
municative robot gesture. International Journal of Social
Robotics, Special Issue on Expectations, Intentions, and Ac-
tions 4(2):201–217.
Vaananen, K., and Bohm, K. 1993. Virtual Reality Systems.
Academic Press, Ltd. chapter Gesture-driven interaction as
a human factor in virtual environments - An approach with
neural networks.

155




