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Introduction and Background   
If a robot is to succeed in integrating into the households of 
normal users, a robot must be able to easily learn new 
behaviors, modify existing behaviors and adapt to user 
preferences.  However, it cannot be reasonably expected 
that users are robotics experts.  By utilizing advancements 
in AI, it may be possible to improve the interaction 
between home users and a domestic robot.  Teaching an AI 
using natural human teaching methods is not itself novel, 
and has been used in the past (A. Thomaz, 2006).  The 
method used here is clicker style training, which is often 
used with dogs, and could provide an intuitive interface for 
untrained users to be able to train the system to adapt to 
their preferences.  This is similar to that used in (B. 
Blumberg, et al, 2002), but with a physical agent rather 
than a virtual agent.  In this paper we examine the 
possibility of utilizing the Interaction History Architecture 
(IHA) (N. A. Mirza, Nehaniv, Dautenhahn, & te 
Boekhorst, 2006) as a basis for learning both user 
preferences and simple control of the robot base.  IHA has 
previously shown to be capable of producing desired 
behaviors from natural interactions in both humanoid 
(Broz, Nehaniv, Kose-Bagci, & Dautenhahn, 2012) and 
non-humanoid robots (N. A. Mirza et al., 2006). 

The interaction history architecture combines a view of 
the environment with the ideas of an information metric 
proposed by Crutchfield (Crutchfield, 1990) and Shannon 
information theory (Shannon, 1948) in order build the 
metric space of experience.  This view is constructed 
during the human robot interactions by the robotic agent 
and from its perspective.  Due to this, we therefore 
consider it to be grounded (N. A. Mirza, Nehaniv, 
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Dautenhahn, & Boekhorst, 2007).  From this, we can then 
begin to construct a metric space of experience and 
compute the distance between time-separated events.  We 
first define the conditional entropy, the measure of 
uncertainty for value X given Y as 

   (1) 

and then similarly for . The sensor data is first 
categorized into Q bins, and conditional entropies are 
calculated from the joint probability distributions of sensor 
values from T recent samples, a method developed by 
Mirza (N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, & R. 
Boekhorst, 2005).  Once the conditional entropy of the 
system has been calculated, we are able to calculate the 
information distance between two information sources with  

  (2) 

By building on the ideas of information distance, a 
metric space of experiences can be constructed.  Beginning 
with the definition for an embodied agent as  

the temporally extended, dynamically constructed, 
individual sensorimotor history of an agent situated 
and acting in its environment, including the social 
environment, that shapes current and future action (N. 
A. Mirza et al., 2007)  

we can define an experience for an agent as a collection of 
sensorimotor information X for a time horizon h.  Thus, to 
calculate the distance between two experiences of the same 
horizon length, we need to calculate the distance between 
their sensorimotor information.  Defining  to be the 
sensorimotor variable with temporal horizon h starting at 
time  allows for the experiences of the robot to be 
defined for temporal horizon h as  
where  is the set of all sensorimotor variables 
available to the robot.  Following this, we can define a 
distance metric for experiences of temporal horizon h as  
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   (3) 

where  and  are two experiences of the 
robot and d is the information distance (N. A. Mirza et al., 
2006).  The average if this is the final metric used in the 
comparison of experiences.  By simplifying to a single 
distance value, we are able to quickly sort and select the 
experience closest to our current experience.  This method 
was shown to be generally effective in distinguishing 
between experiences in (N. A. Mirza et al., 2005).  

System Set-Up 
We explore an adaptation of the humanoid version of 

IHA for its usefulness in a domestic robot.  The robot used 
is Sunflower 1-1, a custom robot built on a Pioneer 3dx 
base and the experiment was performed in a home 
environment (Figure 1).  Sunflower uses ROS Groovy 
(ROS, 2014) and p2os as its base control stack, with a 
custom ROS controller acting as a central control point. 
Sunflower relies primarily on its sonar sensors, in addition 
to a contrived sensor that measures the distance and angle 
from the robot to the experimenter.  The reward system 
includes a number of individual reward systems, hitherto 
referred to as motivations.  The first motivation is a manual 
feedback mechanism designed to replicate the abilities of 
simple dog training.  It consists of a three button ‘clicker 
interface’ on a helper computer that can be used to 
increase, decrease, and zero the reward manually assigned 
to the current behavior.  The next motivation has been 
named self-preservation as it only acts to prevent the robot 
from running into objects.  This motivation supplies 
reward values in the range [-1, 0], with the reward 
decreasing linearly as the robot approaches closer than 
0.5m from an obstacle.  Finally, there is a ‘closeness’ 
motivation that works similar to, and in opposition of the 
‘self-preservation’ motivation.  This motivation seeks to 
reward the robot for being near the experimenter, with a 
reward that continues to increase from 0 to 1 as the robot 
approaches within 1m of the experimenter, reaching 

 at 0.5m. 
While individual motivations are normalized to the 

range  the aggregate value is not.  Each motivation 
carries a weight modifier.  This weight is constant for each 
motivation type, and aggregate reward value can be then 
defined as 

   (4) 

This allows for total rewards of greater than 1 and less than 
-1, a departure from previous experiments with IHA. 

The robot is programmed with a number of basic actions 
that it can execute at any time step.  For this experiment, 
the action set was restricted to only those dealing with the 
base (turning, forward/back), and the idle action (no 
action).  During the experiment, the robot is allowed to 

freely roam about the room, with the experimenter using 
the clicker interface to reward the robot when it performs a 
desired action (i.e. turning towards the experimenter).  This 
is added to the reward from the automatic motivations to 
arrive at the final reward for that experience.  The 
experiment was begun with an empty interaction history, 
and as such, Sunflower began the random movements that 
approximate body babbling.  This is normal for IHA, and is 
expected until sufficient similar past experiences have been 
recorded. 

Results and Conclusions 
The chance of a random action being selected is expected 
to decrease over time and within the first one to three 
minutes actions are expected to be chosen primarily based 
upon past experiences.  This was not the observed result, 
and an analysis of the data made clear that there was an 
incompatibility in the sensor configuration and the IHA 
distance calculations which prevented IHA from properly 
distinguishing past events. 
 While IHA can be useful for detecting past events that 
are similar to the current environment, we have found that 
there are limitations that must be taken into account when 
deciding on sensor configurations.  The reliance on entropy 
means that any sensors that are stable over multiple time 
windows will always be computed as identical, regardless 
of the underlying values.  Additionally, IHA does not 
maintain the time-series of the data, which causes rising 
and falling values within the same sensor to be computed 
as similar as well.  The net result of these is that all ‘idle’ 
actions are detected as the same, and without the time-
series information from the single direction sensor, the 
robot could not distinguish between turn left and turn right 
actions.  This second issue can be solved by utilizing 
multiple sensors for left/right based rewards, as was done 
in an earlier T-Junction task (N. A. Mirza, 2008).  The 
problem of entropy in the sensors is more difficult, and 
may require including a different distance metric in the 
calculations.  More work will need to be done to determine 
if IHA is useful in navigation style tasks. 

 
Figure 1: Sunflower 1.1 in the study environment 
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